organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­phenyl­sulfin­yl)-5-iodo-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 10 May 2010; accepted 25 June 2010; online 30 June 2010)

In the title compound, C15H10FIO2S, the O atom and the 4-fluoro­phenyl group of the 4-fluoro­phenyl­sulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment; the 4-fluoro­phenyl ring is nearly perpendicular to this plane, making a dihedral angle of 83.37 (7)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds and an I⋯O inter­action [I⋯O = 3.255 (2) Å]. The crystal structure also exhibits inter­molecular C—F⋯π inter­actions [3.068 (2) Å], and aromatic ππ inter­actions between the furan and benzene rings of neighbouring benzofuran fragments [centroid–centroid distance = 3.636 (2) Å].

Related literature

For the crystal structures of similar 3-(4-fluoro­phenyl­sulfin­yl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o543.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o564.]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model., 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10FIO2S

  • Mr = 400.19

  • Monoclinic, P 21 /c

  • a = 13.1665 (4) Å

  • b = 11.4338 (4) Å

  • c = 9.9296 (3) Å

  • β = 107.181 (1)°

  • V = 1428.13 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.40 mm−1

  • T = 173 K

  • 0.27 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.565, Tmax = 0.648

  • 12825 measured reflections

  • 3297 independent reflections

  • 2990 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.11

  • 3297 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −1.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.55 3.472 (3) 170
C9—H9C⋯O2ii 0.96 2.53 3.277 (3) 135
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GmbH, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing benzofuran skeleton show variouspharmacological properties such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al.., 2009), antimicrobial (Khan et al.., 2005) activity, and these compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al.., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al.., 2010a,b,c), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.008 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is almost perpendicular to the plane of the benzofuran fragment [83.37 (7)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between the benzene H atom and the furan O atom with a C5—H5···O1i, and the second one between the methyl H atom and the oxygen of the SO unit, with a C9—H9C···O2ii, respectively (Table 1). The molecular packing (Fig. 2) is also stabilized by an I···O halogen bonding between the iodine and the oxygen of the SO unit [I···O2v = 3.255 (2) Å; C4—I···O2v = 164.42 (8)°] (Politzer et al., 2007). The crystal packing (Fig. 3) also exhibits intermolecular C—F···π interactions between the fluorine and the benzene ring of an adjacent benzofuran system, with a C13—F···Cg2vii distance of 3.068 (2) Å (Cg2 is the centroid of the C2–C7 benzene ring), and aromatic ππ interactions between the furan and the benzene rings of the adjacent benzofuran systems, with a Cg1···Cg2viii distance of 3.636 (2) Å (Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring).

Related literature top

For the crystal structures of similar 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-Chloroperoxybenzoic acid (166 mg, 1.0 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)–5-iodo-2-methyl-1-benzofuran (346 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 77%, m.p. 428–429 K; Rf = 0.64 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O and I···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 2, y - 1/2, - z + 3/2; (ii) x, - y + 3/2, z + 1/2; (iii) - x + 2, y + 1/2, - z + 3/2; (iv) x, - y + 3/2, z - 1/2; (v) x, - y + 1/2, z + 1/2; (vi) x, - y + 1/2, z - 1/2.]
[Figure 3] Fig. 3. C—F···π and ππ interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (vii) - x + 1, - y +1 , - z + 1; (viii) - x + 2, - y + 1, - z + 1.]
3-(4-Fluorophenylsulfinyl)-5-iodo-2-methyl-1-benzofuran top
Crystal data top
C15H10FIO2SF(000) = 776
Mr = 400.19Dx = 1.861 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8763 reflections
a = 13.1665 (4) Åθ = 2.4–27.6°
b = 11.4338 (4) ŵ = 2.40 mm1
c = 9.9296 (3) ÅT = 173 K
β = 107.181 (1)°Block, colourless
V = 1428.13 (8) Å30.27 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3297 independent reflections
Radiation source: rotating anode2990 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.6°
ϕ and ω scansh = 1517
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.565, Tmax = 0.648l = 1212
12825 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.077H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0381P)2 + 1.2193P]
where P = (Fo2 + 2Fc2)/3
3297 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 1.56 e Å3
Crystal data top
C15H10FIO2SV = 1428.13 (8) Å3
Mr = 400.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1665 (4) ŵ = 2.40 mm1
b = 11.4338 (4) ÅT = 173 K
c = 9.9296 (3) Å0.27 × 0.24 × 0.20 mm
β = 107.181 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3297 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2990 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.648Rint = 0.031
12825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.11Δρmax = 0.58 e Å3
3297 reflectionsΔρmin = 1.56 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.774810 (15)0.162106 (16)0.53507 (2)0.03259 (8)
S0.70499 (5)0.67499 (6)0.22747 (6)0.02368 (14)
F0.31812 (15)0.49689 (19)0.3339 (2)0.0480 (5)
O10.94047 (15)0.67042 (15)0.57609 (19)0.0249 (4)
O20.71831 (16)0.60325 (19)0.10757 (19)0.0318 (4)
C10.8028 (2)0.6377 (2)0.3837 (2)0.0213 (5)
C20.82677 (18)0.5281 (2)0.4598 (2)0.0195 (5)
C30.78672 (19)0.4142 (2)0.4425 (2)0.0219 (5)
H30.73090.39310.36430.026*
C40.8338 (2)0.3340 (2)0.5469 (3)0.0233 (5)
C50.9195 (2)0.3625 (2)0.6643 (3)0.0263 (5)
H50.94880.30580.73180.032*
C60.9608 (2)0.4746 (2)0.6804 (3)0.0259 (5)
H61.01840.49510.75670.031*
C70.91229 (19)0.5544 (2)0.5777 (2)0.0214 (5)
C80.8732 (2)0.7187 (2)0.4571 (3)0.0229 (5)
C90.8903 (2)0.8441 (2)0.4345 (3)0.0292 (6)
H9A0.84510.86750.34360.044*
H9B0.96320.85670.43870.044*
H9C0.87350.88960.50640.044*
C100.59180 (19)0.6152 (2)0.2691 (2)0.0226 (5)
C110.5564 (2)0.6657 (2)0.3746 (3)0.0298 (6)
H110.59450.72630.42930.036*
C120.4639 (2)0.6250 (3)0.3973 (3)0.0330 (6)
H120.43930.65700.46790.040*
C130.4092 (2)0.5362 (3)0.3133 (3)0.0310 (6)
C140.4427 (2)0.4850 (3)0.2094 (3)0.0315 (6)
H140.40390.42470.15490.038*
C150.5360 (2)0.5251 (2)0.1870 (3)0.0267 (5)
H150.56070.49160.11730.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.03251 (12)0.02096 (12)0.04268 (13)0.00056 (6)0.00859 (9)0.00097 (7)
S0.0267 (3)0.0237 (3)0.0189 (3)0.0016 (2)0.0038 (2)0.0032 (2)
F0.0320 (9)0.0613 (13)0.0562 (11)0.0066 (9)0.0216 (8)0.0055 (10)
O10.0236 (9)0.0244 (10)0.0240 (8)0.0017 (7)0.0031 (7)0.0028 (7)
O20.0364 (10)0.0411 (12)0.0203 (8)0.0014 (9)0.0122 (8)0.0030 (8)
C10.0214 (11)0.0211 (12)0.0208 (11)0.0004 (9)0.0056 (9)0.0009 (9)
C20.0191 (11)0.0211 (12)0.0182 (10)0.0021 (9)0.0055 (8)0.0003 (9)
C30.0219 (11)0.0216 (12)0.0208 (11)0.0012 (9)0.0043 (9)0.0012 (9)
C40.0250 (12)0.0193 (13)0.0258 (12)0.0005 (9)0.0079 (10)0.0022 (9)
C50.0293 (13)0.0265 (13)0.0215 (11)0.0076 (11)0.0050 (10)0.0024 (10)
C60.0243 (12)0.0286 (14)0.0206 (11)0.0034 (10)0.0004 (9)0.0028 (10)
C70.0206 (11)0.0230 (12)0.0207 (10)0.0009 (9)0.0064 (9)0.0027 (9)
C80.0231 (12)0.0247 (13)0.0220 (11)0.0013 (10)0.0085 (9)0.0013 (9)
C90.0294 (14)0.0238 (14)0.0353 (14)0.0034 (10)0.0111 (11)0.0010 (10)
C100.0234 (12)0.0233 (13)0.0183 (10)0.0050 (10)0.0017 (9)0.0027 (9)
C110.0339 (15)0.0285 (15)0.0256 (12)0.0020 (11)0.0067 (11)0.0051 (10)
C120.0354 (15)0.0368 (16)0.0295 (13)0.0068 (13)0.0138 (11)0.0024 (12)
C130.0221 (12)0.0380 (16)0.0324 (13)0.0038 (11)0.0074 (10)0.0035 (12)
C140.0272 (13)0.0327 (15)0.0319 (13)0.0027 (11)0.0045 (11)0.0071 (11)
C150.0260 (12)0.0295 (14)0.0225 (11)0.0034 (10)0.0039 (10)0.0049 (10)
Geometric parameters (Å, º) top
I—C42.104 (2)C6—C71.376 (4)
I—O2i3.255 (2)C6—H60.9300
S—O21.4981 (19)C8—C91.478 (4)
S—C11.751 (2)C9—H9A0.9600
S—C101.795 (3)C9—H9B0.9600
F—C131.351 (3)C9—H9C0.9600
O1—C81.366 (3)C10—C151.383 (4)
O1—C71.379 (3)C10—C111.391 (4)
C1—C81.360 (4)C11—C121.383 (4)
C1—C21.449 (3)C11—H110.9300
C2—C31.396 (3)C12—C131.375 (4)
C2—C71.396 (3)C12—H120.9300
C3—C41.386 (3)C13—C141.368 (4)
C3—H30.9300C14—C151.389 (4)
C4—C51.401 (4)C14—H140.9300
C5—C61.383 (4)C15—H150.9300
C5—H50.9300
C4—I—O2i164.42 (8)C1—C8—C9133.5 (2)
O2—S—C1110.03 (12)O1—C8—C9115.8 (2)
O2—S—C10105.95 (12)C8—C9—H9A109.5
C1—S—C1098.44 (11)C8—C9—H9B109.5
C8—O1—C7106.94 (19)H9A—C9—H9B109.5
C8—C1—C2107.5 (2)C8—C9—H9C109.5
C8—C1—S121.0 (2)H9A—C9—H9C109.5
C2—C1—S131.48 (19)H9B—C9—H9C109.5
C3—C2—C7119.1 (2)C15—C10—C11121.0 (3)
C3—C2—C1136.5 (2)C15—C10—S118.73 (19)
C7—C2—C1104.4 (2)C11—C10—S120.1 (2)
C4—C3—C2117.1 (2)C12—C11—C10119.3 (3)
C4—C3—H3121.4C12—C11—H11120.3
C2—C3—H3121.4C10—C11—H11120.3
C3—C4—C5122.8 (2)C13—C12—C11118.6 (3)
C3—C4—I120.02 (19)C13—C12—H12120.7
C5—C4—I117.21 (19)C11—C12—H12120.7
C6—C5—C4120.3 (2)F—C13—C14118.1 (3)
C6—C5—H5119.9F—C13—C12118.9 (3)
C4—C5—H5119.9C14—C13—C12123.0 (3)
C7—C6—C5116.6 (2)C13—C14—C15118.5 (3)
C7—C6—H6121.7C13—C14—H14120.8
C5—C6—H6121.7C15—C14—H14120.8
C6—C7—O1125.4 (2)C10—C15—C14119.5 (2)
C6—C7—C2124.1 (2)C10—C15—H15120.2
O1—C7—C2110.5 (2)C14—C15—H15120.2
C1—C8—O1110.7 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1ii0.932.553.472 (3)170
C9—H9C···O2iii0.962.533.277 (3)135
Symmetry codes: (ii) x+2, y1/2, z+3/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H10FIO2S
Mr400.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.1665 (4), 11.4338 (4), 9.9296 (3)
β (°) 107.181 (1)
V3)1428.13 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.40
Crystal size (mm)0.27 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.565, 0.648
No. of measured, independent and
observed [I > 2σ(I)] reflections
12825, 3297, 2990
Rint0.031
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.11
No. of reflections3297
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 1.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.553.472 (3)169.9
C9—H9C···O2ii0.962.533.277 (3)134.6
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+3/2, z+1/2.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GmbH, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model., 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds