organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1869-o1870

Methyl 2,6-bis­­[(5-chloro-4,6-dimeth­­oxy­pyrimidin-2-yl)­­oxy]benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104, India, cOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Printing, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 23 June 2010; accepted 24 June 2010; online 30 June 2010)

In the title compound, C20H18Cl2N4O8, the two pyrimidine rings are inclined at dihedral angles of 66.68 (5) and 71.91 (6)° with respect to the central benzene ring. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link neighbouring mol­ecules into a ribbon-like structure along the b axis. The ribbons are inter­connected into a two-dimensional network parallel to the bc plane by short inter­molecular Cl⋯Cl [3.4427 (6) Å] and Cl⋯O [3.1420 (9) and 3.1750 (11) Å] inter­actions. The crystal structure is further stabilized by inter­molecular ππ inter­actions [centroid–centroid distance 3.4552 (8) Å] involving the pyrimidine rings.

Related literature

For general background to and applications of the title compound, see: Koichiro et al. (1988[Koichiro, S., Shoji, K., Yasubumi, T., Takeshige, M. & Ryo, Y. (1988). Jpn Patent No. JP 88 132 167; Chem. Abstr. (1998), 112, 216956.], 1998[Koichiro, S., Shoji, K., Yasubumi, T., Takeshige, M. & Ryo, Y. (1998). Chem. Abstr. 112, 216956.]); He et al. (2007[He, Y.-Z., Li, Y.-X., Zhu, X.-L., Xi, Z., Niu, C., Wan, J., Zhang, L. & Yang, G.-F. (2007). J. Chem. Inf. Model. 47, 2335-2344.]); Li et al. (2006[Li, Y.-X., Luo, Y.-P., Xi, Z., Niu, C., He, Y.-Z. & Yang, G.-F. (2006). J. Agric. Food Chem. 54, 9135-9139.]); Gerorge (1983[Gerorge, L. (1983). US Patent No. 4 394 506.]). For graph-set descriptions of hydrogen-bonded ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a closely related structure, see: Li & Luo (2006[Li, Y.-X. & Luo, Y.-P. (2006). Acta Cryst. E62, o1323-o1325.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18Cl2N4O8

  • Mr = 513.28

  • Monoclinic, C 2/c

  • a = 29.354 (3) Å

  • b = 8.0485 (8) Å

  • c = 22.5923 (19) Å

  • β = 123.014 (2)°

  • V = 4475.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.58 × 0.31 × 0.16 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.948

  • 22170 measured reflections

  • 8040 independent reflections

  • 6824 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.129

  • S = 1.08

  • 8040 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯N1i 0.96 2.58 3.5018 (19) 161
C20—H20A⋯N3ii 0.96 2.59 3.5148 (19) 161
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Methyl-2,6-bis[(5-bromo-4,6-dimethoxypyrimidin-2-yl)oxy]benzoate is a derivative of herbicide showing excellent herbicidal effects on annual and perennial weeds and high-safety crops, especially rice and wheat and is applied to paddy fields, ploughed fields and non-agricultural land (Koichiro et al., 1988, 1998). Most sulphonylurea herbicides and all pyrimidinylbenzoate herbicides (He et al., 2007) such as nicofulfuron, amidosulfuron, halopyrazosulfuron, ethoxysulfuron, pyriminobac-methyl and pyriftalid, possess 4,6-dimethoxypyrimidin-2-yl groups (Li et al., 2006), while sulfometuron-methyl, a kind of sulfonylurea, contains 4,6-dimethylpyrimidin-2-yl groups, which suggests that the two disubstituted pyrimidin-2-yl groups possess high biological activity (Gerorge, 1983).

In the title compound (Fig. 1), the two pyrimidine rings (C1-C4/N1/N2 and C11-C14/N3/N4) are essentially planar, with maximum deviations of 0.011 (1) and 0.007 (1) Å, respectively, at atoms N1 and N4. The central phenyl ring is inclined at dihedral angles of 66.68 (5) and 71.91 (6)°, respectively, with respect to the C1-C4/N1/N2 and C11-C14/N3/N4 pyrimidine rings. The bond lengths and angles are consistent with a closely related structure (Li & Luo, 2006).

In the crystal structure, intermolecular C16—H16A···N1 and C20—H20A···N3 hydrogen bonds (Table 1) link neighbouring molecules into a ribbon-like structure containing R22(26) ring motifs (Fig. 2, Bernstein et al., 1995), along the b axis. The interesting features of the crystal structure are the intermolecular short Cl···Cl [Cl1···Cl2iii = 3.4427 (6) Å; (iii) 1/2-x2, y-1/2, 1/2-z] and Cl···O [Cl1···O8iii = 3.1750 (11) and Cl2···O1iv = 3.1420 (9) Å; (iv) x, 2-y, z+1/2] interactions, which are shorter than the sum of the van der Waals radii of the relevant atoms, interconnecting the ribbons into two-dimensional networks parallel to the bc plane. The crystal structure is further stabilized by weak intermolecular ππ interactions [Cg1···Cg1v = 3.4552 (8) Å; (v) -x, y, -z+1/2; Cg1 is the centroid of C11-C14/N3/N4 pyrimidine ring].

Related literature top

For general background to and applications of the title compound, see: Koichiro et al. (1988, 1998); He et al. (2007); Li et al. (2006); Gerorge (1983). For graph-set descriptions of hydrogen-bonded ring motifs, see: Bernstein et al. (1995). For a closely related structure, see: Li & Luo (2006). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

To a stirred solution of methyl-2,6-dihydroxybenzoate (0.50 g, 0.0026 mol) in acetonitrile (10 ml) was added potassium carbonate (1.00 g, 0.0070 mol) and 5-chloro-4,6-dimethoxy-2-(methylsulfonyl)pyrimidine (1.58 g, 0.0050 mol). The reaction mixture was heated to reflux for 4 h. Mass analysis showed completion of the reaction. The reaction mixture was filtered and the filtrate was concentrated. The residue was recrystallized using dichloromethane to obtain the title compound (yield: 67 %, m.p. 427–430 K).

Refinement top

All H atoms were placed in the calculated positions, with C–H = 0.93–0.96 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30 % probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure, viewed along an arbitrary axis, showing a molecular ribbon. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
[Figure 3] Fig. 3. The crystal structure of the title compound, viewed along the b axis, showing two-dimensional networks parallel to the bc plane. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Methyl 2,6-bis[(5-chloro-4,6-dimethoxypyrimidin-2-yl)oxy]benzoate top
Crystal data top
C20H18Cl2N4O8F(000) = 2112
Mr = 513.28Dx = 1.523 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9948 reflections
a = 29.354 (3) Åθ = 2.7–32.6°
b = 8.0485 (8) ŵ = 0.35 mm1
c = 22.5923 (19) ÅT = 100 K
β = 123.014 (2)°Block, colourless
V = 4475.7 (7) Å30.58 × 0.31 × 0.16 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8040 independent reflections
Radiation source: fine-focus sealed tube6824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 32.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4443
Tmin = 0.825, Tmax = 0.948k = 1212
22170 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0781P)2 + 1.9869P]
where P = (Fo2 + 2Fc2)/3
8040 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C20H18Cl2N4O8V = 4475.7 (7) Å3
Mr = 513.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.354 (3) ŵ = 0.35 mm1
b = 8.0485 (8) ÅT = 100 K
c = 22.5923 (19) Å0.58 × 0.31 × 0.16 mm
β = 123.014 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6824 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.948Rint = 0.023
22170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.08Δρmax = 0.71 e Å3
8040 reflectionsΔρmin = 0.55 e Å3
312 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.307309 (11)0.57598 (4)0.096234 (18)0.02454 (8)
Cl20.082300 (12)0.91419 (4)0.399331 (14)0.01982 (8)
O10.11797 (3)0.91625 (11)0.04367 (4)0.01529 (16)
O20.04987 (3)0.57525 (11)0.15715 (4)0.01615 (16)
O30.28912 (4)0.93539 (12)0.08837 (5)0.02288 (19)
O40.20796 (3)0.42435 (11)0.07368 (5)0.01987 (17)
O50.16660 (4)0.88991 (14)0.18631 (5)0.0263 (2)
O60.16179 (4)0.62171 (15)0.20959 (5)0.0296 (2)
O70.07442 (4)0.55550 (12)0.37357 (4)0.01848 (17)
O80.07019 (4)1.06655 (11)0.27317 (4)0.01907 (17)
N10.20277 (4)0.92889 (13)0.06785 (5)0.01634 (18)
N20.16079 (4)0.66706 (13)0.05757 (5)0.01477 (17)
N30.06228 (4)0.56256 (13)0.26376 (5)0.01535 (18)
N40.06122 (4)0.82430 (13)0.21320 (5)0.01471 (17)
C10.24667 (4)0.84915 (16)0.07879 (6)0.0167 (2)
C20.25047 (4)0.67647 (16)0.08112 (6)0.0171 (2)
C30.20559 (4)0.58939 (15)0.07043 (5)0.0152 (2)
C40.16281 (4)0.83107 (15)0.05732 (5)0.01390 (19)
C50.07753 (4)0.82779 (14)0.04464 (5)0.01343 (18)
C60.02637 (4)0.83115 (16)0.01690 (5)0.0172 (2)
H6A0.02070.88670.05650.021*
C70.01650 (4)0.75105 (17)0.01925 (6)0.0206 (2)
H7A0.05100.75330.06050.025*
C80.00804 (4)0.66766 (16)0.03972 (6)0.0179 (2)
H8A0.03660.61330.03820.022*
C90.04341 (4)0.66658 (15)0.10068 (5)0.01393 (18)
C100.08739 (4)0.74658 (14)0.10524 (5)0.01335 (18)
C110.05844 (4)0.66055 (15)0.21417 (5)0.01376 (18)
C120.06937 (4)0.64190 (16)0.32011 (5)0.01463 (19)
C130.07199 (4)0.81463 (15)0.32568 (5)0.01496 (19)
C140.06775 (4)0.90169 (15)0.26965 (5)0.01476 (19)
C150.28520 (6)1.11370 (19)0.08786 (9)0.0296 (3)
H15A0.31511.16190.08770.044*
H15B0.28631.14970.12910.044*
H15C0.25161.14840.04640.044*
C160.16177 (5)0.33858 (18)0.06581 (8)0.0262 (3)
H16A0.16950.22180.07350.039*
H16B0.13060.35620.01900.039*
H16C0.15450.38070.09970.039*
C170.14212 (4)0.74193 (17)0.17246 (6)0.0187 (2)
C180.22073 (7)0.8981 (3)0.24900 (9)0.0473 (5)
H18A0.23531.00760.25340.071*
H18B0.24350.81820.24560.071*
H18C0.21940.87400.28970.071*
C190.07186 (6)0.37652 (18)0.36714 (6)0.0226 (2)
H19A0.07350.32850.40720.034*
H19B0.10190.33730.36530.034*
H19C0.03840.34490.32470.034*
C200.07386 (7)1.15252 (18)0.21994 (7)0.0286 (3)
H20A0.07711.26980.22920.043*
H20B0.04181.13110.17430.043*
H20C0.10521.11400.22090.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01660 (12)0.02313 (16)0.03475 (16)0.00517 (10)0.01454 (11)0.00213 (12)
Cl20.02636 (14)0.02056 (15)0.01647 (12)0.00313 (10)0.01420 (10)0.00502 (9)
O10.0144 (3)0.0143 (4)0.0208 (3)0.0030 (3)0.0119 (3)0.0037 (3)
O20.0246 (4)0.0139 (4)0.0150 (3)0.0023 (3)0.0141 (3)0.0023 (3)
O30.0179 (4)0.0186 (4)0.0352 (5)0.0000 (3)0.0164 (3)0.0014 (4)
O40.0170 (3)0.0131 (4)0.0280 (4)0.0012 (3)0.0113 (3)0.0011 (3)
O50.0220 (4)0.0305 (5)0.0185 (4)0.0102 (4)0.0060 (3)0.0027 (4)
O60.0222 (4)0.0338 (6)0.0234 (4)0.0043 (4)0.0064 (3)0.0104 (4)
O70.0266 (4)0.0176 (4)0.0158 (3)0.0012 (3)0.0144 (3)0.0008 (3)
O80.0267 (4)0.0131 (4)0.0175 (3)0.0004 (3)0.0121 (3)0.0015 (3)
N10.0160 (4)0.0151 (5)0.0205 (4)0.0010 (3)0.0116 (3)0.0012 (3)
N20.0148 (4)0.0142 (4)0.0162 (3)0.0020 (3)0.0090 (3)0.0003 (3)
N30.0185 (4)0.0154 (5)0.0155 (4)0.0007 (3)0.0114 (3)0.0009 (3)
N40.0179 (4)0.0139 (4)0.0139 (3)0.0006 (3)0.0097 (3)0.0008 (3)
C10.0146 (4)0.0176 (5)0.0190 (4)0.0001 (4)0.0100 (3)0.0005 (4)
C20.0141 (4)0.0174 (5)0.0206 (4)0.0033 (4)0.0100 (3)0.0008 (4)
C30.0153 (4)0.0142 (5)0.0156 (4)0.0023 (4)0.0081 (3)0.0002 (4)
C40.0135 (4)0.0156 (5)0.0140 (4)0.0023 (4)0.0083 (3)0.0011 (4)
C50.0142 (4)0.0135 (5)0.0155 (4)0.0013 (4)0.0100 (3)0.0001 (4)
C60.0165 (4)0.0212 (6)0.0144 (4)0.0016 (4)0.0088 (3)0.0019 (4)
C70.0154 (4)0.0270 (7)0.0167 (4)0.0003 (4)0.0071 (3)0.0010 (4)
C80.0162 (4)0.0211 (6)0.0182 (4)0.0024 (4)0.0105 (4)0.0020 (4)
C90.0178 (4)0.0133 (5)0.0137 (4)0.0001 (4)0.0105 (3)0.0011 (4)
C100.0144 (4)0.0136 (5)0.0130 (4)0.0007 (3)0.0081 (3)0.0009 (3)
C110.0146 (4)0.0154 (5)0.0136 (4)0.0007 (4)0.0092 (3)0.0020 (4)
C120.0146 (4)0.0177 (5)0.0135 (4)0.0005 (4)0.0089 (3)0.0000 (4)
C130.0171 (4)0.0161 (5)0.0139 (4)0.0004 (4)0.0099 (3)0.0025 (4)
C140.0153 (4)0.0142 (5)0.0149 (4)0.0006 (4)0.0083 (3)0.0013 (4)
C150.0243 (6)0.0186 (6)0.0490 (8)0.0024 (5)0.0220 (6)0.0008 (6)
C160.0207 (5)0.0153 (6)0.0407 (7)0.0013 (4)0.0155 (5)0.0015 (5)
C170.0161 (4)0.0242 (6)0.0156 (4)0.0012 (4)0.0085 (3)0.0002 (4)
C180.0290 (7)0.0602 (13)0.0281 (7)0.0201 (8)0.0003 (6)0.0017 (7)
C190.0323 (6)0.0183 (6)0.0214 (5)0.0017 (5)0.0173 (4)0.0016 (5)
C200.0497 (8)0.0162 (6)0.0220 (5)0.0018 (6)0.0209 (5)0.0020 (5)
Geometric parameters (Å, º) top
Cl1—C21.7126 (11)C5—C61.3834 (14)
Cl2—C131.7187 (11)C5—C101.3978 (14)
O1—C41.3621 (12)C6—C71.3889 (16)
O1—C51.3944 (13)C6—H6A0.93
O2—C111.3569 (12)C7—C81.3881 (16)
O2—C91.3929 (13)C7—H7A0.93
O3—C11.3370 (14)C8—C91.3824 (14)
O3—C151.4393 (18)C8—H8A0.93
O4—C31.3301 (14)C9—C101.3952 (14)
O4—C161.4436 (15)C10—C171.4934 (15)
O5—C171.3370 (16)C12—C131.3943 (17)
O5—C181.4432 (17)C13—C141.3918 (15)
O6—C171.2023 (16)C15—H15A0.96
O7—C121.3301 (13)C15—H15B0.96
O7—C191.4457 (16)C15—H15C0.96
O8—C141.3288 (14)C16—H16A0.96
O8—C201.4415 (15)C16—H16B0.96
N1—C41.3224 (14)C16—H16C0.96
N1—C11.3365 (14)C18—H18A0.96
N2—C41.3215 (16)C18—H18B0.96
N2—C31.3372 (14)C18—H18C0.96
N3—C111.3238 (14)C19—H19A0.96
N3—C121.3353 (13)C19—H19B0.96
N4—C111.3214 (16)C19—H19C0.96
N4—C141.3360 (13)C20—H20A0.96
C1—C21.3930 (18)C20—H20B0.96
C2—C31.3923 (15)C20—H20C0.96
C4—O1—C5117.72 (9)N3—C11—O2112.86 (10)
C11—O2—C9117.70 (9)O7—C12—N3119.87 (11)
C1—O3—C15116.92 (10)O7—C12—C13117.78 (9)
C3—O4—C16116.97 (9)N3—C12—C13122.35 (10)
C17—O5—C18115.74 (13)C14—C13—C12116.54 (9)
C12—O7—C19117.10 (9)C14—C13—Cl2121.81 (9)
C14—O8—C20117.10 (9)C12—C13—Cl2121.61 (8)
C4—N1—C1114.76 (11)O8—C14—N4119.85 (10)
C4—N2—C3115.27 (9)O8—C14—C13118.24 (10)
C11—N3—C12114.78 (10)N4—C14—C13121.92 (11)
C11—N4—C14115.29 (9)O3—C15—H15A109.5
N1—C1—O3120.02 (11)O3—C15—H15B109.5
N1—C1—C2122.37 (10)H15A—C15—H15B109.5
O3—C1—C2117.60 (10)O3—C15—H15C109.5
C3—C2—C1116.54 (10)H15A—C15—H15C109.5
C3—C2—Cl1121.59 (10)H15B—C15—H15C109.5
C1—C2—Cl1121.87 (9)O4—C16—H16A109.5
O4—C3—N2119.63 (10)O4—C16—H16B109.5
O4—C3—C2118.50 (10)H16A—C16—H16B109.5
N2—C3—C2121.87 (11)O4—C16—H16C109.5
N2—C4—N1129.15 (10)H16A—C16—H16C109.5
N2—C4—O1117.63 (9)H16B—C16—H16C109.5
N1—C4—O1113.22 (10)O6—C17—O5124.13 (11)
C6—C5—O1116.19 (9)O6—C17—C10124.84 (12)
C6—C5—C10121.70 (9)O5—C17—C10111.03 (10)
O1—C5—C10122.04 (9)O5—C18—H18A109.5
C5—C6—C7119.62 (10)O5—C18—H18B109.5
C5—C6—H6A120.2H18A—C18—H18B109.5
C7—C6—H6A120.2O5—C18—H18C109.5
C8—C7—C6120.21 (10)H18A—C18—H18C109.5
C8—C7—H7A119.9H18B—C18—H18C109.5
C6—C7—H7A119.9O7—C19—H19A109.5
C9—C8—C7119.10 (10)O7—C19—H19B109.5
C9—C8—H8A120.4H19A—C19—H19B109.5
C7—C8—H8A120.4O7—C19—H19C109.5
C8—C9—O2116.45 (9)H19A—C19—H19C109.5
C8—C9—C10122.36 (10)H19B—C19—H19C109.5
O2—C9—C10121.14 (9)O8—C20—H20A109.5
C9—C10—C5117.01 (9)O8—C20—H20B109.5
C9—C10—C17120.20 (9)H20A—C20—H20B109.5
C5—C10—C17122.79 (9)O8—C20—H20C109.5
N4—C11—N3129.10 (10)H20A—C20—H20C109.5
N4—C11—O2118.04 (9)H20B—C20—H20C109.5
C4—N1—C1—O3178.40 (10)C8—C9—C10—C17179.84 (11)
C4—N1—C1—C21.96 (15)O2—C9—C10—C172.78 (16)
C15—O3—C1—N11.42 (16)C6—C5—C10—C90.94 (16)
C15—O3—C1—C2178.24 (11)O1—C5—C10—C9177.93 (10)
N1—C1—C2—C30.85 (16)C6—C5—C10—C17179.62 (11)
O3—C1—C2—C3179.50 (10)O1—C5—C10—C172.62 (17)
N1—C1—C2—Cl1179.21 (8)C14—N4—C11—N31.47 (16)
O3—C1—C2—Cl10.44 (15)C14—N4—C11—O2177.68 (9)
C16—O4—C3—N22.55 (15)C12—N3—C11—N40.79 (16)
C16—O4—C3—C2177.03 (10)C12—N3—C11—O2178.39 (9)
C4—N2—C3—O4178.15 (10)C9—O2—C11—N41.34 (13)
C4—N2—C3—C21.42 (14)C9—O2—C11—N3177.94 (9)
C1—C2—C3—O4178.62 (10)C19—O7—C12—N30.01 (14)
Cl1—C2—C3—O41.43 (14)C19—O7—C12—C13179.72 (10)
C1—C2—C3—N20.95 (15)C11—N3—C12—O7179.16 (9)
Cl1—C2—C3—N2178.99 (8)C11—N3—C12—C130.55 (14)
C3—N2—C4—N10.15 (16)O7—C12—C13—C14178.67 (9)
C3—N2—C4—O1179.26 (9)N3—C12—C13—C141.04 (15)
C1—N1—C4—N21.52 (16)O7—C12—C13—Cl20.85 (14)
C1—N1—C4—O1177.62 (9)N3—C12—C13—Cl2178.87 (8)
C5—O1—C4—N212.29 (13)C20—O8—C14—N49.19 (15)
C5—O1—C4—N1168.46 (9)C20—O8—C14—C13170.99 (11)
C4—O1—C5—C6121.76 (11)C11—N4—C14—O8179.01 (10)
C4—O1—C5—C1061.09 (13)C11—N4—C14—C130.81 (14)
O1—C5—C6—C7177.67 (11)C12—C13—C14—O8179.86 (10)
C10—C5—C6—C70.51 (18)Cl2—C13—C14—O82.04 (14)
C5—C6—C7—C80.20 (19)C12—C13—C14—N40.31 (15)
C6—C7—C8—C90.43 (19)Cl2—C13—C14—N4178.14 (8)
C7—C8—C9—O2177.46 (11)C18—O5—C17—O62.3 (2)
C7—C8—C9—C100.03 (18)C18—O5—C17—C10177.92 (13)
C11—O2—C9—C8110.10 (11)C9—C10—C17—O641.16 (17)
C11—O2—C9—C1072.38 (13)C5—C10—C17—O6138.26 (13)
C8—C9—C10—C50.70 (16)C9—C10—C17—O5138.63 (11)
O2—C9—C10—C5176.68 (10)C5—C10—C17—O541.94 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···N1i0.962.583.5018 (19)161
C20—H20A···N3ii0.962.593.5148 (19)161
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H18Cl2N4O8
Mr513.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)29.354 (3), 8.0485 (8), 22.5923 (19)
β (°) 123.014 (2)
V3)4475.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.58 × 0.31 × 0.16
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.825, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
22170, 8040, 6824
Rint0.023
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.129, 1.08
No. of reflections8040
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.55

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···N1i0.962.583.5018 (19)161
C20—H20A···N3ii0.962.593.5148 (19)161
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship. AMI is thankful to the Head of the Chemistry Department and the Director, National Institute of Technology-Karnataka for their encouragement. AMI also thanks USM for a partially sponsored research visit to the X-ray Crystallography Unit, School of Physics, USM.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGerorge, L. (1983). US Patent No. 4 394 506.  Google Scholar
First citationHe, Y.-Z., Li, Y.-X., Zhu, X.-L., Xi, Z., Niu, C., Wan, J., Zhang, L. & Yang, G.-F. (2007). J. Chem. Inf. Model. 47, 2335–2344.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoichiro, S., Shoji, K., Yasubumi, T., Takeshige, M. & Ryo, Y. (1988). Jpn Patent No. JP 88 132 167; Chem. Abstr. (1998), 112, 216956.  Google Scholar
First citationKoichiro, S., Shoji, K., Yasubumi, T., Takeshige, M. & Ryo, Y. (1998). Chem. Abstr. 112, 216956.  Google Scholar
First citationLi, Y.-X. & Luo, Y.-P. (2006). Acta Cryst. E62, o1323–o1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-X., Luo, Y.-P., Xi, Z., Niu, C., He, Y.-Z. & Yang, G.-F. (2006). J. Agric. Food Chem. 54, 9135–9139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1869-o1870
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds