organic compounds
3-(4-Fluorophenylsulfinyl)-5-iodo-2-methyl-1-benzofuran
aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr
In the title compound, C15H10FIO2S, the O atom and the 4-fluorophenyl group of the 4-fluorophenylsulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment; the 4-fluorophenyl ring is nearly perpendicular to this plane, making a dihedral angle of 83.37 (7)°. The is stabilized by weak intermolecular C—H⋯O hydrogen bonds and an I⋯O interaction [I⋯O = 3.255 (2) Å]. The also exhibits intermolecular C—F⋯π interactions [3.068 (2) Å], and aromatic π–π interactions between the furan and benzene rings of neighbouring benzofuran fragments [centroid–centroid distance = 3.636 (2) Å].
Related literature
For the crystal structures of similar 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810024931/cs2129sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810024931/cs2129Isup2.hkl
77% 3-Chloroperoxybenzoic acid (166 mg, 1.0 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)–5-iodo-2-methyl-1-benzofuran (346 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by
(hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 77%, m.p. 428–429 K; Rf = 0.64 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C15H10FIO2S | F(000) = 776 |
Mr = 400.19 | Dx = 1.861 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8763 reflections |
a = 13.1665 (4) Å | θ = 2.4–27.6° |
b = 11.4338 (4) Å | µ = 2.40 mm−1 |
c = 9.9296 (3) Å | T = 173 K |
β = 107.181 (1)° | Block, colourless |
V = 1428.13 (8) Å3 | 0.27 × 0.24 × 0.20 mm |
Z = 4 |
Bruker SMART APEXII CCD diffractometer | 3297 independent reflections |
Radiation source: rotating anode | 2990 reflections with I > 2σ(I) |
Graphite multilayer monochromator | Rint = 0.031 |
Detector resolution: 10.0 pixels mm-1 | θmax = 27.6°, θmin = 1.6° |
ϕ and ω scans | h = −15→17 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −14→14 |
Tmin = 0.565, Tmax = 0.648 | l = −12→12 |
12825 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0381P)2 + 1.2193P] where P = (Fo2 + 2Fc2)/3 |
3297 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −1.56 e Å−3 |
C15H10FIO2S | V = 1428.13 (8) Å3 |
Mr = 400.19 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.1665 (4) Å | µ = 2.40 mm−1 |
b = 11.4338 (4) Å | T = 173 K |
c = 9.9296 (3) Å | 0.27 × 0.24 × 0.20 mm |
β = 107.181 (1)° |
Bruker SMART APEXII CCD diffractometer | 3297 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2990 reflections with I > 2σ(I) |
Tmin = 0.565, Tmax = 0.648 | Rint = 0.031 |
12825 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.58 e Å−3 |
3297 reflections | Δρmin = −1.56 e Å−3 |
182 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I | 0.774810 (15) | 0.162106 (16) | 0.53507 (2) | 0.03259 (8) | |
S | 0.70499 (5) | 0.67499 (6) | 0.22747 (6) | 0.02368 (14) | |
F | 0.31812 (15) | 0.49689 (19) | 0.3339 (2) | 0.0480 (5) | |
O1 | 0.94047 (15) | 0.67042 (15) | 0.57609 (19) | 0.0249 (4) | |
O2 | 0.71831 (16) | 0.60325 (19) | 0.10757 (19) | 0.0318 (4) | |
C1 | 0.8028 (2) | 0.6377 (2) | 0.3837 (2) | 0.0213 (5) | |
C2 | 0.82677 (18) | 0.5281 (2) | 0.4598 (2) | 0.0195 (5) | |
C3 | 0.78672 (19) | 0.4142 (2) | 0.4425 (2) | 0.0219 (5) | |
H3 | 0.7309 | 0.3931 | 0.3643 | 0.026* | |
C4 | 0.8338 (2) | 0.3340 (2) | 0.5469 (3) | 0.0233 (5) | |
C5 | 0.9195 (2) | 0.3625 (2) | 0.6643 (3) | 0.0263 (5) | |
H5 | 0.9488 | 0.3058 | 0.7318 | 0.032* | |
C6 | 0.9608 (2) | 0.4746 (2) | 0.6804 (3) | 0.0259 (5) | |
H6 | 1.0184 | 0.4951 | 0.7567 | 0.031* | |
C7 | 0.91229 (19) | 0.5544 (2) | 0.5777 (2) | 0.0214 (5) | |
C8 | 0.8732 (2) | 0.7187 (2) | 0.4571 (3) | 0.0229 (5) | |
C9 | 0.8903 (2) | 0.8441 (2) | 0.4345 (3) | 0.0292 (6) | |
H9A | 0.8451 | 0.8675 | 0.3436 | 0.044* | |
H9B | 0.9632 | 0.8567 | 0.4387 | 0.044* | |
H9C | 0.8735 | 0.8896 | 0.5064 | 0.044* | |
C10 | 0.59180 (19) | 0.6152 (2) | 0.2691 (2) | 0.0226 (5) | |
C11 | 0.5564 (2) | 0.6657 (2) | 0.3746 (3) | 0.0298 (6) | |
H11 | 0.5945 | 0.7263 | 0.4293 | 0.036* | |
C12 | 0.4639 (2) | 0.6250 (3) | 0.3973 (3) | 0.0330 (6) | |
H12 | 0.4393 | 0.6570 | 0.4679 | 0.040* | |
C13 | 0.4092 (2) | 0.5362 (3) | 0.3133 (3) | 0.0310 (6) | |
C14 | 0.4427 (2) | 0.4850 (3) | 0.2094 (3) | 0.0315 (6) | |
H14 | 0.4039 | 0.4247 | 0.1549 | 0.038* | |
C15 | 0.5360 (2) | 0.5251 (2) | 0.1870 (3) | 0.0267 (5) | |
H15 | 0.5607 | 0.4916 | 0.1173 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I | 0.03251 (12) | 0.02096 (12) | 0.04268 (13) | 0.00056 (6) | 0.00859 (9) | 0.00097 (7) |
S | 0.0267 (3) | 0.0237 (3) | 0.0189 (3) | 0.0016 (2) | 0.0038 (2) | 0.0032 (2) |
F | 0.0320 (9) | 0.0613 (13) | 0.0562 (11) | −0.0066 (9) | 0.0216 (8) | −0.0055 (10) |
O1 | 0.0236 (9) | 0.0244 (10) | 0.0240 (8) | −0.0017 (7) | 0.0031 (7) | −0.0028 (7) |
O2 | 0.0364 (10) | 0.0411 (12) | 0.0203 (8) | −0.0014 (9) | 0.0122 (8) | −0.0030 (8) |
C1 | 0.0214 (11) | 0.0211 (12) | 0.0208 (11) | 0.0004 (9) | 0.0056 (9) | 0.0009 (9) |
C2 | 0.0191 (11) | 0.0211 (12) | 0.0182 (10) | 0.0021 (9) | 0.0055 (8) | 0.0003 (9) |
C3 | 0.0219 (11) | 0.0216 (12) | 0.0208 (11) | 0.0012 (9) | 0.0043 (9) | −0.0012 (9) |
C4 | 0.0250 (12) | 0.0193 (13) | 0.0258 (12) | 0.0005 (9) | 0.0079 (10) | −0.0022 (9) |
C5 | 0.0293 (13) | 0.0265 (13) | 0.0215 (11) | 0.0076 (11) | 0.0050 (10) | 0.0024 (10) |
C6 | 0.0243 (12) | 0.0286 (14) | 0.0206 (11) | 0.0034 (10) | 0.0004 (9) | −0.0028 (10) |
C7 | 0.0206 (11) | 0.0230 (12) | 0.0207 (10) | 0.0009 (9) | 0.0064 (9) | −0.0027 (9) |
C8 | 0.0231 (12) | 0.0247 (13) | 0.0220 (11) | 0.0013 (10) | 0.0085 (9) | −0.0013 (9) |
C9 | 0.0294 (14) | 0.0238 (14) | 0.0353 (14) | −0.0034 (10) | 0.0111 (11) | −0.0010 (10) |
C10 | 0.0234 (12) | 0.0233 (13) | 0.0183 (10) | 0.0050 (10) | 0.0017 (9) | 0.0027 (9) |
C11 | 0.0339 (15) | 0.0285 (15) | 0.0256 (12) | 0.0020 (11) | 0.0067 (11) | −0.0051 (10) |
C12 | 0.0354 (15) | 0.0368 (16) | 0.0295 (13) | 0.0068 (13) | 0.0138 (11) | −0.0024 (12) |
C13 | 0.0221 (12) | 0.0380 (16) | 0.0324 (13) | 0.0038 (11) | 0.0074 (10) | 0.0035 (12) |
C14 | 0.0272 (13) | 0.0327 (15) | 0.0319 (13) | −0.0027 (11) | 0.0045 (11) | −0.0071 (11) |
C15 | 0.0260 (12) | 0.0295 (14) | 0.0225 (11) | 0.0034 (10) | 0.0039 (10) | −0.0049 (10) |
I—C4 | 2.104 (2) | C6—C7 | 1.376 (4) |
I—O2i | 3.255 (2) | C6—H6 | 0.9300 |
S—O2 | 1.4981 (19) | C8—C9 | 1.478 (4) |
S—C1 | 1.751 (2) | C9—H9A | 0.9600 |
S—C10 | 1.795 (3) | C9—H9B | 0.9600 |
F—C13 | 1.351 (3) | C9—H9C | 0.9600 |
O1—C8 | 1.366 (3) | C10—C15 | 1.383 (4) |
O1—C7 | 1.379 (3) | C10—C11 | 1.391 (4) |
C1—C8 | 1.360 (4) | C11—C12 | 1.383 (4) |
C1—C2 | 1.449 (3) | C11—H11 | 0.9300 |
C2—C3 | 1.396 (3) | C12—C13 | 1.375 (4) |
C2—C7 | 1.396 (3) | C12—H12 | 0.9300 |
C3—C4 | 1.386 (3) | C13—C14 | 1.368 (4) |
C3—H3 | 0.9300 | C14—C15 | 1.389 (4) |
C4—C5 | 1.401 (4) | C14—H14 | 0.9300 |
C5—C6 | 1.383 (4) | C15—H15 | 0.9300 |
C5—H5 | 0.9300 | ||
C4—I—O2i | 164.42 (8) | C1—C8—C9 | 133.5 (2) |
O2—S—C1 | 110.03 (12) | O1—C8—C9 | 115.8 (2) |
O2—S—C10 | 105.95 (12) | C8—C9—H9A | 109.5 |
C1—S—C10 | 98.44 (11) | C8—C9—H9B | 109.5 |
C8—O1—C7 | 106.94 (19) | H9A—C9—H9B | 109.5 |
C8—C1—C2 | 107.5 (2) | C8—C9—H9C | 109.5 |
C8—C1—S | 121.0 (2) | H9A—C9—H9C | 109.5 |
C2—C1—S | 131.48 (19) | H9B—C9—H9C | 109.5 |
C3—C2—C7 | 119.1 (2) | C15—C10—C11 | 121.0 (3) |
C3—C2—C1 | 136.5 (2) | C15—C10—S | 118.73 (19) |
C7—C2—C1 | 104.4 (2) | C11—C10—S | 120.1 (2) |
C4—C3—C2 | 117.1 (2) | C12—C11—C10 | 119.3 (3) |
C4—C3—H3 | 121.4 | C12—C11—H11 | 120.3 |
C2—C3—H3 | 121.4 | C10—C11—H11 | 120.3 |
C3—C4—C5 | 122.8 (2) | C13—C12—C11 | 118.6 (3) |
C3—C4—I | 120.02 (19) | C13—C12—H12 | 120.7 |
C5—C4—I | 117.21 (19) | C11—C12—H12 | 120.7 |
C6—C5—C4 | 120.3 (2) | F—C13—C14 | 118.1 (3) |
C6—C5—H5 | 119.9 | F—C13—C12 | 118.9 (3) |
C4—C5—H5 | 119.9 | C14—C13—C12 | 123.0 (3) |
C7—C6—C5 | 116.6 (2) | C13—C14—C15 | 118.5 (3) |
C7—C6—H6 | 121.7 | C13—C14—H14 | 120.8 |
C5—C6—H6 | 121.7 | C15—C14—H14 | 120.8 |
C6—C7—O1 | 125.4 (2) | C10—C15—C14 | 119.5 (2) |
C6—C7—C2 | 124.1 (2) | C10—C15—H15 | 120.2 |
O1—C7—C2 | 110.5 (2) | C14—C15—H15 | 120.2 |
C1—C8—O1 | 110.7 (2) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1ii | 0.93 | 2.55 | 3.472 (3) | 170 |
C9—H9C···O2iii | 0.96 | 2.53 | 3.277 (3) | 135 |
Symmetry codes: (ii) −x+2, y−1/2, −z+3/2; (iii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H10FIO2S |
Mr | 400.19 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 13.1665 (4), 11.4338 (4), 9.9296 (3) |
β (°) | 107.181 (1) |
V (Å3) | 1428.13 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.40 |
Crystal size (mm) | 0.27 × 0.24 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.565, 0.648 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12825, 3297, 2990 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.077, 1.11 |
No. of reflections | 3297 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −1.56 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.93 | 2.55 | 3.472 (3) | 169.9 |
C9—H9C···O2ii | 0.96 | 2.53 | 3.277 (3) | 134.6 |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x, −y+3/2, z+1/2. |
References
Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. Web of Science CrossRef PubMed CAS Google Scholar
Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GmbH, Bonn, Germany. Google Scholar
Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472. Web of Science CSD CrossRef IUCr Journals Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o564. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428. Web of Science CrossRef PubMed CAS Google Scholar
Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805. Web of Science CrossRef PubMed CAS Google Scholar
Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model., 13, 305–311. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Molecules containing benzofuran skeleton show variouspharmacological properties such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al.., 2009), antimicrobial (Khan et al.., 2005) activity, and these compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al.., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al.., 2010a,b,c), we report the crystal structure of the title compound (Fig. 1).
The benzofuran unit is essentially planar, with a mean deviation of 0.008 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is almost perpendicular to the plane of the benzofuran fragment [83.37 (7)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between the benzene H atom and the furan O atom with a C5—H5···O1i, and the second one between the methyl H atom and the oxygen of the S═O unit, with a C9—H9C···O2ii, respectively (Table 1). The molecular packing (Fig. 2) is also stabilized by an I···O halogen bonding between the iodine and the oxygen of the S═O unit [I···O2v = 3.255 (2) Å; C4—I···O2v = 164.42 (8)°] (Politzer et al., 2007). The crystal packing (Fig. 3) also exhibits intermolecular C—F···π interactions between the fluorine and the benzene ring of an adjacent benzofuran system, with a C13—F···Cg2vii distance of 3.068 (2) Å (Cg2 is the centroid of the C2–C7 benzene ring), and aromatic π–π interactions between the furan and the benzene rings of the adjacent benzofuran systems, with a Cg1···Cg2viii distance of 3.636 (2) Å (Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring).