organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(3-chloro­benzo­yl)benzene­sulfonamide monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 June 2010; accepted 20 June 2010; online 26 June 2010)

In the title compound, C13H9Cl2NO3S·H2O, the conformation of the C=O bond is syn to the meta-Cl group in the benzoyl ring. The mol­ecules are twisted at the S—N bond with a C—S—N—C torsion angle of 72.9 (2)°. The dihedral angle between the sulfonyl benzene ring and the S—NH—C—O segment is 77.8 (1)° and that between the sulfonyl and benzoyl benzene rings is 80.5 (1)°. In the crystal, mol­ecules are linked into a two-dimensional network parallel to (100) by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for related structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2750.], 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o1467.]); Suchetan et al. (2010a[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o766.],b[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1253.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO3S·H2O

  • Mr = 348.19

  • Monoclinic, C 2/c

  • a = 46.909 (3) Å

  • b = 4.9469 (5) Å

  • c = 12.919 (1) Å

  • β = 95.938 (9)°

  • V = 2981.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 299 K

  • 0.30 × 0.14 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.843, Tmax = 0.944

  • 7848 measured reflections

  • 2511 independent reflections

  • 2027 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.184

  • S = 1.01

  • 2511 reflections

  • 199 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.83 (2) 1.98 (2) 2.805 (4) 175 (3)
O4—H41⋯O2ii 0.83 (2) 2.17 (3) 2.944 (3) 154 (4)
O4—H42⋯O1 0.85 (2) 2.32 (4) 3.035 (4) 142 (5)
O4—H42⋯O3 0.85 (2) 2.27 (4) 2.952 (3) 137 (5)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009, 2010; Suchetan et al., 2010a,b), the structure of 4-chloro-N-(3-Chlorobenzoyl)benzenesulfonamide monohydrate (I) has been determined (Fig.1).

The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the CO bond, similar to those observed in N-(3-chlorobenzoyl)-benzenesulfonamide (II) (Gowda et al., 2009), N-(benzoyl)-4-chlorobenzenesulfonamide (III) (Suchetan et al., 2010a), 4-chloro-N-(2-chlorobenzoyl)benzenesulfonamide (IV) (Gowda et al., 2010), and N-(4-chlorobenzoyl)-4- chlorobenzenesulfonamide (V) (Suchetan et al., 2010b).

Further, the conformation of the CO bond in the C—SO2—NH—C(O) segment of (I) is syn to the meta-Cl in the benzoyl ring, similar to that observed between the CO bond and ortho-Cl in (IV), but contrary to the anti conformation observed between the CO bond and meta-Cl in (II).

The molecules are twisted at the S—N bond with the C1—S1—N1—C7 torsional angle of 72.9 (2)°, compared to those of 65.3 (2)° in (II), -70.0 (2)°, 61.3 (2)° in the two independent molecules of (III), 65.7 (2)° in (IV) and 67.5 (3)° in (V).

The dihedral angles between the sulfonyl benzene ring and the S/N/C/O plane is 77.8 (1)°, compared to the values of 89.9 (1)° in (II), 72.0 (1)° & 77.3 (1)° in the two molecules of (III), 88.5 (1)° in (IV) and 79.0 (1)° in (V).

Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 80.5 (1)°, compared to the values of 87.5 (1)° in (II), 62.8 (1)° (molecule 1) and 78.6 (1)° (molecule 2) of (III), 58.0 (1)° in (IV) and 85.6 (1)° in (V)

The molecules are linked into a two-dimensional network (Fig.2) parallel to the (100) by N—H···O and O—H···O hydrogen bonds (Table 1).

Related literature top

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for related structures, see: Gowda et al. (2009, 2010); Suchetan et al. (2010a,b).

Experimental top

The title compound was prepared by refluxing a mixture of 3-chlorobenzoic acid, 4-chlorobenzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized. Long needle like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group and the H atoms of the water molecule were located in a difference map and later restrained to N–H = 0.86 (2) %A and to O–H = 0.85 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal packing in the title compound, showing hydrogen bonds (dashed lines) involving the water molecules.
4-Chloro-N-(3-chlorobenzoyl)benzenesulfonamide monohydrate top
Crystal data top
C13H9Cl2NO3S·H2OF(000) = 1424
Mr = 348.19Dx = 1.551 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3786 reflections
a = 46.909 (3) Åθ = 27.9–2.6°
b = 4.9469 (5) ŵ = 0.59 mm1
c = 12.919 (1) ÅT = 299 K
β = 95.938 (9)°Long needle, colourless
V = 2981.8 (4) Å30.30 × 0.14 × 0.10 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2511 independent reflections
Radiation source: fine-focus sealed tube2027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
Rotation method data acquisition using ω and ϕ scansθmax = 25.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 5655
Tmin = 0.843, Tmax = 0.944k = 55
7848 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1432P)2]
where P = (Fo2 + 2Fc2)/3
2511 reflections(Δ/σ)max = 0.008
199 parametersΔρmax = 0.49 e Å3
3 restraintsΔρmin = 0.48 e Å3
Crystal data top
C13H9Cl2NO3S·H2OV = 2981.8 (4) Å3
Mr = 348.19Z = 8
Monoclinic, C2/cMo Kα radiation
a = 46.909 (3) ŵ = 0.59 mm1
b = 4.9469 (5) ÅT = 299 K
c = 12.919 (1) Å0.30 × 0.14 × 0.10 mm
β = 95.938 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2511 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2027 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.944Rint = 0.094
7848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0663 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.49 e Å3
2511 reflectionsΔρmin = 0.48 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23824 (2)0.1411 (2)0.15914 (10)0.0751 (4)
Cl20.030813 (19)0.4014 (2)0.16022 (8)0.0636 (4)
S10.145674 (14)0.62369 (12)0.02750 (5)0.0330 (3)
O10.13859 (4)0.8302 (4)0.04597 (17)0.0413 (5)
O20.15376 (5)0.6968 (4)0.13059 (16)0.0478 (6)
O30.10727 (4)0.3795 (4)0.12809 (15)0.0433 (6)
N10.11762 (5)0.4252 (5)0.04251 (18)0.0348 (6)
H1N0.1192 (7)0.357 (6)0.1005 (17)0.042*
C10.17257 (6)0.4165 (5)0.0259 (2)0.0332 (6)
C20.17479 (6)0.3855 (6)0.1325 (2)0.0398 (7)
H20.16300.47790.17400.048*
C30.19519 (7)0.2122 (7)0.1723 (2)0.0456 (7)
H30.19760.17960.24360.055*
C40.21297 (6)0.0798 (6)0.1065 (3)0.0453 (8)
C50.21165 (7)0.1130 (7)0.0002 (3)0.0544 (9)
H50.22400.02420.04040.065*
C60.19104 (7)0.2844 (7)0.0406 (2)0.0476 (8)
H60.18880.31700.11190.057*
C70.10191 (6)0.3242 (5)0.0382 (2)0.0340 (6)
C80.07754 (6)0.1437 (5)0.0091 (2)0.0363 (7)
C90.06672 (5)0.0221 (6)0.0866 (2)0.0375 (6)
H90.07540.01380.15460.045*
C100.04422 (6)0.1911 (6)0.0642 (3)0.0428 (7)
C110.03190 (7)0.1960 (8)0.0333 (3)0.0600 (10)
H110.01630.30920.05140.072*
C120.04251 (8)0.0290 (9)0.1094 (3)0.0681 (11)
H120.03350.03570.17700.082*
C130.06525 (7)0.1418 (7)0.0887 (3)0.0516 (9)
H130.07180.25070.13990.062*
O40.12309 (7)0.8386 (5)0.26833 (19)0.0640 (7)
H410.1273 (10)0.997 (5)0.287 (4)0.096*
H420.1245 (11)0.760 (10)0.211 (2)0.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0623 (6)0.0664 (7)0.0913 (9)0.0265 (4)0.0185 (6)0.0069 (5)
Cl20.0642 (6)0.0712 (6)0.0563 (6)0.0273 (4)0.0111 (5)0.0027 (4)
S10.0396 (4)0.0302 (4)0.0291 (4)0.0026 (2)0.0029 (3)0.0016 (2)
O10.0499 (11)0.0297 (10)0.0434 (11)0.0007 (8)0.0003 (9)0.0043 (9)
O20.0608 (13)0.0483 (12)0.0340 (11)0.0061 (10)0.0041 (10)0.0097 (10)
O30.0485 (11)0.0524 (13)0.0282 (11)0.0123 (9)0.0004 (9)0.0059 (8)
N10.0377 (12)0.0387 (12)0.0269 (12)0.0045 (10)0.0023 (10)0.0021 (10)
C10.0328 (13)0.0335 (13)0.0335 (15)0.0047 (11)0.0042 (11)0.0027 (11)
C20.0350 (14)0.0480 (16)0.0357 (16)0.0033 (12)0.0011 (12)0.0058 (12)
C30.0426 (15)0.0536 (17)0.0388 (15)0.0045 (14)0.0035 (13)0.0015 (15)
C40.0371 (15)0.0411 (15)0.055 (2)0.0041 (12)0.0075 (14)0.0033 (14)
C50.0468 (17)0.060 (2)0.057 (2)0.0109 (15)0.0100 (16)0.0134 (16)
C60.0504 (17)0.0571 (18)0.0363 (15)0.0051 (15)0.0089 (13)0.0062 (15)
C70.0363 (13)0.0347 (13)0.0301 (14)0.0027 (11)0.0017 (11)0.0032 (11)
C80.0324 (13)0.0362 (14)0.0388 (15)0.0003 (11)0.0035 (12)0.0020 (11)
C90.0337 (14)0.0455 (16)0.0326 (14)0.0021 (12)0.0003 (12)0.0046 (12)
C100.0372 (15)0.0464 (16)0.0450 (17)0.0074 (12)0.0051 (13)0.0039 (14)
C110.0472 (18)0.075 (2)0.054 (2)0.0219 (17)0.0127 (16)0.0065 (19)
C120.061 (2)0.090 (3)0.047 (2)0.023 (2)0.0225 (18)0.005 (2)
C130.0528 (18)0.062 (2)0.0375 (17)0.0116 (15)0.0075 (15)0.0068 (14)
O40.111 (2)0.0504 (14)0.0298 (12)0.0019 (14)0.0024 (13)0.0003 (11)
Geometric parameters (Å, º) top
Cl1—C41.701 (3)C5—C61.351 (4)
Cl2—C101.782 (3)C5—H50.93
S1—O11.456 (2)C6—H60.93
S1—O21.467 (2)C7—C81.468 (4)
S1—N11.637 (2)C8—C131.333 (4)
S1—C11.714 (3)C8—C91.427 (4)
O3—C71.195 (3)C9—C101.354 (4)
N1—C71.428 (4)C9—H90.93
N1—H1N0.833 (18)C10—C111.331 (5)
C1—C21.379 (4)C11—C121.413 (6)
C1—C61.438 (4)C11—H110.93
C2—C31.347 (4)C12—C131.365 (5)
C2—H20.93C12—H120.93
C3—C41.412 (5)C13—H130.93
C3—H30.93O4—H410.83 (2)
C4—C51.379 (5)O4—H420.85 (2)
O1—S1—O2121.10 (13)C5—C6—H6119.9
O1—S1—N1105.25 (13)C1—C6—H6119.9
O2—S1—N1108.69 (12)O3—C7—N1123.9 (2)
O1—S1—C1111.44 (13)O3—C7—C8117.9 (3)
O2—S1—C1105.30 (14)N1—C7—C8118.2 (2)
N1—S1—C1103.79 (12)C13—C8—C9120.7 (3)
C7—N1—S1126.36 (17)C13—C8—C7119.7 (3)
C7—N1—H1N128 (2)C9—C8—C7119.6 (2)
S1—N1—H1N102 (2)C10—C9—C8122.1 (3)
C2—C1—C6123.9 (3)C10—C9—H9119.0
C2—C1—S1116.4 (2)C8—C9—H9119.0
C6—C1—S1119.7 (2)C11—C10—C9117.8 (3)
C3—C2—C1115.5 (3)C11—C10—Cl2119.9 (2)
C3—C2—H2122.3C9—C10—Cl2122.4 (2)
C1—C2—H2122.3C10—C11—C12119.9 (3)
C2—C3—C4120.4 (3)C10—C11—H11120.1
C2—C3—H3119.8C12—C11—H11120.1
C4—C3—H3119.8C13—C12—C11123.3 (3)
C5—C4—C3125.2 (3)C13—C12—H12118.3
C5—C4—Cl1115.6 (3)C11—C12—H12118.3
C3—C4—Cl1119.2 (3)C8—C13—C12116.3 (3)
C6—C5—C4114.8 (3)C8—C13—H13121.9
C6—C5—H5122.6C12—C13—H13121.9
C4—C5—H5122.6H41—O4—H42130 (5)
C5—C6—C1120.2 (3)
O1—S1—N1—C744.3 (2)S1—C1—C6—C5177.6 (3)
O2—S1—N1—C7175.4 (2)S1—N1—C7—O31.7 (4)
C1—S1—N1—C772.9 (2)S1—N1—C7—C8178.91 (19)
O1—S1—C1—C227.9 (3)O3—C7—C8—C13159.3 (3)
O2—S1—C1—C2161.0 (2)N1—C7—C8—C1320.1 (4)
N1—S1—C1—C284.9 (2)O3—C7—C8—C918.9 (4)
O1—S1—C1—C6152.8 (2)N1—C7—C8—C9161.7 (2)
O2—S1—C1—C619.7 (3)C13—C8—C9—C101.5 (5)
N1—S1—C1—C694.4 (2)C7—C8—C9—C10179.7 (3)
C6—C1—C2—C32.2 (4)C8—C9—C10—C111.0 (5)
S1—C1—C2—C3177.0 (2)C8—C9—C10—Cl2179.3 (2)
C1—C2—C3—C41.1 (4)C9—C10—C11—C120.3 (6)
C2—C3—C4—C50.5 (5)Cl2—C10—C11—C12179.9 (3)
C2—C3—C4—Cl1179.2 (2)C10—C11—C12—C130.1 (7)
C3—C4—C5—C61.1 (5)C9—C8—C13—C121.1 (5)
Cl1—C4—C5—C6178.6 (2)C7—C8—C13—C12179.3 (3)
C4—C5—C6—C10.1 (5)C11—C12—C13—C80.4 (6)
C2—C1—C6—C51.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.83 (2)1.98 (2)2.805 (4)175 (3)
O4—H41···O2ii0.83 (2)2.17 (3)2.944 (3)154 (4)
O4—H42···O10.85 (2)2.32 (4)3.035 (4)142 (5)
O4—H42···O30.85 (2)2.27 (4)2.952 (3)137 (5)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO3S·H2O
Mr348.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)46.909 (3), 4.9469 (5), 12.919 (1)
β (°) 95.938 (9)
V3)2981.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.30 × 0.14 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.843, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
7848, 2511, 2027
Rint0.094
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.184, 1.01
No. of reflections2511
No. of parameters199
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.48

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.83 (2)1.98 (2)2.805 (4)175 (3)
O4—H41···O2ii0.83 (2)2.17 (3)2.944 (3)154 (4)
O4—H42···O10.85 (2)2.32 (4)3.035 (4)142 (5)
O4—H42···O30.85 (2)2.27 (4)2.952 (3)137 (5)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+2, z+1/2.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2750.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o1467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o766.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1253.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds