organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1644-o1645

3,5-Di­amino-1-phenyl-1,2,4-triazolium bromide

aSouth-Russia State Technical University, 346428 Novocherkassk, Russian Federation, and bA. N. Nesmeyanov Institute of Organoelement Compounds, 119991 Moscow, Russian Federation
*Correspondence e-mail: chern13@yandex.ru

(Received 27 May 2010; accepted 3 June 2010; online 16 June 2010)

The title salt, C8H10N5+·Br, crystallizes with two independent structural units in the asymmetric unit. The two independent cations have different conformations, the triazole and phenyl rings forming dihedral angles of 32.57 (6) and 52.27 (7)°. In both cations, the amino groups are planar (the sum of the angles at the N atom of each amino group is 360°) and conjugated with the triazole ring. Inter­molecular N—H⋯N and N—H⋯Br hydrogen bonds consolidate the crystal packing.

Related literature

For the crystal structures of protonated C-amino-1,2,4-triazoles, see: Reck et al. (1982[Reck, G. & Just, M. (1982). Cryst. Struct. Commun. 11, 1857-1861.]); Lynch et al. (1998[Lynch, D. E., Latif, T., Smith, G., Byriel, K. A., Kennard, C. H. L. & Parsons, S. (1998). Aust. J. Chem. 51, 403-408.], 1999[Lynch, D. E., Dougall, T., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1999). J. Chem. Crystallogr. 29, 67-73.]); Baouab et al. (2000[Baouab, L., Guerfel, T., Soussi, M. & Jouini, A. (2000). J. Chem. Crystallogr. 30, 805-809.]); Bichay et al. (2006[Bichay, M., Fronabarger, J. W., Gilardi, R., Butcher, R. J., Sanborn, W. B., Sitzmann, M. E. & Williams, M. D. (2006). Tetrahedron Lett. 47, 6663-6666.]); Guerfel et al. (2007[Guerfel, T., Guelmami, L. & Jouini, A. (2007). J. Soc. Alger. Chim. 17, 27-35.]); Matulková et al. (2007[Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834, 328-335.]). For the crystal structure of 3,5-diamino-1,2,4-triazole, see: Starova et al. (1980[Starova, G. L., Frank-Kamenetskaya, O. V., Makarskii, V. V. & Lopirev, V. A. (1980). Kristallografiya, 25, 1292-1295.]). For the theoretical investigation of the protonation of C-amino-1,2,4-triazoles, see: Anders et al. (1997[Anders, E., Wermann, K., Wiedel, B. & Vanden Eynde, J.-J. (1997). Lieb. Ann. Recueil, 745-752.]). For the reactions of 1-substituted 3,5-diamino-1,2,4-triazoles with electrophilic reagents, see: Steck et al. (1958[Steck, E. A., Brundage, R. P. & Fletcher, L. T. (1958). J. Am. Chem. Soc. 80, 3929-3931.]); Chernyshev et al. (2005[Chernyshev, V. M., Rakitov, V. A., Taranushich, V. A. & Blinov, V. V. (2005). Chem. Heterocycl. Compd, 41, 1139-1146.], 2008[Chernyshev, V. M., Sokolov, A. N., Khoroshkin, D. A. & Taranushich, V. A. (2008). Russ. J. Org. Chem. 44, 715-722.]). For the use of 1-substituted 3,5-diamino-1,2,4-triazoles as building blocks in the synthesis of various derivatives of 1,2,4-triazole and fused heterocyclic systems, see: Dunstan et al. (1998[Dunstan, A. R., Weber, H.-P., Rihs, G., Widmer, H. & Dziadulewicz, E. K. (1998). Tetrahedron. Lett. 39, 7983-7986.]); Chernyshev et al. (2006[Chernyshev, V. M., Rakitov, V. A., Astakhov, A. V., Sokolov, A. N., Zemlyakov, N. D. & Taranushich, V. A. (2006). Russ. J. Appl. Chem. 79, 624-630.], 2009[Chernyshev, V. M., Rakitov, V. A., Blinov, V. V., Taranushich, V. A. & Starikova, Z. A. (2009). Chem. Heterocycl. Compd, 45, 436-444.], 2010[Chernyshev, V. M., Astakhov, A. V. & Starikova, Z. A. (2010). Tetrahedron, 66, 3301-3313.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N5+·Br

  • Mr = 256.12

  • Monoclinic, P 21 /n

  • a = 13.752 (2) Å

  • b = 7.1172 (13) Å

  • c = 20.394 (4) Å

  • β = 95.519 (3)°

  • V = 1986.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.11 mm−1

  • T = 100 K

  • 0.55 × 0.40 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.211, Tmax = 0.372

  • 19484 measured reflections

  • 4314 independent reflections

  • 3808 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.00

  • 4314 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2′i 0.86 2.20 3.037 (3) 164
N3—H3B⋯Br1 0.86 2.56 3.387 (2) 163
N3′—H3′A⋯N2ii 0.86 2.34 3.046 (3) 140
N3′—H3′B⋯Br2 0.86 2.65 3.404 (3) 147
N4—H4⋯Br2 0.86 2.74 3.417 (3) 137
N4′—H4′⋯Br2 0.86 2.51 3.254 (3) 145
N5—H5A⋯Br1iii 0.86 2.69 3.369 (3) 137
N5—H5B⋯Br2 0.86 2.49 3.281 (3) 153
N5′—H5′A⋯Br1iv 0.86 2.84 3.489 (3) 133
N5′—H5′B⋯Br1 0.86 2.43 3.278 (3) 167
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2005[Bruker (2005). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1-Substituted 3,5-diamino-1,2,4-triazoles are employed as convenient models for investigating the reactions of C-amino-1,2,4-triazoles with electrophiles so far as their molecules contain two amino groups having greatly varied nucleophilicity in positions 3 and 5 of triazole cycle (Chernyshev et al., 2005, 2008, 2010). Relatively high reactivity toward electrophiles allows to use 1-substituted 3,5-diamino-1,2,4-triazoles as starting materials for the selective synthesis of 1,2,4-triazole derivatives and annulated heterocycles (Dunstan et al., 1998; Chernyshev et al., 2006, 2009, 2010). Some contradictions concerning the direction of several reactions of these compounds with electrophiles are present in the literature. For example, it was reported that quaternization of 1-substituted 3,5-diamino-1,2,4-triazoles by alkyl halides (Steck et al., 1958) resulted in formation of 1,2-disubstituted 3,5-diamino-1,2,4-triazolium salts (Fig. 1). However these data are in contrast with quantum chemical calculations and synthetic experiments according to which the quaternization of 1-substituted 3-amino-1,2,4-triazoles as well as 1-substituted 5-amino-1,2,4-triazoles occurs at the atom N4 of triazole cycle (Anders et al.; 1997). While studying the quaternization of 2-amino-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidines (Chernyshev et al., 2008), which are analogous to 1-substituted 3,5-diamino-1,2,4-triazoles in most of reactions with electrophiles, we found that alkylation takes place at the atom N4 of triazole cycle (a prevailing product) and at the C3-amino group (a minor product). The quantum chemical calculations predict that the direction of protonation and quaternization of 1-substituted C-amino-1,2,4-triazoles should be identical (Anders et al., 1997). Therefore protonation can be used as model reaction for investigation of quaternization of 1-substituted 3,5-diamino-1,2,4-triazoles by alkyl halides. It should be noted that the data concerning the crystal structure of salts of 1-substituted C-amino-1,2,4-triazoles with proton acids were absent in the Cambridge Structural Database so far (Allen, 2002). Here we report the crystal structure of the title compound, 1-phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide (Fig. 2). The crystals of this compound were surprisingly obtained in attempting to grow the crystal of 3-amino-5,7-dimethyl-2-phenyl-[1,2,4]triazolo[4,3-a]pyrimidin-2-ium bromide, suitable for X-ray investigation, from water-acetonitrile. Obviously, the starting triazolopyrimidine gradually hydrolyzed to the 1-phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide and 2,4-pentanedion. It indicates that 1-substituted [1,2,4]triazolo[4,3-a]pyrimidin-2-ium salts are inclined to hydrolyze even at room temperature (Fig. 3).

According to our X-ray investigation, the asymmetric unit of the crystal structure consists of two crystallographically independent cations further denoted as the cation A (N1N2C3··· etc.) and the cation B (N1'N2'C3'··· etc.), and two bromide anions (Br1 and Br2). The cations A and B somewhat differ in bond lengths and mutual orientation of benzene and triazole rings. The dihedral angle between the benzene and triazole cycles is 32.57 (6)° in the cation A whereas that is 52.27 (7)° in the cation B. The triazole cycle is planar in both cations (the deviation of atoms from the mean-square planes does not exceed 0.008 (2) Å). As with the other salts of C-amino-1,2,4-triazoles (Reck et al., 1982; Lynch et al., 1998, 1999; Baouab et al., 2000; Bichay et al., 2006; Guerfel et al., 2007; Matulková et al., 2007), the acid proton is attached to the atom N4, amino groups are planar and conjugated with the π-system of triazole cycle. In contrast to the unprotonated 3,5-diamino-1,2,4-triazole (Starova et al., 1980) and alkyl derivatives of 3,5-diamino-1-phenyl-1,2,4-triazole (Dunstan et al., 1998), in the cations A and B the C5—N1 and C3—N2 bonds are shorter than the C3—N4 and C5—N4 bonds. An analogous regularity is observed for the majority of other salts of C-amino-1,2,4-triazoles (Reck et al., 1982; Lynch et al., 1998, 1999; Baouab et al., 2000; Bichay et al., 2006; Guerfel et al., 2007; Matulková et al., 2007). Thus, the majority of protonated C-amino-1,2,4-triazoles should be considered as derivatives of 4H-1,2,4-triazol-1-ium rather than 1H-1,2,4-triazol-4-ium cation, except of 5-amino-3-azido-1H-1,2,4-triazol-4-ium nitrate (Bichay et al., 2006). It is remarkable that the bond C5—N5 (1.325 (3) Å) in the cation A is shorter than the bonds C5—N1 (1.335 (3) Å) and C5—N4 (1.358 (3) Å). The analysis of bond lengths indicates that molecules forming by cation A can be described in the best way by the resonance structure of 5-amino-2-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-iminium bromide (Fig. 4). A similar distributions of bond lengths are observed in many other salts of C-amino-1,2,4-triazoles (for example, see: Reck et al., 1982; Lynch et al., 1998, 1999; Bichay et al., 2006; Matulková et al., 2007; Guerfel et al., 2007). Therefore, it can be concluded that the C5—NH2 group plays an important role in the redistribution of positive charge in the C-amino-1,2,4-triazolium cations. Molecules including cation B are properly described by the resonance structure of 3,5-diamino-1-phenyl-4H-1,2,4-triazol-1-ium bromide (Fig. 4).

In the crystal the identical and parallel cations of type A or B form stacks along the b axis of the monoclinic cell (Fig. 5). In the direction [101] the adjacent stacks of the different-type cations form pairs in which they are displaced from each other on 0.5 cell parameter b. One-type cations from the nearest stacks are related in the same direction by a glide plane n perpendicular to [0, 1, 0] with glide component [1/2, 0, 1/2]. In the direction c the cations are turned from each other by 180° and displaced on 0.5 of cell parameter, i.e. are space related by 2-fold screw axis with direction [0, 1, 0] at 1/4, y, 1/4 with screw component [0, 1/2, 0]. Along the c axis one can see parallel linear chains which "links" consist of pairs of cations A and B connected with bromide anions Br1 and Br2 by means of the hydrogen bonds N3—H3B···Br1, N5'—H5'B···Br1, N4—H4···Br2, N4'—H4'···Br2, N5—H5B···Br2, N3'—H3'B···Br2 (Table 1). The nearest chains in the plane perpendicular to b axis are connected with each other by continuous net of hydrogen bonds N3—H3A···N2'i and N3'—H3'A···N2ii, forming parallel molecular layers with identity period equal to the unit-cell parameter b (Fig. 6). The layers are connected with one another by hydrogen bonds N5—H5A···Br1iii and N5'—H5'A···Br1iv. In the parallel layers one-type cations are turned from each other by 180°, i.e. they are space related by inversion centre with coordinates [0, 0, 0]. Thereby, the C8H10N5+ cations and bromide anions form a three-dimensional framework in the crystal.

In conclusion, the present study and previously reported theoretical (Anders et al., 1997) and experimental (Chernyshev et al., 2008) results indicate that the structures attributed to the products of quaternization of 1-substituted 3,5-diamino-1,2,4-triazoles (Steck et al., 1958), apparently, are erroneous and need correction by means of modern analytical methods. Also it would be interesting to investigate the structure of salts of another 1-substituted 3-amino-1,2,4-triazoles with a view to evaluate the role of C3—NH2 group in the delocalization of positive charge in 3-amino-1,2,4-triazolium cations.

Related literature top

For the crystal structures of protonated C-amino-1,2,4-triazoles, see: Reck et al. (1982); Lynch et al. (1998, 1999); Baouab et al. (2000); Bichay et al. (2006); Guerfel et al. (2007); Matulková et al. (2007). For the crystal structure of 3,5-diamino-1,2,4-triazole, see: Starova et al. (1980). For the theoretical investigation of the protonation of C-amino-1,2,4-triazoles, see: Anders et al. (1997). For the reactions of 1-substituted 3,5-diamino-1,2,4-triazoles with electrophilic reagents, see: Steck et al. (1958); Chernyshev et al. (2005, 2008). For the use of 1-substituted 3,5-diamino-1,2,4-triazoles as building blocks in the synthesis of various derivatives of 1,2,4-triazole and fused heterocyclic systems, see: Dunstan et al. (1998); Chernyshev et al. (2006, 2009, 2010). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The crystals of 1-phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide suitable for X-ray analysis were obtained from a solution of 3-amino-5,7-dimethyl-2-phenyl-[1,2,4]triazolo[4,3-a]pyrimidin-2-ium bromide (TPB) in 1:9 water: acetonitrile mixture as a result of hydrolysis in the course of slow evaporation at room temperature during one week. The TPB was prepared by the following procedure.

A mixture of 1-phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide (0.73 g, 2.85 mmol), 2,4-pentanedion (0.371 g, 3.71 mmol) and ethanol (5 ml) was refluxed for 15 min and then cooled to room temperature. The precipitate formed was filtered off and recrystallized from ethanol to give 0.757 g (83% yield) of TPB, mp 221–223 °C. 1H NMR (300 MHz) δ: 1.95 (s, 3H, CH3), 2.95 (s, 3H, CH3), 7.22 (s, 1H, CH), 7.67–7.83 (m, 5H, Ph), 8.37 (s, 2H, NH2). 13C NMR (150 MHz) δ: 17.66, 24.37, 113.62, 130.13, 130.30, 132.16, 132.63, 147.86, 153.85, 159.74, 170.43. LCMS: 240.29 [C13H14N5+]. Anal. Calcd for C13H14BrN5: C, 48.76; H, 4.41; N, 21.87. Found: C, 48.81; H, 4.21; N, 21.98.

Starting 1-phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide used for the preparation of TPB was obtained by addition of equimolar amount of 48% hydrobromic acid to an ethanol solution of 3,5-diamino-1-phenyl-1,2,4-triazole. The latter compound was synthesized by known method (Steck et al., 1958).

Refinement top

C-bound H atoms were positioned geometrically (C—H 0.93 Å), while the rest H atoms were located on difference map and further placed in idealized positions (N—H 0.86 Å). All H atoms were refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The supposed directions of quaternization of 1-substituted 3,5-diamino-1,2,4-triazoles by halogen alkanes according to the literature data: a - Steck et al. (1958), b - Chernyshev et al. (2008).
[Figure 2] Fig. 2. The molecular structure of 1-phenyl-1H-1,2,4-triazole-3,5-diamine hydrobromide with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Hydrolysis of 3-amino-5,7-dimethyl-2-phenyl-[1,2,4]triazolo[4,3-a]pyrimidin-2-ium bromide.
[Figure 4] Fig. 4. The resonance structures, corresponding to the 5-amino-2-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-iminium bromide (A) and 3,5-diamino-1-phenyl-4H-1,2,4-triazol-1-ium bromide (B).
[Figure 5] Fig. 5. Molecular packing in the crystal, viewed down the b axis. Hydrogen bonds are shown as dashed lines.
[Figure 6] Fig. 6. The crystal packing of the title compound, viewed down the a axis showing molecular layers in the planes perpendicular to the b axis. Hydrogen bonds are shown as dashed lines.
3,5-Diamino-1-phenyl-1,2,4-triazolium bromide top
Crystal data top
C8H10N5+·BrF(000) = 1024
Mr = 256.12Dx = 1.713 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 568 reflections
a = 13.752 (2) Åθ = 3–26°
b = 7.1172 (13) ŵ = 4.11 mm1
c = 20.394 (4) ÅT = 100 K
β = 95.519 (3)°Plate, colourless
V = 1986.7 (6) Å30.55 × 0.40 × 0.30 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4314 independent reflections
Radiation source: fine-focus sealed tube3808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.211, Tmax = 0.372k = 99
19484 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.071H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0375P)2 + 2.843P]
where P = (Fo2 + 2Fc2)/3
4314 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C8H10N5+·BrV = 1986.7 (6) Å3
Mr = 256.12Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.752 (2) ŵ = 4.11 mm1
b = 7.1172 (13) ÅT = 100 K
c = 20.394 (4) Å0.55 × 0.40 × 0.30 mm
β = 95.519 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4314 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3808 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.372Rint = 0.033
19484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.00Δρmax = 0.63 e Å3
4314 reflectionsΔρmin = 0.52 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.469797 (17)0.08357 (3)0.629576 (11)0.01647 (7)
Br20.183938 (18)0.24667 (3)0.647848 (11)0.01826 (8)
N1'0.28802 (13)0.3108 (3)0.40098 (9)0.0106 (4)
N10.33201 (14)0.2566 (3)0.88547 (9)0.0105 (4)
C50.28387 (16)0.2595 (3)0.82544 (11)0.0109 (4)
C3'0.17571 (16)0.3375 (3)0.46553 (11)0.0109 (4)
N20.43255 (13)0.2227 (3)0.88259 (9)0.0110 (4)
N2'0.18826 (13)0.3526 (3)0.40275 (9)0.0110 (4)
C30.44019 (16)0.2009 (3)0.81952 (11)0.0112 (4)
C5'0.33040 (16)0.2696 (3)0.46079 (11)0.0108 (4)
N30.52349 (14)0.1671 (3)0.79256 (10)0.0155 (4)
H3A0.57760.15810.81720.019*
H3B0.52280.15440.75060.019*
C60.29678 (17)0.2856 (3)0.94788 (11)0.0112 (4)
C6'0.33268 (16)0.3120 (3)0.34068 (11)0.0108 (4)
N3'0.09158 (14)0.3663 (3)0.49263 (10)0.0139 (4)
H3'A0.03970.39780.46820.017*
H3'B0.08970.35330.53440.017*
C7'0.41759 (17)0.4159 (3)0.33736 (12)0.0141 (4)
H7'0.44250.48950.37270.017*
N4'0.26139 (14)0.2888 (3)0.50273 (9)0.0106 (4)
H4'0.26910.27370.54470.013*
N40.35127 (14)0.2222 (3)0.78272 (9)0.0110 (4)
H40.34060.21340.74060.013*
C70.20341 (17)0.2241 (3)0.95945 (12)0.0144 (5)
H70.16300.16630.92620.017*
C8'0.46478 (17)0.4074 (3)0.27991 (12)0.0168 (5)
H8'0.52250.47380.27710.020*
N50.18967 (14)0.2885 (3)0.80841 (10)0.0139 (4)
H5A0.15080.30910.83820.017*
H5B0.16740.28690.76750.017*
N5'0.42386 (14)0.2226 (3)0.47651 (10)0.0140 (4)
H5'A0.46340.21660.44640.017*
H5'B0.44450.19830.51680.017*
C80.17218 (18)0.2512 (4)1.02182 (12)0.0189 (5)
H80.10980.21341.03000.023*
C9'0.42605 (18)0.3005 (4)0.22696 (12)0.0184 (5)
H9'0.45850.29320.18910.022*
C90.2331 (2)0.3340 (4)1.07174 (12)0.0203 (5)
H90.21160.35141.11320.024*
C10'0.33847 (19)0.2038 (3)0.23038 (12)0.0177 (5)
H10'0.31160.13620.19400.021*
C100.32641 (19)0.3909 (3)1.05977 (12)0.0184 (5)
H100.36770.44451.09350.022*
C110.35831 (17)0.3681 (3)0.99777 (11)0.0142 (5)
H110.42050.40780.98970.017*
C11'0.29117 (17)0.2074 (3)0.28729 (11)0.0135 (4)
H11'0.23320.14180.28990.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01631 (12)0.02134 (13)0.01186 (12)0.00248 (9)0.00199 (8)0.00081 (9)
Br20.02081 (13)0.02303 (14)0.01122 (12)0.00564 (10)0.00289 (9)0.00001 (9)
N1'0.0066 (9)0.0153 (9)0.0099 (9)0.0003 (7)0.0012 (7)0.0007 (7)
N10.0081 (9)0.0145 (9)0.0089 (9)0.0022 (7)0.0008 (7)0.0006 (7)
C50.0112 (10)0.0094 (10)0.0122 (10)0.0009 (8)0.0013 (8)0.0006 (8)
C3'0.0107 (10)0.0097 (10)0.0123 (10)0.0016 (8)0.0008 (8)0.0007 (8)
N20.0074 (9)0.0150 (9)0.0108 (9)0.0020 (7)0.0020 (7)0.0005 (7)
N2'0.0064 (9)0.0146 (9)0.0122 (9)0.0006 (7)0.0016 (7)0.0012 (7)
C30.0129 (11)0.0092 (10)0.0115 (10)0.0011 (8)0.0014 (8)0.0000 (8)
C5'0.0110 (10)0.0106 (10)0.0109 (10)0.0014 (8)0.0017 (8)0.0001 (8)
N30.0117 (9)0.0250 (11)0.0100 (9)0.0050 (8)0.0028 (7)0.0012 (8)
C60.0143 (11)0.0106 (10)0.0090 (10)0.0053 (8)0.0027 (8)0.0015 (8)
C6'0.0117 (10)0.0117 (10)0.0092 (10)0.0030 (8)0.0023 (8)0.0026 (8)
N3'0.0105 (9)0.0209 (10)0.0106 (9)0.0019 (8)0.0027 (7)0.0005 (8)
C7'0.0134 (11)0.0144 (11)0.0146 (11)0.0005 (9)0.0014 (8)0.0017 (9)
N4'0.0111 (9)0.0139 (9)0.0069 (9)0.0009 (7)0.0012 (7)0.0004 (7)
N40.0114 (9)0.0141 (9)0.0076 (9)0.0014 (7)0.0008 (7)0.0005 (7)
C70.0120 (11)0.0169 (11)0.0141 (11)0.0040 (9)0.0008 (9)0.0038 (9)
C8'0.0119 (11)0.0193 (12)0.0197 (12)0.0013 (9)0.0045 (9)0.0094 (10)
N50.0102 (9)0.0214 (10)0.0097 (9)0.0024 (8)0.0009 (7)0.0026 (8)
N5'0.0099 (9)0.0212 (10)0.0108 (9)0.0015 (8)0.0002 (7)0.0021 (8)
C80.0160 (12)0.0233 (13)0.0187 (12)0.0094 (10)0.0079 (9)0.0094 (10)
C9'0.0202 (12)0.0225 (12)0.0137 (11)0.0086 (10)0.0084 (9)0.0073 (10)
C90.0297 (14)0.0207 (12)0.0112 (11)0.0139 (11)0.0065 (10)0.0030 (9)
C10'0.0222 (12)0.0182 (12)0.0126 (11)0.0070 (10)0.0004 (9)0.0006 (9)
C100.0268 (13)0.0161 (12)0.0118 (11)0.0074 (10)0.0010 (9)0.0016 (9)
C110.0158 (11)0.0121 (10)0.0143 (11)0.0039 (9)0.0003 (9)0.0000 (9)
C11'0.0138 (11)0.0137 (11)0.0130 (11)0.0009 (9)0.0002 (9)0.0011 (9)
Geometric parameters (Å, º) top
N1'—C5'1.333 (3)C7'—C8'1.394 (3)
N1'—N2'1.408 (2)C7'—H7'0.9300
N1'—C6'1.426 (3)N4'—H4'0.8600
N1—C51.335 (3)N4—H40.8600
N1—N21.410 (3)C7—C81.395 (3)
N1—C61.420 (3)C7—H70.9300
C5—N51.325 (3)C8'—C9'1.385 (4)
C5—N41.358 (3)C8'—H8'0.9300
C3'—N2'1.313 (3)N5—H5A0.8600
C3'—N3'1.345 (3)N5—H5B0.8600
C3'—N4'1.383 (3)N5'—H5'A0.8600
N2—C31.310 (3)N5'—H5'B0.8600
C3—N31.339 (3)C8—C91.386 (4)
C3—N41.380 (3)C8—H80.9300
C5'—N5'1.337 (3)C9'—C10'1.395 (4)
C5'—N4'1.344 (3)C9'—H9'0.9300
N3—H3A0.8600C9—C101.389 (4)
N3—H3B0.8600C9—H90.9300
C6—C111.389 (3)C10'—C11'1.384 (3)
C6—C71.398 (3)C10'—H10'0.9300
C6'—C7'1.389 (3)C10—C111.387 (3)
C6'—C11'1.395 (3)C10—H100.9300
N3'—H3'A0.8600C11—H110.9300
N3'—H3'B0.8600C11'—H11'0.9300
C5'—N1'—N2'111.37 (18)C3'—N4'—H4'126.5
C5'—N1'—C6'127.14 (19)C5—N4—C3107.23 (18)
N2'—N1'—C6'121.48 (17)C5—N4—H4126.4
C5—N1—N2111.48 (18)C3—N4—H4126.4
C5—N1—C6129.6 (2)C8—C7—C6118.6 (2)
N2—N1—C6118.86 (18)C8—C7—H7120.7
N5—C5—N1129.0 (2)C6—C7—H7120.7
N5—C5—N4125.0 (2)C9'—C8'—C7'120.2 (2)
N1—C5—N4106.04 (19)C9'—C8'—H8'119.9
N2'—C3'—N3'126.0 (2)C7'—C8'—H8'119.9
N2'—C3'—N4'111.76 (19)C5—N5—H5A120.0
N3'—C3'—N4'122.3 (2)C5—N5—H5B120.0
C3—N2—N1103.46 (17)H5A—N5—H5B120.0
C3'—N2'—N1'103.15 (17)C5'—N5'—H5'A120.0
N2—C3—N3125.2 (2)C5'—N5'—H5'B120.0
N2—C3—N4111.75 (19)H5'A—N5'—H5'B120.0
N3—C3—N4123.0 (2)C9—C8—C7120.8 (2)
N1'—C5'—N5'126.9 (2)C9—C8—H8119.6
N1'—C5'—N4'106.66 (19)C7—C8—H8119.6
N5'—C5'—N4'126.5 (2)C8'—C9'—C10'120.1 (2)
C3—N3—H3A120.0C8'—C9'—H9'120.0
C3—N3—H3B120.0C10'—C9'—H9'120.0
H3A—N3—H3B120.0C8—C9—C10119.9 (2)
C11—C6—C7120.9 (2)C8—C9—H9120.1
C11—C6—N1118.8 (2)C10—C9—H9120.1
C7—C6—N1120.3 (2)C11'—C10'—C9'120.7 (2)
C7'—C6'—C11'121.9 (2)C11'—C10'—H10'119.7
C7'—C6'—N1'118.6 (2)C9'—C10'—H10'119.7
C11'—C6'—N1'119.5 (2)C11—C10—C9120.3 (2)
C3'—N3'—H3'A120.0C11—C10—H10119.8
C3'—N3'—H3'B120.0C9—C10—H10119.8
H3'A—N3'—H3'B120.0C10—C11—C6119.6 (2)
C6'—C7'—C8'118.7 (2)C10—C11—H11120.2
C6'—C7'—H7'120.7C6—C11—H11120.2
C8'—C7'—H7'120.7C10'—C11'—C6'118.3 (2)
C5'—N4'—C3'107.03 (18)C10'—C11'—H11'120.8
C5'—N4'—H4'126.5C6'—C11'—H11'120.8
N2—N1—C5—N5179.4 (2)C11'—C6'—C7'—C8'3.1 (3)
C6—N1—C5—N50.8 (4)N1'—C6'—C7'—C8'175.9 (2)
N2—N1—C5—N41.8 (2)N1'—C5'—N4'—C3'1.7 (2)
C6—N1—C5—N4179.6 (2)N5'—C5'—N4'—C3'179.7 (2)
C5—N1—N2—C31.7 (2)N2'—C3'—N4'—C5'1.1 (3)
C6—N1—N2—C3179.49 (19)N3'—C3'—N4'—C5'179.6 (2)
N3'—C3'—N2'—N1'179.3 (2)N5—C5—N4—C3180.0 (2)
N4'—C3'—N2'—N1'0.0 (2)N1—C5—N4—C31.1 (2)
C5'—N1'—N2'—C3'1.2 (2)N2—C3—N4—C50.0 (3)
C6'—N1'—N2'—C3'179.8 (2)N3—C3—N4—C5178.4 (2)
N1—N2—C3—N3179.3 (2)C11—C6—C7—C81.5 (3)
N1—N2—C3—N41.0 (2)N1—C6—C7—C8178.6 (2)
N2'—N1'—C5'—N5'179.6 (2)C6'—C7'—C8'—C9'1.4 (3)
C6'—N1'—C5'—N5'0.7 (4)C6—C7—C8—C91.3 (3)
N2'—N1'—C5'—N4'1.8 (2)C7'—C8'—C9'—C10'1.3 (4)
C6'—N1'—C5'—N4'179.2 (2)C7—C8—C9—C100.0 (4)
C5—N1—C6—C11147.8 (2)C8'—C9'—C10'—C11'2.4 (4)
N2—N1—C6—C1130.7 (3)C8—C9—C10—C111.1 (4)
C5—N1—C6—C735.1 (3)C9—C10—C11—C60.9 (3)
N2—N1—C6—C7146.4 (2)C7—C6—C11—C100.4 (3)
C5'—N1'—C6'—C7'52.8 (3)N1—C6—C11—C10177.5 (2)
N2'—N1'—C6'—C7'128.4 (2)C9'—C10'—C11'—C6'0.8 (3)
C5'—N1'—C6'—C11'126.2 (2)C7'—C6'—C11'—C10'2.0 (3)
N2'—N1'—C6'—C11'52.6 (3)N1'—C6'—C11'—C10'177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.203.037 (3)164
N3—H3B···Br10.862.563.387 (2)163
N3—H3A···N2ii0.862.343.046 (3)140
N3—H3B···Br20.862.653.404 (3)147
N4—H4···Br20.862.743.417 (3)137
N4—H4···Br20.862.513.254 (3)145
N5—H5A···Br1iii0.862.693.369 (3)137
N5—H5B···Br20.862.493.281 (3)153
N5—H5A···Br1iv0.862.843.489 (3)133
N5—H5B···Br10.862.433.278 (3)167
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H10N5+·Br
Mr256.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.752 (2), 7.1172 (13), 20.394 (4)
β (°) 95.519 (3)
V3)1986.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)4.11
Crystal size (mm)0.55 × 0.40 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.211, 0.372
No. of measured, independent and
observed [I > 2σ(I)] reflections
19484, 4314, 3808
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.00
No. of reflections4314
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.52

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2'i0.8602.2033.037 (3)164
N3—H3B···Br10.8602.5553.387 (2)163
N3'—H3'A···N2ii0.8602.3363.046 (3)140
N3'—H3'B···Br20.8602.6523.404 (3)147
N4—H4···Br20.8602.7363.417 (3)137
N4'—H4'···Br20.8602.5103.254 (3)145
N5—H5A···Br1iii0.8602.6853.369 (3)137
N5—H5B···Br20.8602.4903.281 (3)153
N5'—H5'A···Br1iv0.8602.8433.489 (3)133
N5'—H5'B···Br10.8602.4343.278 (3)167
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank the Federal Agency for Education of Russia for financial support of this work through the Federal Target Program "Research and Educational Personnel of Innovative Russia at 2009–2013 Years", State contract P302, project NK-109P/2.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnders, E., Wermann, K., Wiedel, B. & Vanden Eynde, J.-J. (1997). Lieb. Ann. Recueil, 745–752.  Google Scholar
First citationBaouab, L., Guerfel, T., Soussi, M. & Jouini, A. (2000). J. Chem. Crystallogr. 30, 805–809.  Web of Science CSD CrossRef CAS Google Scholar
First citationBichay, M., Fronabarger, J. W., Gilardi, R., Butcher, R. J., Sanborn, W. B., Sitzmann, M. E. & Williams, M. D. (2006). Tetrahedron Lett. 47, 6663–6666.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChernyshev, V. M., Astakhov, A. V. & Starikova, Z. A. (2010). Tetrahedron, 66, 3301–3313.  Web of Science CSD CrossRef CAS Google Scholar
First citationChernyshev, V. M., Rakitov, V. A., Astakhov, A. V., Sokolov, A. N., Zemlyakov, N. D. & Taranushich, V. A. (2006). Russ. J. Appl. Chem. 79, 624–630.  Web of Science CrossRef CAS Google Scholar
First citationChernyshev, V. M., Rakitov, V. A., Blinov, V. V., Taranushich, V. A. & Starikova, Z. A. (2009). Chem. Heterocycl. Compd, 45, 436–444.  Web of Science CrossRef CAS Google Scholar
First citationChernyshev, V. M., Rakitov, V. A., Taranushich, V. A. & Blinov, V. V. (2005). Chem. Heterocycl. Compd, 41, 1139–1146.  CrossRef CAS Google Scholar
First citationChernyshev, V. M., Sokolov, A. N., Khoroshkin, D. A. & Taranushich, V. A. (2008). Russ. J. Org. Chem. 44, 715–722.  Web of Science CrossRef CAS Google Scholar
First citationDunstan, A. R., Weber, H.-P., Rihs, G., Widmer, H. & Dziadulewicz, E. K. (1998). Tetrahedron. Lett. 39, 7983–7986.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuerfel, T., Guelmami, L. & Jouini, A. (2007). J. Soc. Alger. Chim. 17, 27–35.  CAS Google Scholar
First citationLynch, D. E., Dougall, T., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1999). J. Chem. Crystallogr. 29, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationLynch, D. E., Latif, T., Smith, G., Byriel, K. A., Kennard, C. H. L. & Parsons, S. (1998). Aust. J. Chem. 51, 403–408.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834, 328–335.  Google Scholar
First citationReck, G. & Just, M. (1982). Cryst. Struct. Commun. 11, 1857–1861.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarova, G. L., Frank-Kamenetskaya, O. V., Makarskii, V. V. & Lopirev, V. A. (1980). Kristallografiya, 25, 1292–1295.  CAS Google Scholar
First citationSteck, E. A., Brundage, R. P. & Fletcher, L. T. (1958). J. Am. Chem. Soc. 80, 3929–3931.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1644-o1645
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds