metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N,N-bis­­(2-hy­dr­oxy­eth­yl)glycinato]cobalt(II)

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com

(Received 19 May 2010; accepted 19 June 2010; online 26 June 2010)

The asymmetric unit of the title compound, [Co(C6H12NO4)2], contains one half-mol­ecule with the CoII ion situated on an inversion center. Inter­molecular O—H⋯O hydrogen bonds generate a three-dimensional hydrogen-bonding network, which consolidates the crystal packing.

Related literature

For related structures, see: Ammar et al. (2001[Ammar, M. K., Amor, F. B., Driss, A. & Jouini, T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 631-633.]); Chuklanova et al. (1981[Chuklanova, E. B., Polynova, T. N., Porai-Koshits, M. A. & Babeshkina, G. K. (1981). Koord. Khim. 7, 944-951.]); Thakuria & Das (2007[Thakuria, H. & Das, G. (2007). Polyhedron, 26, 149-153.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H12NO4)2]

  • Mr = 383.26

  • Monoclinic, P 21 /c

  • a = 9.932 (2) Å

  • b = 11.388 (2) Å

  • c = 7.4477 (15) Å

  • β = 110.12 (3)°

  • V = 791.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.736, Tmax = 1.000

  • 8129 measured reflections

  • 1819 independent reflections

  • 1357 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.159

  • S = 1.00

  • 1819 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H12⋯O3i 0.85 1.79 2.632 (4) 171
O1—H11⋯O3ii 0.85 1.89 2.744 (4) 178
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As a contribution to a structural study of ML2 complexes, where L = N,N-bis(2-hydroxyethyl)glycinato ligand, and M = Cu (Ammar et al., 2001; Thakuria & Das, 2007) and Ni (Chuklanova et al., 1981), herewith we report the crystal structure of the title compound CoL2 (I).

In (I) (Fig. 1), the Co(II) ions are located on the inversion centers and are coordinated by two L ligands forming an octahedral enviromental geometry with four oxygen and two nitrogen atoms. The bond lengths are: Co1—N1 = 2.172 (3) Å, Co1—O2 = 2.088 (3) Å and Co1—O4 = 2.046 (2) Å. Though ML2 complexes (M = Co, Ni, Cu) have similar structures, there are some differences. The Co and Ni centers are in a regular octahedron coordinated geometry, while the Cu center has an elongated octahedral coordination with two hydroxy atoms in axial positions.

Intermolecular O—H···O hydrogen bonds (Table 1) generate three-dimensional hydrogen-bonding network, which consolidate the crystal packing (Fig. 2).

Related literature top

For related structures, see: Ammar et al. (2001); Chuklanova et al. (1981); Thakuria & Das (2007).

Experimental top

A mixture of Co(II) nitrate (1.0mmol), Dy(III)nitrate (0.5mmol) and N,N-bis(2-hydroxyethyl)glycine, (1 mmol), in 10 ml solvent wITH DMF:MeOH = 1:1 was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 20% based on metal salt.

Refinement top

C-bound H atoms were included in calculated positions and treated as riding on their parent atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). Hydroxy H atoms were located on difference Fourier maps, but placed in idealized positions (O—H = 0.85Å) and refined as riding, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. H atom have been omitted for clarity. Symmetry code: (A) -x+1, -y-1, -z+1.
[Figure 2] Fig. 2. A portion of the crystal packing viewed down the c axis. Dashed lines denote O—H···O hydrogen bonds.
Bis[N,N-bis(2-hydroxyethyl)glycinato]cobalt(II) top
Crystal data top
[Co(C6H12NO4)2]F(000) = 402
Mr = 383.26Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.932 (2) ÅCell parameters from 7077 reflections
b = 11.388 (2) Åθ = 3.4–27.6°
c = 7.4477 (15) ŵ = 1.13 mm1
β = 110.12 (3)°T = 293 K
V = 791.0 (3) Å3Block, red
Z = 20.2 × 0.18 × 0.18 mm
Data collection top
Rigaku SCXmini
diffractometer
1819 independent reflections
Radiation source: fine-focus sealed tube1357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.736, Tmax = 1.000k = 1414
8129 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1819 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co(C6H12NO4)2]V = 791.0 (3) Å3
Mr = 383.26Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.932 (2) ŵ = 1.13 mm1
b = 11.388 (2) ÅT = 293 K
c = 7.4477 (15) Å0.2 × 0.18 × 0.18 mm
β = 110.12 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1819 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1357 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 1.000Rint = 0.072
8129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.00Δρmax = 0.48 e Å3
1819 reflectionsΔρmin = 0.36 e Å3
106 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.0244 (3)
O10.0043 (3)0.3365 (3)0.0259 (4)0.0552 (9)
H110.08460.32110.00730.066*
O20.5173 (3)0.4447 (3)0.7743 (4)0.0347 (7)
H120.57460.38830.82180.042*
O30.2823 (3)0.7874 (2)0.5700 (4)0.0449 (8)
O40.4555 (3)0.6656 (2)0.5703 (4)0.0333 (6)
N10.2727 (3)0.4762 (2)0.4479 (5)0.0270 (7)
C10.0483 (4)0.3862 (4)0.2103 (6)0.0431 (10)
H1A0.03770.32990.30220.052*
H1B0.00900.45500.21180.052*
C20.2040 (4)0.4198 (3)0.2589 (5)0.0329 (9)
H2A0.25790.34960.25380.040*
H2B0.21150.47300.16100.040*
C30.2708 (4)0.3967 (4)0.6042 (6)0.0363 (9)
H3A0.29180.31730.57500.044*
H3B0.17580.39700.61370.044*
C40.3792 (4)0.4339 (4)0.7929 (6)0.0401 (10)
H4A0.35100.50860.83170.048*
H4B0.38300.37620.89020.048*
C50.2141 (4)0.5937 (3)0.4614 (6)0.0309 (8)
H5A0.15540.58820.54160.037*
H5B0.15210.61720.33470.037*
C60.3256 (4)0.6887 (3)0.5411 (5)0.0310 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0203 (4)0.0227 (4)0.0279 (4)0.0026 (3)0.0055 (3)0.0003 (3)
O10.0397 (18)0.066 (2)0.053 (2)0.0136 (15)0.0076 (15)0.0177 (16)
O20.0302 (14)0.0401 (16)0.0306 (15)0.0078 (13)0.0065 (11)0.0075 (12)
O30.0249 (15)0.0323 (15)0.068 (2)0.0053 (12)0.0029 (14)0.0206 (14)
O40.0227 (13)0.0269 (13)0.0468 (17)0.0006 (11)0.0076 (12)0.0064 (11)
N10.0241 (16)0.0217 (15)0.0329 (17)0.0002 (12)0.0067 (13)0.0023 (11)
C10.037 (2)0.047 (2)0.039 (2)0.013 (2)0.0060 (18)0.0058 (19)
C20.0244 (19)0.037 (2)0.036 (2)0.0001 (16)0.0081 (16)0.0030 (17)
C30.034 (2)0.035 (2)0.041 (2)0.0042 (18)0.0142 (18)0.0034 (17)
C40.034 (2)0.050 (3)0.036 (2)0.003 (2)0.0119 (18)0.0074 (19)
C50.0216 (18)0.034 (2)0.035 (2)0.0020 (16)0.0072 (15)0.0028 (16)
C60.0258 (19)0.032 (2)0.031 (2)0.0047 (16)0.0048 (15)0.0049 (15)
Geometric parameters (Å, º) top
Co1—O42.046 (2)N1—C21.483 (5)
Co1—O4i2.046 (2)C1—C21.512 (5)
Co1—O22.088 (3)C1—H1A0.9700
Co1—O2i2.088 (3)C1—H1B0.9700
Co1—N1i2.172 (3)C2—H2A0.9700
Co1—N12.172 (3)C2—H2B0.9700
O1—C11.409 (5)C3—C41.507 (5)
O1—H110.8499C3—H3A0.9700
O2—C41.430 (5)C3—H3B0.9700
O2—H120.8500C4—H4A0.9700
O3—C61.249 (4)C4—H4B0.9700
O4—C61.260 (4)C5—C61.515 (5)
N1—C51.476 (4)C5—H5A0.9700
N1—C31.480 (5)C5—H5B0.9700
O4—Co1—O4i180.0C2—C1—H1B110.4
O4—Co1—O288.86 (11)H1A—C1—H1B108.6
O4i—Co1—O291.14 (11)N1—C2—C1115.8 (3)
O4—Co1—O2i91.14 (11)N1—C2—H2A108.3
O4i—Co1—O2i88.86 (11)C1—C2—H2A108.3
O2—Co1—O2i180.0N1—C2—H2B108.3
O4—Co1—N1i98.17 (10)C1—C2—H2B108.3
O4i—Co1—N1i81.83 (10)H2A—C2—H2B107.4
O2—Co1—N1i97.61 (11)N1—C3—C4111.3 (3)
O2i—Co1—N1i82.39 (11)N1—C3—H3A109.4
O4—Co1—N181.83 (10)C4—C3—H3A109.4
O4i—Co1—N198.17 (10)N1—C3—H3B109.4
O2—Co1—N182.39 (11)C4—C3—H3B109.4
O2i—Co1—N197.61 (11)H3A—C3—H3B108.0
N1i—Co1—N1180.0O2—C4—C3109.6 (3)
C1—O1—H11108.0O2—C4—H4A109.8
C4—O2—Co1111.2 (2)C3—C4—H4A109.8
C4—O2—H12115.0O2—C4—H4B109.8
Co1—O2—H12116.9C3—C4—H4B109.8
C6—O4—Co1116.5 (2)H4A—C4—H4B108.2
C5—N1—C3112.9 (3)N1—C5—C6114.9 (3)
C5—N1—C2113.2 (3)N1—C5—H5A108.5
C3—N1—C2110.9 (3)C6—C5—H5A108.5
C5—N1—Co1106.5 (2)N1—C5—H5B108.5
C3—N1—Co1103.3 (2)C6—C5—H5B108.5
C2—N1—Co1109.5 (2)H5A—C5—H5B107.5
O1—C1—C2106.5 (3)O3—C6—O4123.4 (3)
O1—C1—H1A110.4O3—C6—C5117.5 (3)
C2—C1—H1A110.4O4—C6—C5119.1 (3)
O1—C1—H1B110.4
O4—Co1—O2—C475.2 (3)O4i—Co1—N1—C248.4 (2)
O4i—Co1—O2—C4104.8 (3)O2—Co1—N1—C2138.4 (2)
O2i—Co1—O2—C49 (84)O2i—Co1—N1—C241.6 (2)
N1i—Co1—O2—C4173.3 (3)N1i—Co1—N1—C235 (100)
N1—Co1—O2—C46.7 (3)C5—N1—C2—C167.2 (4)
O4i—Co1—O4—C637 (100)C3—N1—C2—C160.8 (4)
O2—Co1—O4—C688.4 (3)Co1—N1—C2—C1174.1 (3)
O2i—Co1—O4—C691.6 (3)O1—C1—C2—N1179.1 (3)
N1i—Co1—O4—C6174.1 (3)C5—N1—C3—C470.5 (4)
N1—Co1—O4—C65.9 (3)C2—N1—C3—C4161.4 (3)
O4—Co1—N1—C58.9 (2)Co1—N1—C3—C444.2 (3)
O4i—Co1—N1—C5171.1 (2)Co1—O2—C4—C332.5 (4)
O2—Co1—N1—C598.9 (2)N1—C3—C4—O253.5 (4)
O2i—Co1—N1—C581.1 (2)C3—N1—C5—C6101.7 (4)
N1i—Co1—N1—C588 (100)C2—N1—C5—C6131.4 (3)
O4—Co1—N1—C3110.2 (2)Co1—N1—C5—C611.0 (4)
O4i—Co1—N1—C369.8 (2)Co1—O4—C6—O3177.0 (3)
O2—Co1—N1—C320.3 (2)Co1—O4—C6—C51.1 (5)
O2i—Co1—N1—C3159.7 (2)N1—C5—C6—O3174.3 (3)
N1i—Co1—N1—C3153 (100)N1—C5—C6—O47.4 (5)
O4—Co1—N1—C2131.6 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H12···O3ii0.851.792.632 (4)171
O1—H11···O3iii0.851.892.744 (4)178
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C6H12NO4)2]
Mr383.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.932 (2), 11.388 (2), 7.4477 (15)
β (°) 110.12 (3)
V3)791.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.2 × 0.18 × 0.18
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.736, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8129, 1819, 1357
Rint0.072
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.159, 1.00
No. of reflections1819
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.36

Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H12···O3i0.851.792.632 (4)170.6
O1—H11···O3ii0.851.892.744 (4)177.5
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

References

First citationAmmar, M. K., Amor, F. B., Driss, A. & Jouini, T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 631–633.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChuklanova, E. B., Polynova, T. N., Porai-Koshits, M. A. & Babeshkina, G. K. (1981). Koord. Khim. 7, 944–951.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakuria, H. & Das, G. (2007). Polyhedron, 26, 149–153.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds