organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 June 2010; accepted 20 June 2010; online 26 June 2010)

In the title compound, C14H13NO3S, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. The dihedral angle between the sulfonyl benzene ring and the S—N—C—O segment (r.m.s. deviation = 0.039 Å) is 77.1 (1)° and that between the sulfonyl and benzoyl benzene rings is 71.9 (1)°.

Related literature

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for related structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.]); Suchetan et al. (2009[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.], 2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO3S

  • Mr = 275.31

  • Triclinic, [P \overline 1]

  • a = 5.5519 (6) Å

  • b = 10.541 (1) Å

  • c = 11.105 (1) Å

  • α = 85.654 (9)°

  • β = 83.667 (9)°

  • γ = 81.949 (9)°

  • V = 638.36 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 299 K

  • 0.40 × 0.32 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.904, Tmax = 0.960

  • 4293 measured reflections

  • 2595 independent reflections

  • 2207 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.08

  • 2595 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009; Suchetan et al., 2009, 2010), the crystal structure of N-(4-methylbenzoyl)benzenesulfonamide has been determined (Fig. 1). The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the CO bond, similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), N-(benzoyl)-4-methylbenzenesulfonamide (III) (Suchetan et al., 2010) and N-(4-chlorobenzoyl)-benzenesulfonamide (IV) (Suchetan et al., 2009).

The molecules are twisted at the S—N bonds with the C—SO2—NH—C torsional angle of 67.4 (1)°, compared to the values of -66.9 (3)° in (II), 73.2 (2)° in (III) and 69.4 (2)° in (IV).

The dihedral angle between the sulfonyl-bound benzene ring and the S—N—C—O segment (r.m.s. deviation 0.039 Å) is 77.1 (1)°, compared to the values of 86.5 (1)° in (II), 76.5 (1)° in (III) and 75.7 (1)° in (IV).

The dihedral angle between the sulfonyl and the benzoyl benzene rings is 71.9 (1)°, compared to the values of 80.3 (1) in (II), 79.4 (1)° in (III), and 68.6 (1)° in (IV).

Related literature top

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for related structures, see: Gowda et al. (2009); Suchetan et al. (2009, 2010).

Experimental top

The title compound was prepared by refluxing a mixture of 4-methylbenzoic acid, benzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in a sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized. Colourless needle-shaped single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

H atoms were positioned with idealized geometry using a riding model with N–H = 0.86 Å, C–H = 0.93–0.96 Å and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-(4-Methylbenzoyl)benzenesulfonamide top
Crystal data top
C14H13NO3SZ = 2
Mr = 275.31F(000) = 288
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5519 (6) ÅCell parameters from 2679 reflections
b = 10.541 (1) Åθ = 2.6–27.7°
c = 11.105 (1) ŵ = 0.26 mm1
α = 85.654 (9)°T = 299 K
β = 83.667 (9)°Needle, colourless
γ = 81.949 (9)°0.40 × 0.32 × 0.16 mm
V = 638.36 (11) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2595 independent reflections
Radiation source: fine-focus sealed tube2207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 66
Tmin = 0.904, Tmax = 0.960k = 1311
4293 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.1768P]
where P = (Fo2 + 2Fc2)/3
2595 reflections(Δ/σ)max = 0.020
173 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H13NO3Sγ = 81.949 (9)°
Mr = 275.31V = 638.36 (11) Å3
Triclinic, P1Z = 2
a = 5.5519 (6) ÅMo Kα radiation
b = 10.541 (1) ŵ = 0.26 mm1
c = 11.105 (1) ÅT = 299 K
α = 85.654 (9)°0.40 × 0.32 × 0.16 mm
β = 83.667 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2595 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2207 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.960Rint = 0.017
4293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
2595 reflectionsΔρmin = 0.30 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0535 (3)0.17087 (15)0.37945 (14)0.0370 (3)
C20.2512 (3)0.07861 (18)0.39763 (17)0.0491 (4)
H20.37090.09440.44480.059*
C30.2687 (4)0.03734 (19)0.34486 (19)0.0557 (5)
H30.40080.10010.35670.067*
C40.0919 (4)0.06031 (17)0.27507 (18)0.0514 (5)
H40.10500.13830.23940.062*
C50.1047 (4)0.03194 (19)0.25778 (17)0.0517 (5)
H50.22410.01570.21060.062*
C60.1262 (3)0.14869 (17)0.31001 (16)0.0439 (4)
H60.25920.21100.29850.053*
C70.1508 (3)0.45512 (14)0.24545 (14)0.0362 (3)
C80.2982 (3)0.55415 (14)0.18611 (13)0.0345 (3)
C90.4790 (3)0.60283 (16)0.23892 (15)0.0393 (4)
H90.51130.57480.31770.047*
C100.6111 (3)0.69266 (17)0.17506 (15)0.0429 (4)
H100.73280.72350.21130.051*
C110.5653 (3)0.73765 (16)0.05771 (15)0.0403 (4)
C120.3825 (3)0.69012 (18)0.00681 (16)0.0471 (4)
H120.34770.71970.07120.056*
C130.2508 (3)0.60001 (17)0.06897 (15)0.0451 (4)
H130.12910.56950.03240.054*
C140.7134 (4)0.83301 (19)0.01353 (19)0.0553 (5)
H14A0.84090.78820.06610.066*
H14B0.78440.87950.04150.066*
H14C0.60900.89200.06130.066*
N10.2026 (3)0.40757 (13)0.36175 (13)0.0466 (4)
H1N0.33190.42620.38870.056*
O10.1439 (3)0.29602 (14)0.55935 (12)0.0705 (5)
O20.2229 (3)0.37520 (13)0.45410 (13)0.0618 (4)
O30.0051 (2)0.41356 (12)0.19791 (11)0.0493 (3)
S10.02709 (9)0.31703 (4)0.45017 (4)0.04709 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0466 (9)0.0344 (8)0.0314 (8)0.0135 (7)0.0018 (6)0.0008 (6)
C20.0481 (10)0.0518 (10)0.0501 (10)0.0113 (8)0.0125 (8)0.0001 (8)
C30.0556 (11)0.0452 (10)0.0633 (12)0.0003 (8)0.0039 (9)0.0008 (9)
C40.0641 (12)0.0386 (9)0.0524 (11)0.0164 (8)0.0059 (9)0.0079 (8)
C50.0555 (11)0.0545 (11)0.0510 (11)0.0219 (9)0.0081 (8)0.0105 (8)
C60.0453 (9)0.0427 (9)0.0453 (9)0.0096 (7)0.0076 (7)0.0014 (7)
C70.0448 (9)0.0310 (8)0.0330 (8)0.0035 (6)0.0065 (6)0.0027 (6)
C80.0391 (8)0.0319 (8)0.0313 (8)0.0004 (6)0.0035 (6)0.0018 (6)
C90.0429 (9)0.0439 (9)0.0313 (8)0.0054 (7)0.0071 (6)0.0016 (6)
C100.0417 (9)0.0476 (9)0.0408 (9)0.0092 (7)0.0061 (7)0.0030 (7)
C110.0419 (9)0.0359 (8)0.0397 (8)0.0000 (7)0.0026 (7)0.0005 (6)
C120.0571 (11)0.0495 (10)0.0342 (8)0.0070 (8)0.0097 (7)0.0074 (7)
C130.0524 (10)0.0494 (10)0.0366 (9)0.0127 (8)0.0145 (7)0.0030 (7)
C140.0585 (12)0.0500 (11)0.0552 (11)0.0114 (9)0.0036 (9)0.0053 (9)
N10.0680 (10)0.0420 (8)0.0359 (7)0.0246 (7)0.0154 (7)0.0053 (6)
O10.1269 (14)0.0621 (9)0.0333 (7)0.0439 (9)0.0218 (7)0.0059 (6)
O20.0745 (10)0.0493 (8)0.0565 (8)0.0036 (7)0.0148 (7)0.0111 (6)
O30.0544 (7)0.0519 (7)0.0459 (7)0.0172 (6)0.0166 (6)0.0056 (5)
S10.0756 (3)0.0393 (2)0.0295 (2)0.0204 (2)0.00330 (19)0.00178 (16)
Geometric parameters (Å, º) top
C1—C61.381 (2)C9—C101.384 (2)
C1—C21.382 (3)C9—H90.93
C1—S11.7626 (16)C10—C111.391 (2)
C2—C31.382 (3)C10—H100.93
C2—H20.93C11—C121.383 (2)
C3—C41.373 (3)C11—C141.510 (2)
C3—H30.93C12—C131.377 (2)
C4—C51.376 (3)C12—H120.93
C4—H40.93C13—H130.93
C5—C61.385 (3)C14—H14A0.96
C5—H50.93C14—H14B0.96
C6—H60.93C14—H14C0.96
C7—O31.209 (2)N1—S11.6529 (15)
C7—N11.395 (2)N1—H1N0.86
C7—C81.487 (2)O1—S11.4257 (14)
C8—C91.391 (2)O2—S11.4340 (15)
C8—C131.393 (2)
C6—C1—C2121.09 (16)C9—C10—C11121.20 (16)
C6—C1—S1119.75 (13)C9—C10—H10119.4
C2—C1—S1119.13 (13)C11—C10—H10119.4
C3—C2—C1119.19 (17)C12—C11—C10117.86 (15)
C3—C2—H2120.4C12—C11—C14120.74 (16)
C1—C2—H2120.4C10—C11—C14121.39 (16)
C4—C3—C2120.29 (18)C13—C12—C11121.56 (16)
C4—C3—H3119.9C13—C12—H12119.2
C2—C3—H3119.9C11—C12—H12119.2
C3—C4—C5120.12 (17)C12—C13—C8120.55 (16)
C3—C4—H4119.9C12—C13—H13119.7
C5—C4—H4119.9C8—C13—H13119.7
C4—C5—C6120.56 (17)C11—C14—H14A109.5
C4—C5—H5119.7C11—C14—H14B109.5
C6—C5—H5119.7H14A—C14—H14B109.5
C1—C6—C5118.75 (17)C11—C14—H14C109.5
C1—C6—H6120.6H14A—C14—H14C109.5
C5—C6—H6120.6H14B—C14—H14C109.5
O3—C7—N1119.51 (15)C7—N1—S1123.07 (12)
O3—C7—C8123.77 (14)C7—N1—H1N118.5
N1—C7—C8116.70 (14)S1—N1—H1N118.5
C9—C8—C13118.37 (15)O1—S1—O2119.65 (10)
C9—C8—C7124.69 (14)O1—S1—N1103.47 (8)
C13—C8—C7116.93 (14)O2—S1—N1109.71 (8)
C10—C9—C8120.45 (15)O1—S1—C1109.18 (9)
C10—C9—H9119.8O2—S1—C1108.24 (8)
C8—C9—H9119.8N1—S1—C1105.73 (8)
C6—C1—C2—C30.2 (3)C10—C11—C12—C130.7 (3)
S1—C1—C2—C3178.30 (14)C14—C11—C12—C13177.89 (17)
C1—C2—C3—C40.1 (3)C11—C12—C13—C80.2 (3)
C2—C3—C4—C50.3 (3)C9—C8—C13—C120.8 (3)
C3—C4—C5—C60.2 (3)C7—C8—C13—C12178.80 (16)
C2—C1—C6—C50.4 (3)O3—C7—N1—S112.2 (2)
S1—C1—C6—C5178.42 (13)C8—C7—N1—S1168.97 (11)
C4—C5—C6—C10.2 (3)C7—N1—S1—O1177.83 (14)
O3—C7—C8—C9179.72 (16)C7—N1—S1—O249.07 (16)
N1—C7—C8—C90.9 (2)C7—N1—S1—C167.44 (15)
O3—C7—C8—C130.1 (2)C6—C1—S1—O1149.92 (14)
N1—C7—C8—C13178.70 (15)C2—C1—S1—O128.17 (17)
C13—C8—C9—C101.3 (2)C6—C1—S1—O218.16 (16)
C7—C8—C9—C10178.29 (15)C2—C1—S1—O2159.93 (14)
C8—C9—C10—C110.8 (3)C6—C1—S1—N199.34 (14)
C9—C10—C11—C120.2 (3)C2—C1—S1—N182.58 (15)
C9—C10—C11—C14178.37 (16)

Experimental details

Crystal data
Chemical formulaC14H13NO3S
Mr275.31
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)5.5519 (6), 10.541 (1), 11.105 (1)
α, β, γ (°)85.654 (9), 83.667 (9), 81.949 (9)
V3)638.36 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.40 × 0.32 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.904, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
4293, 2595, 2207
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.08
No. of reflections2595
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds