metal-organic compounds
Bis[N,N-bis(2-hydroxyethyl)glycinato]cobalt(II)
aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com
The 6H12NO4)2], contains one half-molecule with the CoII ion situated on an inversion center. Intermolecular O—H⋯O hydrogen bonds generate a three-dimensional hydrogen-bonding network, which consolidates the crystal packing.
of the title compound, [Co(CRelated literature
For related structures, see: Ammar et al. (2001); Chuklanova et al. (1981); Thakuria & Das (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536810023810/cv2723sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810023810/cv2723Isup2.hkl
A mixture of Co(II) nitrate (1.0mmol), Dy(III)nitrate (0.5mmol) and N,N-bis(2-hydroxyethyl)glycine, (1 mmol), in 10 ml solvent wITH DMF:MeOH = 1:1 was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 20% based on metal salt.
C-bound H atoms were included in calculated positions and treated as riding on their parent atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). Hydroxy H atoms were located on difference Fourier maps, but placed in idealized positions (O—H = 0.85Å) and refined as riding, with Uiso(H) = 1.2Ueq(O).
Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Co(C6H12NO4)2] | F(000) = 402 |
Mr = 383.26 | Dx = 1.609 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.932 (2) Å | Cell parameters from 7077 reflections |
b = 11.388 (2) Å | θ = 3.4–27.6° |
c = 7.4477 (15) Å | µ = 1.13 mm−1 |
β = 110.12 (3)° | T = 293 K |
V = 791.0 (3) Å3 | Block, red |
Z = 2 | 0.2 × 0.18 × 0.18 mm |
Rigaku SCXmini diffractometer | 1819 independent reflections |
Radiation source: fine-focus sealed tube | 1357 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.072 |
ω scans | θmax = 27.5°, θmin = 3.4° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −12→12 |
Tmin = 0.736, Tmax = 1.000 | k = −14→14 |
8129 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.159 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
1819 reflections | (Δ/σ)max < 0.001 |
106 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
[Co(C6H12NO4)2] | V = 791.0 (3) Å3 |
Mr = 383.26 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.932 (2) Å | µ = 1.13 mm−1 |
b = 11.388 (2) Å | T = 293 K |
c = 7.4477 (15) Å | 0.2 × 0.18 × 0.18 mm |
β = 110.12 (3)° |
Rigaku SCXmini diffractometer | 1819 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1357 reflections with I > 2σ(I) |
Tmin = 0.736, Tmax = 1.000 | Rint = 0.072 |
8129 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.159 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.48 e Å−3 |
1819 reflections | Δρmin = −0.36 e Å−3 |
106 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.5000 | 0.5000 | 0.0244 (3) | |
O1 | 0.0043 (3) | 0.3365 (3) | 0.0259 (4) | 0.0552 (9) | |
H11 | −0.0846 | 0.3211 | −0.0073 | 0.066* | |
O2 | 0.5173 (3) | 0.4447 (3) | 0.7743 (4) | 0.0347 (7) | |
H12 | 0.5746 | 0.3883 | 0.8218 | 0.042* | |
O3 | 0.2823 (3) | 0.7874 (2) | 0.5700 (4) | 0.0449 (8) | |
O4 | 0.4555 (3) | 0.6656 (2) | 0.5703 (4) | 0.0333 (6) | |
N1 | 0.2727 (3) | 0.4762 (2) | 0.4479 (5) | 0.0270 (7) | |
C1 | 0.0483 (4) | 0.3862 (4) | 0.2103 (6) | 0.0431 (10) | |
H1A | 0.0377 | 0.3299 | 0.3022 | 0.052* | |
H1B | −0.0090 | 0.4550 | 0.2118 | 0.052* | |
C2 | 0.2040 (4) | 0.4198 (3) | 0.2589 (5) | 0.0329 (9) | |
H2A | 0.2579 | 0.3496 | 0.2538 | 0.040* | |
H2B | 0.2115 | 0.4730 | 0.1610 | 0.040* | |
C3 | 0.2708 (4) | 0.3967 (4) | 0.6042 (6) | 0.0363 (9) | |
H3A | 0.2918 | 0.3173 | 0.5750 | 0.044* | |
H3B | 0.1758 | 0.3970 | 0.6137 | 0.044* | |
C4 | 0.3792 (4) | 0.4339 (4) | 0.7929 (6) | 0.0401 (10) | |
H4A | 0.3510 | 0.5086 | 0.8317 | 0.048* | |
H4B | 0.3830 | 0.3762 | 0.8902 | 0.048* | |
C5 | 0.2141 (4) | 0.5937 (3) | 0.4614 (6) | 0.0309 (8) | |
H5A | 0.1554 | 0.5882 | 0.5416 | 0.037* | |
H5B | 0.1521 | 0.6172 | 0.3347 | 0.037* | |
C6 | 0.3256 (4) | 0.6887 (3) | 0.5411 (5) | 0.0310 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0203 (4) | 0.0227 (4) | 0.0279 (4) | 0.0026 (3) | 0.0055 (3) | −0.0003 (3) |
O1 | 0.0397 (18) | 0.066 (2) | 0.053 (2) | −0.0136 (15) | 0.0076 (15) | −0.0177 (16) |
O2 | 0.0302 (14) | 0.0401 (16) | 0.0306 (15) | 0.0078 (13) | 0.0065 (11) | 0.0075 (12) |
O3 | 0.0249 (15) | 0.0323 (15) | 0.068 (2) | 0.0053 (12) | 0.0029 (14) | −0.0206 (14) |
O4 | 0.0227 (13) | 0.0269 (13) | 0.0468 (17) | 0.0006 (11) | 0.0076 (12) | −0.0064 (11) |
N1 | 0.0241 (16) | 0.0217 (15) | 0.0329 (17) | −0.0002 (12) | 0.0067 (13) | −0.0023 (11) |
C1 | 0.037 (2) | 0.047 (2) | 0.039 (2) | −0.013 (2) | 0.0060 (18) | −0.0058 (19) |
C2 | 0.0244 (19) | 0.037 (2) | 0.036 (2) | −0.0001 (16) | 0.0081 (16) | −0.0030 (17) |
C3 | 0.034 (2) | 0.035 (2) | 0.041 (2) | −0.0042 (18) | 0.0142 (18) | 0.0034 (17) |
C4 | 0.034 (2) | 0.050 (3) | 0.036 (2) | 0.003 (2) | 0.0119 (18) | 0.0074 (19) |
C5 | 0.0216 (18) | 0.034 (2) | 0.035 (2) | 0.0020 (16) | 0.0072 (15) | −0.0028 (16) |
C6 | 0.0258 (19) | 0.032 (2) | 0.031 (2) | 0.0047 (16) | 0.0048 (15) | −0.0049 (15) |
Co1—O4 | 2.046 (2) | N1—C2 | 1.483 (5) |
Co1—O4i | 2.046 (2) | C1—C2 | 1.512 (5) |
Co1—O2 | 2.088 (3) | C1—H1A | 0.9700 |
Co1—O2i | 2.088 (3) | C1—H1B | 0.9700 |
Co1—N1i | 2.172 (3) | C2—H2A | 0.9700 |
Co1—N1 | 2.172 (3) | C2—H2B | 0.9700 |
O1—C1 | 1.409 (5) | C3—C4 | 1.507 (5) |
O1—H11 | 0.8499 | C3—H3A | 0.9700 |
O2—C4 | 1.430 (5) | C3—H3B | 0.9700 |
O2—H12 | 0.8500 | C4—H4A | 0.9700 |
O3—C6 | 1.249 (4) | C4—H4B | 0.9700 |
O4—C6 | 1.260 (4) | C5—C6 | 1.515 (5) |
N1—C5 | 1.476 (4) | C5—H5A | 0.9700 |
N1—C3 | 1.480 (5) | C5—H5B | 0.9700 |
O4—Co1—O4i | 180.0 | C2—C1—H1B | 110.4 |
O4—Co1—O2 | 88.86 (11) | H1A—C1—H1B | 108.6 |
O4i—Co1—O2 | 91.14 (11) | N1—C2—C1 | 115.8 (3) |
O4—Co1—O2i | 91.14 (11) | N1—C2—H2A | 108.3 |
O4i—Co1—O2i | 88.86 (11) | C1—C2—H2A | 108.3 |
O2—Co1—O2i | 180.0 | N1—C2—H2B | 108.3 |
O4—Co1—N1i | 98.17 (10) | C1—C2—H2B | 108.3 |
O4i—Co1—N1i | 81.83 (10) | H2A—C2—H2B | 107.4 |
O2—Co1—N1i | 97.61 (11) | N1—C3—C4 | 111.3 (3) |
O2i—Co1—N1i | 82.39 (11) | N1—C3—H3A | 109.4 |
O4—Co1—N1 | 81.83 (10) | C4—C3—H3A | 109.4 |
O4i—Co1—N1 | 98.17 (10) | N1—C3—H3B | 109.4 |
O2—Co1—N1 | 82.39 (11) | C4—C3—H3B | 109.4 |
O2i—Co1—N1 | 97.61 (11) | H3A—C3—H3B | 108.0 |
N1i—Co1—N1 | 180.0 | O2—C4—C3 | 109.6 (3) |
C1—O1—H11 | 108.0 | O2—C4—H4A | 109.8 |
C4—O2—Co1 | 111.2 (2) | C3—C4—H4A | 109.8 |
C4—O2—H12 | 115.0 | O2—C4—H4B | 109.8 |
Co1—O2—H12 | 116.9 | C3—C4—H4B | 109.8 |
C6—O4—Co1 | 116.5 (2) | H4A—C4—H4B | 108.2 |
C5—N1—C3 | 112.9 (3) | N1—C5—C6 | 114.9 (3) |
C5—N1—C2 | 113.2 (3) | N1—C5—H5A | 108.5 |
C3—N1—C2 | 110.9 (3) | C6—C5—H5A | 108.5 |
C5—N1—Co1 | 106.5 (2) | N1—C5—H5B | 108.5 |
C3—N1—Co1 | 103.3 (2) | C6—C5—H5B | 108.5 |
C2—N1—Co1 | 109.5 (2) | H5A—C5—H5B | 107.5 |
O1—C1—C2 | 106.5 (3) | O3—C6—O4 | 123.4 (3) |
O1—C1—H1A | 110.4 | O3—C6—C5 | 117.5 (3) |
C2—C1—H1A | 110.4 | O4—C6—C5 | 119.1 (3) |
O1—C1—H1B | 110.4 | ||
O4—Co1—O2—C4 | 75.2 (3) | O4i—Co1—N1—C2 | −48.4 (2) |
O4i—Co1—O2—C4 | −104.8 (3) | O2—Co1—N1—C2 | −138.4 (2) |
O2i—Co1—O2—C4 | −9 (84) | O2i—Co1—N1—C2 | 41.6 (2) |
N1i—Co1—O2—C4 | 173.3 (3) | N1i—Co1—N1—C2 | 35 (100) |
N1—Co1—O2—C4 | −6.7 (3) | C5—N1—C2—C1 | −67.2 (4) |
O4i—Co1—O4—C6 | 37 (100) | C3—N1—C2—C1 | 60.8 (4) |
O2—Co1—O4—C6 | −88.4 (3) | Co1—N1—C2—C1 | 174.1 (3) |
O2i—Co1—O4—C6 | 91.6 (3) | O1—C1—C2—N1 | 179.1 (3) |
N1i—Co1—O4—C6 | 174.1 (3) | C5—N1—C3—C4 | −70.5 (4) |
N1—Co1—O4—C6 | −5.9 (3) | C2—N1—C3—C4 | 161.4 (3) |
O4—Co1—N1—C5 | 8.9 (2) | Co1—N1—C3—C4 | 44.2 (3) |
O4i—Co1—N1—C5 | −171.1 (2) | Co1—O2—C4—C3 | 32.5 (4) |
O2—Co1—N1—C5 | 98.9 (2) | N1—C3—C4—O2 | −53.5 (4) |
O2i—Co1—N1—C5 | −81.1 (2) | C3—N1—C5—C6 | 101.7 (4) |
N1i—Co1—N1—C5 | −88 (100) | C2—N1—C5—C6 | −131.4 (3) |
O4—Co1—N1—C3 | −110.2 (2) | Co1—N1—C5—C6 | −11.0 (4) |
O4i—Co1—N1—C3 | 69.8 (2) | Co1—O4—C6—O3 | −177.0 (3) |
O2—Co1—N1—C3 | −20.3 (2) | Co1—O4—C6—C5 | 1.1 (5) |
O2i—Co1—N1—C3 | 159.7 (2) | N1—C5—C6—O3 | −174.3 (3) |
N1i—Co1—N1—C3 | 153 (100) | N1—C5—C6—O4 | 7.4 (5) |
O4—Co1—N1—C2 | 131.6 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H12···O3ii | 0.85 | 1.79 | 2.632 (4) | 171 |
O1—H11···O3iii | 0.85 | 1.89 | 2.744 (4) | 178 |
Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co(C6H12NO4)2] |
Mr | 383.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.932 (2), 11.388 (2), 7.4477 (15) |
β (°) | 110.12 (3) |
V (Å3) | 791.0 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.13 |
Crystal size (mm) | 0.2 × 0.18 × 0.18 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.736, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8129, 1819, 1357 |
Rint | 0.072 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.159, 1.00 |
No. of reflections | 1819 |
No. of parameters | 106 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.36 |
Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H12···O3i | 0.85 | 1.79 | 2.632 (4) | 170.6 |
O1—H11···O3ii | 0.85 | 1.89 | 2.744 (4) | 177.5 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x, y−1/2, −z+1/2. |
Acknowledgements
The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).
References
Ammar, M. K., Amor, F. B., Driss, A. & Jouini, T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 631–633. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chuklanova, E. B., Polynova, T. N., Porai-Koshits, M. A. & Babeshkina, G. K. (1981). Koord. Khim. 7, 944–951. CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thakuria, H. & Das, G. (2007). Polyhedron, 26, 149–153. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a contribution to a structural study of ML2 complexes, where L = N,N-bis(2-hydroxyethyl)glycinato ligand, and M = Cu (Ammar et al., 2001; Thakuria & Das, 2007) and Ni (Chuklanova et al., 1981), herewith we report the crystal structure of the title compound CoL2 (I).
In (I) (Fig. 1), the Co(II) ions are located on the inversion centers and are coordinated by two L ligands forming an octahedral enviromental geometry with four oxygen and two nitrogen atoms. The bond lengths are: Co1—N1 = 2.172 (3) Å, Co1—O2 = 2.088 (3) Å and Co1—O4 = 2.046 (2) Å. Though ML2 complexes (M = Co, Ni, Cu) have similar structures, there are some differences. The Co and Ni centers are in a regular octahedron coordinated geometry, while the Cu center has an elongated octahedral coordination with two hydroxy atoms in axial positions.
Intermolecular O—H···O hydrogen bonds (Table 1) generate three-dimensional hydrogen-bonding network, which consolidate the crystal packing (Fig. 2).