organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl­piperazine-1,4-diium bis­­(perchlorate) monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bUniversité Lyon1, Centre de Diffractométrie Henri Longchambon, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 7 May 2010; accepted 15 June 2010; online 23 June 2010)

In the title compound, C11H18N22+·2ClO4·H2O, one perchlor­ate anion is disordered over two orientations in a 0.66 (3):0.34 (3) ratio. Inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the cations, anions and water mol­ecules into ribbons extending along [100].

Related literature

For general background to the properties of perchlorate salts containing organic cations, see: Czarnecki et al. (1994[Czarnecki, P., Nawrocik, W., Pajaxk, Z. & Nawrocik, J. (1994). J. Phys. Condens. Matter, 6, 4955-4960.]); Czupinski et al. (2002[Czupinski, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Wiergiel, J. S. (2002). J. Phys. Condens. Matter, 14, 8497-8512.], 2006[Czupinski, O., Wojtas, M., Zaleski, J., Jakubas, R. & Medycki, W. (2006). J. Phys. Condens. Matter, 88, 3307-3324.]). For related structures, see: Antolini et al. (1982[Antolini, L., Menabue, L., Pellacani, G. C., Monica, S. & Giuseppe, M. (1982). Inorg. Chim. Acta, 58, 193-200.]); Place & Willett (1988[Place, H. & Willett, R. D. (1988). Acta Cryst. C44, 34-38.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18N22+·2ClO4·H2O

  • Mr = 395.19

  • Triclinic, [P \overline 1]

  • a = 8.6632 (6) Å

  • b = 10.0197 (8) Å

  • c = 10.8831 (7) Å

  • α = 70.184 (7)°

  • β = 83.946 (6)°

  • γ = 70.560 (7)°

  • V = 838.05 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 293 K

  • 0.53 × 0.40 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.832, Tmax = 0.907

  • 32031 measured reflections

  • 5885 independent reflections

  • 3882 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.240

  • S = 1.12

  • 5885 reflections

  • 255 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H91⋯O4Ai 0.81 2.27 2.942 (11) 141
O9—H92⋯O5ii 0.82 2.06 2.869 (6) 170
N16—H161⋯O8 0.90 2.15 2.964 (3) 151
N19—H191⋯O9iii 0.89 1.92 2.750 (4) 155
N19—H192⋯O1Aiv 0.89 2.08 2.907 (10) 154
C17—H172⋯O6v 0.97 2.48 3.446 (5) 172
C20—H201⋯O7iv 0.95 2.49 3.406 (4) 160
C21—H212⋯O3A 0.96 2.48 3.130 (15) 125
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y-1, z; (iii) x, y+1, z; (iv) -x, -y+1, -z+1; (v) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chemists and physicists of the solid state have shown an increasing interest in the study of perchlorate salts containing organic cations in recent years owing to their great interesting properties such as ferroelectric and dielectric behaviours. (Czarnecki et al., 1994; Czupinski et al., 2002; Czupinski et al., 2006). Here, we report the synthesis and the crystal structure of the title compound (I), [C11H18N2]2+.2ClO4-.H2O.

The crystal structure of (I) (Fig.1), contains two ClO4- anions, a 1-benzylpiperazine-1,4-diium dication and a water molecule. In its atomic arrangement, the ClO4- anions are associated per pair via O—H···O hydrogen bonds generated by a water molecule to form [Cl2O8H2O]2- entities. The 1-benzylpiperazine-1,4-diium dications are associated to these entities and connected them through N—H···O and C—H···O hydrogen bonds, leading to the formation of three dimensional network. As expected, the ClO4 anion has typical tetrahedral geometry where the Cl—O bond lengths and O—Cl—O angles are not equal to one another but very with the environment around the O atoms. In the title compound, the Cl—O bond lengths vary from 1.382 (12) Å to 1.437 (7) Å for Cl1O4 anion and from 1.374 (3) Å to 1.484 (4) Å for Cl2O4anion. The O—Cl—O angles range from 104.2 (14) ° to 119.3 (15) ° for the first anion and from 103.1 (2) °. to 118.4 (2) ° for the second one. These values clearly indicate that the coordination geometry of the Cl atom can be regarded as being a distorted tetrahedron. However, for Cl2O4 tetrahedron all the oxygen atoms are involved in hydrogen bonds, while only three oxygen atoms acts as acceptors of hydrogen bonds for the Cl1O4 tetrahedron.

Related literature top

For general background to the properties of perchlorate salts containing organic cations, see: Czarnecki et al. (1994); Czupinski et al. (2002, 2006). For related structures, see: Antolini et al. (1982); Place & Willett (1988).

Refinement top

All H atoms were located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. The rotational disorder observed for one perchlorate anion (with Cl1) was modelized using two superimposed molecules with partial occupancies. The molecules were then refined with restraints on the Cl—O bonds, O—Cl—O angles and displacement parameters of the oxygen atoms

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. For the disordered perchlorate anion, only major part is shown.
1-Benzylpiperazine-1,4-diium bis(perchlorate) monohydrate top
Crystal data top
C11H18N22+·2ClO4·H2OZ = 2
Mr = 395.19F(000) = 412.000
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 8.6632 (6) ÅCell parameters from 13879 reflections
b = 10.0197 (8) Åθ = 3.5–32.9°
c = 10.8831 (7) ŵ = 0.44 mm1
α = 70.184 (7)°T = 293 K
β = 83.946 (6)°Plate, colourless
γ = 70.560 (7)°0.53 × 0.40 × 0.25 mm
V = 838.05 (12) Å3
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
5885 independent reflections
Radiation source: Enhance (Mo) X-ray Source3882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.4685 pixels mm-1θmax = 33.0°, θmin = 3.5°
ω/2\ scansh = 1313
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 1515
Tmin = 0.832, Tmax = 0.907l = 1516
32031 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.240 w = 1/[σ2(Fo2) + (0.15P)2 + 0.05P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
5885 reflectionsΔρmax = 1.04 e Å3
255 parametersΔρmin = 0.88 e Å3
40 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (11)
Crystal data top
C11H18N22+·2ClO4·H2Oγ = 70.560 (7)°
Mr = 395.19V = 838.05 (12) Å3
Triclinic, P1Z = 2
a = 8.6632 (6) ÅMo Kα radiation
b = 10.0197 (8) ŵ = 0.44 mm1
c = 10.8831 (7) ÅT = 293 K
α = 70.184 (7)°0.53 × 0.40 × 0.25 mm
β = 83.946 (6)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
5885 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2006)
3882 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.907Rint = 0.045
32031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06640 restraints
wR(F2) = 0.240H-atom parameters constrained
S = 1.12Δρmax = 1.04 e Å3
5885 reflectionsΔρmin = 0.88 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N160.2509 (2)0.3896 (2)0.78548 (16)0.0377 (4)
H1610.15560.37210.78790.045*
N190.1505 (3)0.7088 (2)0.6477 (2)0.0507 (5)
H1910.24310.73110.63930.061*
H1920.07290.79390.60860.061*
C170.2348 (3)0.5002 (3)0.8544 (2)0.0419 (4)
H1710.20030.46030.94310.050*
H1720.34160.51140.85620.050*
C180.1106 (3)0.6496 (3)0.7878 (2)0.0490 (5)
H1810.10850.72160.82710.059*
H1820.00260.63930.79370.059*
C200.1645 (4)0.5982 (3)0.5795 (2)0.0560 (6)
H2010.19600.63490.49100.067*
H2020.05990.58020.58220.067*
C210.2923 (4)0.4523 (3)0.6457 (2)0.0502 (6)
H2110.39800.46670.64110.060*
H2120.30220.38050.60220.060*
C220.3782 (3)0.2403 (3)0.8511 (3)0.0480 (5)
H2210.39600.17690.79690.058*
H2220.47980.25880.85660.058*
C230.3262 (3)0.1631 (2)0.9849 (2)0.0423 (5)
C240.3844 (4)0.1675 (3)1.0962 (3)0.0563 (6)
H2410.45940.21831.08830.068*
C250.3348 (4)0.0959 (3)1.2180 (3)0.0658 (8)
H2510.37580.10101.29100.079*
C260.2275 (4)0.0170 (3)1.2299 (3)0.0629 (7)
H2610.19330.03091.31310.075*
C270.1682 (4)0.0116 (3)1.1200 (3)0.0606 (7)
H2710.09440.04261.12910.073*
C280.2175 (3)0.0838 (3)0.9975 (2)0.0496 (5)
H2810.18220.07630.92360.059*
Cl10.19840 (7)0.07672 (7)0.62088 (5)0.0459 (2)
O1A0.0878 (13)0.0586 (10)0.5438 (9)0.071 (2)0.66 (3)
O2A0.2349 (11)0.0512 (9)0.7360 (6)0.0630 (17)0.66 (3)
O3A0.1333 (19)0.2126 (12)0.6492 (15)0.095 (4)0.66 (3)
O4A0.3513 (9)0.0646 (13)0.5527 (11)0.086 (3)0.66 (3)
O1B0.122 (3)0.082 (3)0.510 (2)0.101 (7)0.34 (3)
O2B0.190 (4)0.047 (2)0.724 (2)0.105 (6)0.34 (3)
O3B0.099 (2)0.2007 (17)0.660 (2)0.064 (4)0.34 (3)
O4B0.3506 (16)0.098 (2)0.585 (2)0.080 (3)0.34 (3)
Cl20.23663 (8)0.44332 (8)0.79535 (8)0.0570 (2)
O50.2245 (5)0.5724 (5)0.6812 (5)0.1421 (15)
O60.3698 (4)0.5028 (5)0.8630 (4)0.1273 (13)
O70.2735 (4)0.3526 (4)0.7389 (3)0.0951 (9)
O80.0873 (3)0.3889 (4)0.8630 (3)0.0991 (10)
O90.4548 (3)0.2670 (3)0.5678 (3)0.0757 (7)
H910.46250.18740.51940.114*
H920.54080.32000.60720.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N160.0336 (8)0.0422 (9)0.0420 (9)0.0174 (7)0.0030 (7)0.0149 (7)
N190.0463 (11)0.0441 (10)0.0544 (11)0.0149 (8)0.0041 (9)0.0050 (8)
C170.0433 (11)0.0430 (10)0.0421 (10)0.0128 (9)0.0001 (8)0.0181 (9)
C180.0464 (12)0.0436 (11)0.0537 (12)0.0111 (9)0.0049 (10)0.0162 (10)
C200.0661 (17)0.0639 (15)0.0410 (11)0.0303 (13)0.0058 (11)0.0096 (10)
C210.0606 (15)0.0569 (14)0.0429 (11)0.0285 (12)0.0128 (10)0.0222 (10)
C220.0369 (10)0.0437 (11)0.0629 (14)0.0112 (9)0.0065 (10)0.0200 (10)
C230.0362 (10)0.0365 (9)0.0527 (11)0.0076 (8)0.0031 (9)0.0154 (8)
C240.0560 (14)0.0472 (12)0.0656 (15)0.0145 (11)0.0176 (12)0.0147 (11)
C250.077 (2)0.0540 (15)0.0563 (15)0.0025 (14)0.0229 (14)0.0163 (12)
C260.0640 (17)0.0517 (14)0.0544 (14)0.0049 (12)0.0031 (12)0.0081 (11)
C270.0546 (15)0.0554 (14)0.0694 (17)0.0229 (12)0.0045 (13)0.0132 (13)
C280.0476 (12)0.0539 (13)0.0515 (12)0.0201 (10)0.0020 (10)0.0177 (10)
Cl10.0433 (3)0.0519 (3)0.0484 (3)0.0204 (2)0.0019 (2)0.0177 (2)
O1A0.079 (4)0.062 (3)0.078 (3)0.032 (3)0.033 (3)0.010 (3)
O2A0.073 (4)0.065 (3)0.044 (2)0.030 (2)0.007 (2)0.0004 (17)
O3A0.123 (8)0.077 (4)0.112 (6)0.038 (4)0.016 (5)0.050 (4)
O4A0.074 (3)0.085 (5)0.088 (5)0.039 (3)0.015 (3)0.005 (3)
O1B0.088 (10)0.134 (16)0.104 (11)0.017 (9)0.025 (9)0.078 (10)
O2B0.130 (15)0.093 (10)0.125 (12)0.088 (11)0.070 (9)0.047 (8)
O3B0.060 (6)0.054 (5)0.071 (6)0.003 (5)0.005 (4)0.029 (5)
O4B0.060 (5)0.094 (7)0.116 (9)0.047 (5)0.029 (5)0.057 (7)
Cl20.0410 (3)0.0587 (4)0.0838 (5)0.0185 (3)0.0003 (3)0.0358 (3)
O50.122 (3)0.127 (3)0.160 (3)0.076 (2)0.022 (2)0.018 (2)
O60.0690 (18)0.192 (3)0.159 (3)0.029 (2)0.0164 (18)0.120 (3)
O70.111 (2)0.112 (2)0.1031 (19)0.0633 (19)0.0164 (17)0.0613 (18)
O80.0527 (14)0.133 (3)0.103 (2)0.0300 (15)0.0070 (13)0.0256 (19)
O90.0635 (14)0.0607 (12)0.1013 (17)0.0305 (11)0.0107 (12)0.0167 (12)
Geometric parameters (Å, º) top
N16—C211.491 (3)C24—C251.377 (4)
N16—C171.499 (3)C24—H2410.9313
N16—C221.519 (3)C25—C261.379 (5)
N16—H1610.8954C25—H2510.9269
N19—C181.486 (3)C26—C271.374 (5)
N19—C201.498 (4)C26—H2610.9388
N19—H1910.8898C27—C281.384 (4)
N19—H1920.8904C27—H2710.9459
C17—C181.510 (3)C28—H2810.9242
C17—H1710.9685Cl1—O2B1.382 (12)
C17—H1720.9713Cl1—O4B1.398 (11)
C18—H1810.9500Cl1—O1B1.409 (12)
C18—H1820.9681Cl1—O3A1.416 (8)
C20—C211.503 (4)Cl1—O2A1.427 (5)
C20—H2010.9532Cl1—O3B1.430 (10)
C20—H2020.9768Cl1—O1A1.430 (6)
C21—H2110.9671Cl1—O4A1.437 (7)
C21—H2120.9645Cl2—O61.374 (3)
C22—C231.500 (3)Cl2—O71.386 (3)
C22—H2210.9721Cl2—O81.405 (3)
C22—H2220.9695Cl2—O51.484 (4)
C23—C241.380 (3)O9—H910.8131
C23—C281.390 (3)O9—H920.8189
C21—N16—C17109.70 (17)N16—C22—H222108.0
C21—N16—C22110.81 (18)H221—C22—H222108.4
C17—N16—C22111.48 (17)C24—C23—C28118.9 (2)
C21—N16—H161107.9C24—C23—C22121.7 (2)
C17—N16—H161109.9C28—C23—C22119.3 (2)
C22—N16—H161107.0C25—C24—C23120.8 (3)
C18—N19—C20110.79 (19)C25—C24—H241120.0
C18—N19—H191110.7C23—C24—H241119.2
C20—N19—H191110.0C24—C25—C26120.0 (3)
C18—N19—H192110.1C24—C25—H251118.8
C20—N19—H192109.1C26—C25—H251121.1
H191—N19—H192106.1C27—C26—C25119.9 (3)
N16—C17—C18111.57 (19)C27—C26—H261120.3
N16—C17—H171108.2C25—C26—H261119.7
C18—C17—H171109.2C26—C27—C28120.1 (3)
N16—C17—H172108.2C26—C27—H271119.3
C18—C17—H172110.4C28—C27—H271120.5
H171—C17—H172109.2C27—C28—C23120.2 (2)
N19—C18—C17111.1 (2)C27—C28—H281120.4
N19—C18—H181107.3C23—C28—H281119.4
C17—C18—H181111.0O2B—Cl1—O4B119.3 (15)
N19—C18—H182108.7O2B—Cl1—O1B109.0 (11)
C17—C18—H182109.9O4B—Cl1—O1B109.0 (12)
H181—C18—H182108.7O3A—Cl1—O2A112.5 (8)
N19—C20—C21110.0 (2)O2B—Cl1—O3B104.2 (14)
N19—C20—H201110.1O4B—Cl1—O3B107.6 (11)
C21—C20—H201108.4O1B—Cl1—O3B107.0 (13)
N19—C20—H202110.0O3A—Cl1—O1A111.9 (7)
C21—C20—H202108.6O2A—Cl1—O1A107.1 (4)
H201—C20—H202109.7O3A—Cl1—O4A112.7 (6)
N16—C21—C20111.0 (2)O2A—Cl1—O4A104.5 (5)
N16—C21—H211109.0O1A—Cl1—O4A107.8 (6)
C20—C21—H211110.0O6—Cl2—O7109.7 (2)
N16—C21—H212109.1O6—Cl2—O8114.0 (2)
C20—C21—H212110.5O7—Cl2—O8118.4 (2)
H211—C21—H212107.1O6—Cl2—O5104.5 (3)
C23—C22—N16111.90 (18)O7—Cl2—O5103.1 (2)
C23—C22—H221109.6O8—Cl2—O5105.4 (2)
N16—C22—H221108.8H91—O9—H92111.3
C23—C22—H222110.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H91···O4Ai0.812.272.942 (11)141
O9—H92···O5ii0.822.062.869 (6)170
N16—H161···O80.902.152.964 (3)151
N19—H191···O9iii0.891.922.750 (4)155
N19—H192···O1Aiv0.892.082.907 (10)154
C17—H172···O6v0.972.483.446 (5)172
C20—H201···O7iv0.952.493.406 (4)160
C21—H212···O3A0.962.483.130 (15)125
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H18N22+·2ClO4·H2O
Mr395.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6632 (6), 10.0197 (8), 10.8831 (7)
α, β, γ (°)70.184 (7), 83.946 (6), 70.560 (7)
V3)838.05 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.53 × 0.40 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.832, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
32031, 5885, 3882
Rint0.045
(sin θ/λ)max1)0.765
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.240, 1.12
No. of reflections5885
No. of parameters255
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.88

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H91···O4Ai0.812.272.942 (11)141
O9—H92···O5ii0.822.062.869 (6)170
N16—H161···O80.902.152.964 (3)151
N19—H191···O9iii0.891.922.750 (4)155
N19—H192···O1Aiv0.892.082.907 (10)154
C17—H172···O6v0.972.483.446 (5)172
C20—H201···O7iv0.952.493.406 (4)160
C21—H212···O3A0.962.483.130 (15)125
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+1, y, z.
 

Acknowledgements

We acknowledge support by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAntolini, L., Menabue, L., Pellacani, G. C., Monica, S. & Giuseppe, M. (1982). Inorg. Chim. Acta, 58, 193–200.  CSD CrossRef CAS Web of Science Google Scholar
First citationCzarnecki, P., Nawrocik, W., Pajaxk, Z. & Nawrocik, J. (1994). J. Phys. Condens. Matter, 6, 4955–4960.  CrossRef CAS Web of Science Google Scholar
First citationCzupinski, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Wiergiel, J. S. (2002). J. Phys. Condens. Matter, 14, 8497–8512.  Web of Science CSD CrossRef CAS Google Scholar
First citationCzupinski, O., Wojtas, M., Zaleski, J., Jakubas, R. & Medycki, W. (2006). J. Phys. Condens. Matter, 88, 3307–3324.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPlace, H. & Willett, R. D. (1988). Acta Cryst. C44, 34–38.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds