organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′,6,6′-Tetra­ethyl-4,4′-methyl­enedibenzo­nitrile

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: jingjingyuan0503@163.com

(Received 9 May 2010; accepted 27 May 2010; online 5 June 2010)

The asymmetric unit of the title compound, C23H26N2, contains one half-mol­ecule, which is completed by the operation of a crystallographic twofold axis. In the mol­ecule, the two benzene rings form a dihedral angle of 77.09 (7)°.

Related literature

For applications of aromatic nitriles, see: Debasree et al. (2009[Debasree, S., Amit, S. & Brindaban, C. R. (2009). Tetrahedron Lett. 50, 6088-6091.]); Lal Dhar et al. (2009[Lal Dhar, S. Y., Vishnu, P. S. & Rajesh, P. (2009). Tetrahedron Lett. 50, 5532-5535.]); Ren et al. (2009[Ren, Y., Wang, W., Zhao, S., Tian, X., Wang, J., Yin, W. & Cheng, L. (2009). Tetrahedron Lett. 50, 4595-4597.]); Zhou et al. (2009[Zhou, K. J., Daniele, A., Shoubhik, D. & Matthias, B. (2009). Org. Lett. 11, 2461-2464.]). For the preparation of the title compound, see: Donald et al. (1955[Donald, L. V., Jonthan, L. H. & Henry, C. W. (1955). J. Org. Chem. 20, 797-802.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26N2

  • Mr = 330.46

  • Monoclinic, C 2/c

  • a = 16.016 (3) Å

  • b = 9.3218 (19) Å

  • c = 13.977 (3) Å

  • β = 115.55 (3)°

  • V = 1882.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 290 K

  • 0.16 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • 8636 measured reflections

  • 2055 independent reflections

  • 1405 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.16

  • 2055 reflections

  • 117 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aromatic nitriles are important intermediates in the synthesis of pharmaceuticals, agrochemicals, herbicides, dyes and pigments, and serve as precursors for many useful compounds including benzoic acid derivatives, benzylamines, benzaldehydes, and heterocycles (Debasree et al., 2009; Lal Dhar et al., 2009; Ren et al., 2009; Zhou et al., 2009).

In this paper, we report the synthesis and crystal structure of the title compound (Fig. 1). In the molecule, two benzene rings form a dihedral angle of 77.09 (7)°, and N···N separation is 11.67 (3)Å. The crystal packing doesn't exhibit hydrogen bonds or classical interactions.

Related literature top

For applications of aromatic nitriles, see: Debasree et al. (2009); Lal Dhar et al. (2009); Ren et al. (2009); Zhou et al. (2009). For the preparation of the title compound, see: Donald et al. (1955).

Experimental top

The title compound has been synthesized following the known procedure (Donald et al., 1955). To an ice-bath cooled solution of 4,4'-methylenebis(2,6-diethylaniline) and sodium nitrite in water was added dropwise concentrated hydrogen chloride, keeping the temperature at 0-5oC for 30 minutes. Then added potassium iodide into the mixed solution, and the white solid bis(3,5-diethyl-4-iodophenyl)methane was obtained. It reacted with cyanocopper in DMF solution at 180oC for 1 hour, then the title compound was obtained. X-ray quality crystal of the title compound was obtained by slow evaporation from chloroform solution at room temperature.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme and 40% probability displacement ellipsoids [symmetry code: (a) -x, y, 1/2-z]. H atoms omitted for clarity.
2,2',6,6'-Tetraethyl-4,4'-methylenedibenzonitrile top
Crystal data top
C23H26N2F(000) = 712
Mr = 330.46Dx = 1.166 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2049 reflections
a = 16.016 (3) Åθ = 2.2–23.2°
b = 9.3218 (19) ŵ = 0.07 mm1
c = 13.977 (3) ÅT = 290 K
β = 115.55 (3)°Block, colourless
V = 1882.6 (7) Å30.16 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1405 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.0°, θmin = 3.2°
phi and ω scansh = 2020
8636 measured reflectionsk = 1111
2055 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.6433P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.003
2055 reflectionsΔρmax = 0.24 e Å3
117 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0066 (13)
Crystal data top
C23H26N2V = 1882.6 (7) Å3
Mr = 330.46Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.016 (3) ŵ = 0.07 mm1
b = 9.3218 (19) ÅT = 290 K
c = 13.977 (3) Å0.16 × 0.10 × 0.10 mm
β = 115.55 (3)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1405 reflections with I > 2σ(I)
8636 measured reflectionsRint = 0.028
2055 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.16Δρmax = 0.24 e Å3
2055 reflectionsΔρmin = 0.20 e Å3
117 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15377 (8)0.06614 (13)0.12294 (10)0.0215 (3)
C20.17923 (8)0.06280 (13)0.23286 (10)0.0214 (3)
C30.12805 (8)0.14471 (13)0.27126 (10)0.0217 (3)
H30.14440.14490.34370.026*
C40.05275 (8)0.22672 (14)0.20424 (10)0.0222 (3)
C50.02799 (8)0.22437 (14)0.09566 (10)0.0239 (3)
H50.02330.27680.05040.029*
C60.07756 (8)0.14604 (14)0.05298 (10)0.0227 (3)
C70.26297 (9)0.01923 (15)0.30817 (10)0.0254 (3)
H7A0.27230.10230.27210.030*
H7B0.25240.05300.36770.030*
C80.34907 (10)0.07400 (17)0.34864 (13)0.0379 (4)
H8A0.36150.10310.29020.057*
H8B0.40080.02050.39840.057*
H8C0.33940.15740.38290.057*
C90.20907 (9)0.01286 (15)0.08264 (10)0.0251 (3)
C100.05135 (9)0.15086 (15)0.06463 (10)0.0277 (3)
H10A0.01500.16480.10280.033*
H10B0.06640.05950.08650.033*
C110.10057 (11)0.26976 (19)0.09430 (12)0.0392 (4)
H11A0.08490.36070.07420.059*
H11B0.08170.26840.16950.059*
H11C0.16620.25540.05800.059*
C120.00000.3165 (2)0.25000.0265 (4)
H120.04320.37780.30530.032*
N10.25510 (9)0.07416 (14)0.05233 (10)0.0370 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0215 (6)0.0215 (7)0.0221 (6)0.0050 (5)0.0099 (5)0.0016 (5)
C20.0203 (6)0.0210 (7)0.0229 (6)0.0039 (5)0.0094 (5)0.0005 (5)
C30.0223 (6)0.0245 (7)0.0183 (6)0.0037 (5)0.0088 (5)0.0003 (5)
C40.0203 (6)0.0215 (6)0.0263 (7)0.0048 (5)0.0113 (5)0.0001 (5)
C50.0199 (6)0.0241 (7)0.0246 (7)0.0025 (5)0.0066 (5)0.0033 (5)
C60.0226 (6)0.0235 (7)0.0203 (6)0.0075 (5)0.0077 (5)0.0002 (5)
C70.0275 (7)0.0270 (7)0.0212 (7)0.0034 (6)0.0101 (6)0.0026 (5)
C80.0263 (7)0.0374 (9)0.0385 (9)0.0013 (6)0.0031 (6)0.0020 (7)
C90.0283 (7)0.0266 (7)0.0201 (6)0.0042 (6)0.0102 (6)0.0004 (5)
C100.0273 (7)0.0327 (8)0.0195 (7)0.0039 (6)0.0066 (6)0.0002 (6)
C110.0393 (8)0.0505 (10)0.0266 (8)0.0096 (7)0.0132 (7)0.0069 (7)
C120.0255 (9)0.0243 (10)0.0309 (10)0.0000.0132 (8)0.000
N10.0443 (7)0.0378 (7)0.0333 (7)0.0020 (6)0.0209 (6)0.0010 (6)
Geometric parameters (Å, º) top
C1—C61.4040 (18)C7—H7B0.9700
C1—C21.4096 (18)C8—H8A0.9600
C1—C91.4402 (18)C8—H8B0.9600
C2—C31.3865 (18)C8—H8C0.9600
C2—C71.5079 (18)C9—N11.1486 (17)
C3—C41.3935 (18)C10—C111.5178 (19)
C3—H30.9300C10—H10A0.9700
C4—C51.3935 (18)C10—H10B0.9700
C4—C121.5129 (16)C11—H11A0.9600
C5—C61.3885 (19)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—C101.5115 (18)C12—C4i1.5130 (16)
C7—C81.5179 (19)C12—H120.9700
C7—H7A0.9700
C6—C1—C2121.79 (11)H7A—C7—H7B108.0
C6—C1—C9119.69 (11)C7—C8—H8A109.5
C2—C1—C9118.51 (11)C7—C8—H8B109.5
C3—C2—C1117.92 (11)H8A—C8—H8B109.5
C3—C2—C7120.36 (11)C7—C8—H8C109.5
C1—C2—C7121.61 (11)H8A—C8—H8C109.5
C2—C3—C4121.78 (12)H8B—C8—H8C109.5
C2—C3—H3119.1N1—C9—C1178.28 (14)
C4—C3—H3119.1C6—C10—C11112.67 (11)
C5—C4—C3118.74 (12)C6—C10—H10A109.1
C5—C4—C12121.37 (11)C11—C10—H10A109.1
C3—C4—C12119.89 (10)C6—C10—H10B109.1
C6—C5—C4121.96 (12)C11—C10—H10B109.1
C6—C5—H5119.0H10A—C10—H10B107.8
C4—C5—H5119.0C10—C11—H11A109.5
C5—C6—C1117.78 (11)C10—C11—H11B109.5
C5—C6—C10120.63 (12)H11A—C11—H11B109.5
C1—C6—C10121.57 (12)C10—C11—H11C109.5
C2—C7—C8111.18 (11)H11A—C11—H11C109.5
C2—C7—H7A109.4H11B—C11—H11C109.5
C8—C7—H7A109.4C4—C12—C4i112.85 (15)
C2—C7—H7B109.4C4—C12—H12109.0
C8—C7—H7B109.4
C6—C1—C2—C31.79 (18)C4—C5—C6—C10177.34 (11)
C9—C1—C2—C3177.02 (11)C2—C1—C6—C50.88 (18)
C6—C1—C2—C7177.97 (11)C9—C1—C6—C5177.92 (11)
C9—C1—C2—C70.85 (18)C2—C1—C6—C10179.15 (11)
C1—C2—C3—C40.93 (18)C9—C1—C6—C100.35 (18)
C7—C2—C3—C4177.15 (11)C3—C2—C7—C886.55 (15)
C2—C3—C4—C50.80 (18)C1—C2—C7—C889.53 (15)
C2—C3—C4—C12178.92 (11)C5—C6—C10—C1189.82 (15)
C3—C4—C5—C61.77 (19)C1—C6—C10—C1188.39 (15)
C12—C4—C5—C6177.94 (12)C5—C4—C12—C4i112.50 (12)
C4—C5—C6—C10.94 (18)C3—C4—C12—C4i67.79 (10)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H26N2
Mr330.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)16.016 (3), 9.3218 (19), 13.977 (3)
β (°) 115.55 (3)
V3)1882.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.16 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8636, 2055, 1405
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.16
No. of reflections2055
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the Central China Normal University for financial support.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDebasree, S., Amit, S. & Brindaban, C. R. (2009). Tetrahedron Lett. 50, 6088–6091.  Google Scholar
First citationDonald, L. V., Jonthan, L. H. & Henry, C. W. (1955). J. Org. Chem. 20, 797–802.  Google Scholar
First citationLal Dhar, S. Y., Vishnu, P. S. & Rajesh, P. (2009). Tetrahedron Lett. 50, 5532–5535.  Google Scholar
First citationRen, Y., Wang, W., Zhao, S., Tian, X., Wang, J., Yin, W. & Cheng, L. (2009). Tetrahedron Lett. 50, 4595–4597.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, K. J., Daniele, A., Shoubhik, D. & Matthias, B. (2009). Org. Lett. 11, 2461–2464.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds