metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m807-m808

Di-μ-nicotinamide-κ2O:N1;κ2N1:O-bis­­[aqua­bis­­(4-meth­­oxy­benzoato-κO)copper(II)]

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 8 June 2010; accepted 11 June 2010; online 16 June 2010)

The asymmetric unit of the centrosymmetric dinuclear title compound, [Cu2(C8H7O3)4(C6H6N2O)2(H2O)2], contains one half of the complex mol­ecule. Each CuII atom is five-coordinated by one N atom from one bridging nicotinamide ligand and one O atom from another symmetry-related bridging nicotinamide ligand, two O atoms from two 4-meth­oxy­benzoate ligands, and one water mol­ecule, forming a distorted square-pyramidal geometry. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into layers parallel to ([\overline{1}]01). ππ inter­actions, indicated by short inter­molecular distances of 3.801 (1) Å between the centroids of the benzene rings and 3.653 (1) Å between the centroids of the pyridine rings, further stabilize the structure.

Related literature

For related structures, see: Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009a[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m627-m628.],b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1037-m1038.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1365-m1366.],d[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1416-m1417.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H7O3)4(C6H6N2O)2(H2O)2]

  • Mr = 1011.93

  • Monoclinic, P 21 /n

  • a = 14.1707 (3) Å

  • b = 8.4319 (2) Å

  • c = 18.0225 (3) Å

  • β = 95.847 (2)°

  • V = 2142.23 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 100 K

  • 0.37 × 0.37 × 0.23 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.678, Tmax = 0.781

  • 20329 measured reflections

  • 5403 independent reflections

  • 4813 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.05

  • 5403 reflections

  • 316 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 (2) 2.03 (2) 2.8407 (18) 158 (2)
N2—H2B⋯O4ii 0.83 (2) 2.29 (2) 2.9897 (17) 141.4 (18)
O8—H81⋯O1iii 0.79 (3) 1.97 (3) 2.7236 (15) 159 (3)
O8—H82⋯O4iii 0.825 (18) 1.803 (18) 2.6052 (16) 163.9 (18)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing study of transition metal complexes of nicotinamide (Hökelek & Necefoğlu, 1996; Hökelek et al., 2009a, b, c, d), herein we report the crystal structure of the title dinuclear complex.

The title compound, (I), consists of dimeric units located around a crystallographic symmetry centre and made up of two Cu cations, four 4-methoxybenzoate (MB) anions, two nicotinamide (NA) ligands and two water molecules (Fig. 1). Both of the CuII centres are five-coordinated with distorted square-pyramidal environments, and the two monomeric units are bridged through the two nicotinamide (NA) ligands about an inversion center. The Cu1···Cu1i (symmetry code: (i) 2 - x, -y, 1 - z) distance is 7.1368 (3) Å. The average Cu—O bond length is 2.0626 (10) Å, and the Cu atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O4/C9/O5) by 0.0015 (2) and -0.2589 (2) Å, respectively.

The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C10—C15) are 1.85 (5) and 10.16 (7) °, respectively, while those between rings A, B and C (N1/C17—C21) are A/B = 28.50 (4), A/C = 81.64 (4), B/C = 58.50 (4) °.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules into layers. The ππ contacts between the benzene rings and between the pyridine rings, Cg2—Cg2i and Cg3—Cg3ii [symmetry codes: (i) 2 - x, 2 - y, -z; (ii) 1 - x, 2 - y, -z, where Cg2 and Cg3 are the centroids of the rings B (C10—C15) and C (N1/C17—C21)] may further stabilize the structure, with centroid-centroid distances of 3.801 (1) and 3.653 (1) Å, respectively.

Related literature top

For related structures, see: Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (2.50 g, 10 mmol) in H2O (50 ml) and NA (2.44 g, 20 mmol) in H2O (50 ml) with sodium 4-methoxybenzoate (3.48 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement top

Atoms H81, H82 (for H2O) and H2A, H2B (for NH2) were located in difference Fourier maps and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (') 2 - x, -y, 1 - z].
Di-µ-nicotinamide-κ2O:N1;κ2N1:O- bis[aquabis(4-methoxybenzoato-κO)copper(II)] top
Crystal data top
[Cu2(C8H7O3)4(C6H6N2O)2(H2O)2]F(000) = 1044
Mr = 1011.93Dx = 1.569 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9977 reflections
a = 14.1707 (3) Åθ = 2.7–28.5°
b = 8.4319 (2) ŵ = 1.07 mm1
c = 18.0225 (3) ÅT = 100 K
β = 95.847 (2)°Block, blue
V = 2142.23 (8) Å30.37 × 0.37 × 0.23 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5403 independent reflections
Radiation source: fine-focus sealed tube4813 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1818
Tmin = 0.678, Tmax = 0.781k = 1011
20329 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0384P)2 + 1.1134P]
where P = (Fo2 + 2Fc2)/3
5403 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu2(C8H7O3)4(C6H6N2O)2(H2O)2]V = 2142.23 (8) Å3
Mr = 1011.93Z = 2
Monoclinic, P21/nMo Kα radiation
a = 14.1707 (3) ŵ = 1.07 mm1
b = 8.4319 (2) ÅT = 100 K
c = 18.0225 (3) Å0.37 × 0.37 × 0.23 mm
β = 95.847 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5403 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4813 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.781Rint = 0.021
20329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.47 e Å3
5403 reflectionsΔρmin = 0.29 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.832076 (11)0.152692 (19)0.356751 (8)0.00986 (6)
O10.89942 (7)0.40998 (13)0.27780 (5)0.0155 (2)
O20.94951 (7)0.16598 (12)0.30792 (5)0.01368 (19)
O31.28693 (8)0.39532 (15)0.12796 (7)0.0251 (2)
O40.66614 (8)0.34649 (13)0.32513 (6)0.0181 (2)
O50.71138 (7)0.14541 (12)0.40038 (5)0.01317 (19)
O60.32798 (7)0.34252 (13)0.52920 (6)0.0170 (2)
O71.10015 (7)0.07805 (12)0.58526 (5)0.0153 (2)
O80.77027 (8)0.04960 (14)0.26669 (6)0.0167 (2)
H810.7200 (18)0.008 (3)0.2652 (13)0.047 (7)*
H820.7977 (13)0.001 (2)0.2360 (10)0.017 (4)*
N10.88593 (8)0.27822 (14)0.44653 (6)0.0118 (2)
N21.09767 (9)0.27022 (17)0.67244 (7)0.0171 (3)
H2A1.0823 (15)0.365 (3)0.6840 (12)0.029 (5)*
H2B1.1375 (14)0.224 (2)0.7019 (11)0.022 (5)*
C10.95896 (9)0.30016 (17)0.27686 (7)0.0125 (3)
C21.04648 (9)0.32640 (17)0.23831 (7)0.0125 (3)
C31.11660 (10)0.20966 (18)0.23693 (8)0.0152 (3)
H31.10960.11320.26080.018*
C41.19625 (10)0.23685 (19)0.20030 (8)0.0187 (3)
H41.24290.15940.20030.022*
C51.20666 (10)0.38071 (19)0.16333 (8)0.0173 (3)
C61.13758 (10)0.49779 (18)0.16412 (8)0.0166 (3)
H61.14420.59360.13960.020*
C71.05849 (10)0.46977 (18)0.20197 (7)0.0153 (3)
H71.01260.54840.20310.018*
C81.29541 (12)0.5321 (2)0.08255 (9)0.0254 (3)
H8A1.35440.52790.06070.038*
H8B1.29380.62580.11260.038*
H8C1.24370.53460.04370.038*
C90.65288 (9)0.25480 (17)0.37733 (7)0.0123 (3)
C100.56660 (9)0.27358 (16)0.41748 (7)0.0121 (2)
C110.55839 (10)0.19292 (18)0.48349 (8)0.0148 (3)
H110.60640.12400.50190.018*
C120.47980 (10)0.21312 (18)0.52268 (8)0.0159 (3)
H120.47530.15860.56700.019*
C130.40798 (10)0.31546 (17)0.49503 (8)0.0134 (3)
C140.41505 (10)0.39815 (18)0.42856 (8)0.0156 (3)
H140.36690.46690.41020.019*
C150.49373 (10)0.37730 (17)0.39027 (8)0.0142 (3)
H150.49850.43240.34610.017*
C160.32415 (10)0.26991 (19)0.60087 (8)0.0190 (3)
H16A0.26610.29920.62050.028*
H16B0.37710.30520.63430.028*
H16C0.32670.15670.59580.028*
C170.83872 (10)0.40389 (17)0.47003 (8)0.0152 (3)
H170.78740.44370.43940.018*
C180.86367 (10)0.47614 (18)0.53812 (8)0.0169 (3)
H180.83060.56450.55240.020*
C190.93883 (10)0.41469 (17)0.58490 (8)0.0153 (3)
H190.95550.45910.63160.018*
C200.98863 (9)0.28598 (16)0.56074 (7)0.0114 (2)
C210.96065 (9)0.22322 (16)0.49060 (7)0.0117 (2)
H210.99530.13950.47350.014*
C221.06782 (9)0.20324 (17)0.60760 (7)0.0120 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00880 (8)0.01102 (9)0.00963 (8)0.00027 (6)0.00037 (6)0.00144 (6)
O10.0127 (4)0.0164 (5)0.0175 (5)0.0029 (4)0.0014 (4)0.0019 (4)
O20.0120 (4)0.0141 (5)0.0153 (4)0.0002 (4)0.0033 (4)0.0005 (4)
O30.0202 (5)0.0259 (6)0.0315 (6)0.0008 (5)0.0141 (5)0.0034 (5)
O40.0195 (5)0.0198 (6)0.0158 (5)0.0003 (4)0.0055 (4)0.0042 (4)
O50.0114 (4)0.0150 (5)0.0133 (4)0.0011 (4)0.0024 (3)0.0006 (4)
O60.0133 (5)0.0200 (5)0.0183 (5)0.0049 (4)0.0049 (4)0.0030 (4)
O70.0165 (5)0.0120 (5)0.0168 (5)0.0028 (4)0.0017 (4)0.0015 (4)
O80.0116 (5)0.0229 (6)0.0154 (5)0.0010 (4)0.0013 (4)0.0084 (4)
N10.0112 (5)0.0113 (6)0.0128 (5)0.0002 (4)0.0002 (4)0.0008 (4)
N20.0184 (6)0.0162 (7)0.0155 (6)0.0042 (5)0.0048 (5)0.0034 (5)
C10.0118 (6)0.0150 (6)0.0102 (5)0.0009 (5)0.0017 (5)0.0029 (5)
C20.0113 (6)0.0147 (7)0.0113 (6)0.0004 (5)0.0001 (5)0.0018 (5)
C30.0154 (6)0.0133 (7)0.0171 (6)0.0007 (5)0.0025 (5)0.0006 (5)
C40.0154 (6)0.0186 (7)0.0224 (7)0.0039 (6)0.0042 (5)0.0005 (6)
C50.0139 (6)0.0213 (7)0.0172 (6)0.0031 (6)0.0046 (5)0.0014 (6)
C60.0191 (7)0.0153 (7)0.0155 (6)0.0014 (5)0.0025 (5)0.0012 (5)
C70.0156 (6)0.0156 (7)0.0147 (6)0.0013 (5)0.0010 (5)0.0008 (5)
C80.0256 (8)0.0279 (9)0.0243 (7)0.0082 (7)0.0101 (6)0.0011 (7)
C90.0124 (6)0.0130 (6)0.0112 (6)0.0021 (5)0.0001 (5)0.0027 (5)
C100.0117 (6)0.0118 (6)0.0128 (6)0.0004 (5)0.0009 (5)0.0007 (5)
C110.0139 (6)0.0156 (7)0.0149 (6)0.0048 (5)0.0021 (5)0.0026 (5)
C120.0175 (7)0.0165 (7)0.0141 (6)0.0036 (5)0.0037 (5)0.0038 (5)
C130.0117 (6)0.0136 (7)0.0153 (6)0.0005 (5)0.0028 (5)0.0015 (5)
C140.0140 (6)0.0141 (7)0.0184 (6)0.0033 (5)0.0005 (5)0.0024 (5)
C150.0149 (6)0.0137 (7)0.0138 (6)0.0005 (5)0.0002 (5)0.0031 (5)
C160.0178 (7)0.0209 (8)0.0194 (7)0.0025 (6)0.0079 (5)0.0020 (6)
C170.0131 (6)0.0132 (7)0.0186 (6)0.0019 (5)0.0024 (5)0.0015 (5)
C180.0151 (6)0.0146 (7)0.0205 (7)0.0045 (5)0.0013 (5)0.0051 (5)
C190.0146 (6)0.0155 (7)0.0153 (6)0.0000 (5)0.0011 (5)0.0053 (5)
C200.0100 (6)0.0110 (6)0.0132 (6)0.0010 (5)0.0006 (5)0.0001 (5)
C210.0106 (6)0.0111 (6)0.0136 (6)0.0005 (5)0.0019 (5)0.0002 (5)
C220.0108 (6)0.0121 (6)0.0131 (6)0.0005 (5)0.0006 (5)0.0018 (5)
Geometric parameters (Å, º) top
Cu1—O21.9634 (10)C6—H60.9300
Cu1—O51.9548 (10)C7—H70.9300
Cu1—O7i2.3655 (10)C8—H8A0.9600
Cu1—O81.9667 (10)C8—H8B0.9600
Cu1—N12.0171 (11)C8—H8C0.9600
O1—C11.2540 (17)C9—C101.4912 (18)
O2—C11.2754 (17)C10—C151.4030 (19)
O3—C81.426 (2)C11—C101.3856 (19)
O4—C91.2466 (17)C11—C121.3886 (19)
O5—C91.2808 (17)C11—H110.9300
O6—C131.3634 (17)C12—C131.3876 (19)
O6—C161.4355 (17)C12—H120.9300
O7—Cu1i2.3655 (10)C13—C141.399 (2)
O8—H810.79 (3)C14—C151.381 (2)
O8—H820.83 (2)C14—H140.9300
N1—C171.3444 (18)C15—H150.9300
N1—C211.3401 (17)C16—H16A0.9600
N2—C221.3278 (18)C16—H16B0.9600
N2—H2A0.86 (2)C16—H16C0.9600
N2—H2B0.83 (2)C17—H170.9300
C1—C21.4985 (19)C18—C171.3833 (19)
C2—C71.394 (2)C18—C191.3895 (19)
C3—C21.4007 (19)C18—H180.9300
C3—C41.383 (2)C19—H190.9300
C3—H30.9300C20—C191.3886 (19)
C4—H40.9300C20—C211.3903 (18)
C5—O31.3650 (17)C21—H210.9300
C5—C41.399 (2)C22—O71.2345 (17)
C5—C61.391 (2)C22—C201.5053 (18)
C6—C71.390 (2)
O2—Cu1—O7i85.44 (4)H8A—C8—H8B109.5
O2—Cu1—O888.96 (4)H8A—C8—H8C109.5
O2—Cu1—N193.49 (4)H8B—C8—H8C109.5
O5—Cu1—O2176.73 (4)O4—C9—O5123.30 (13)
O5—Cu1—O7i97.41 (4)O4—C9—C10119.63 (12)
O5—Cu1—O889.07 (4)O5—C9—C10117.05 (12)
O5—Cu1—N188.22 (4)C11—C10—C9120.61 (12)
O8—Cu1—O7i97.34 (4)C11—C10—C15118.88 (13)
O8—Cu1—N1173.84 (5)C15—C10—C9120.48 (12)
N1—Cu1—O7i88.50 (4)C10—C11—C12121.22 (13)
C1—O2—Cu1112.27 (9)C10—C11—H11119.4
C5—O3—C8117.64 (13)C12—C11—H11119.4
C9—O5—Cu1114.26 (9)C11—C12—H12120.3
C13—O6—C16116.39 (11)C13—C12—C11119.38 (13)
C22—O7—Cu1i134.96 (9)C13—C12—H12120.3
Cu1—O8—H82125.4 (12)O6—C13—C12123.72 (13)
Cu1—O8—H81123.2 (18)O6—C13—C14116.04 (12)
H82—O8—H81103 (2)C12—C13—C14120.24 (13)
C17—N1—Cu1120.44 (9)C13—C14—H14120.1
C21—N1—Cu1120.36 (9)C15—C14—C13119.77 (13)
C21—N1—C17118.32 (12)C15—C14—H14120.1
C22—N2—H2A122.8 (14)C10—C15—H15119.7
C22—N2—H2B120.0 (14)C14—C15—C10120.51 (13)
H2B—N2—H2A116.8 (19)C14—C15—H15119.7
O1—C1—O2123.25 (13)O6—C16—H16A109.5
O1—C1—C2119.15 (13)O6—C16—H16B109.5
O2—C1—C2117.60 (12)O6—C16—H16C109.5
C3—C2—C1121.78 (13)H16A—C16—H16B109.5
C7—C2—C1119.50 (12)H16A—C16—H16C109.5
C7—C2—C3118.72 (13)H16B—C16—H16C109.5
C2—C3—H3119.8N1—C17—C18122.43 (12)
C4—C3—C2120.44 (14)N1—C17—H17118.8
C4—C3—H3119.8C18—C17—H17118.8
C3—C4—C5120.11 (14)C17—C18—C19119.00 (13)
C3—C4—H4119.9C17—C18—H18120.5
C5—C4—H4119.9C19—C18—H18120.5
O3—C5—C4115.72 (14)C18—C19—H19120.5
O3—C5—C6124.15 (14)C20—C19—C18118.94 (12)
C6—C5—C4120.13 (13)C20—C19—H19120.5
C5—C6—H6120.4C19—C20—C21118.40 (12)
C7—C6—C5119.18 (14)C19—C20—C22124.05 (12)
C7—C6—H6120.4C21—C20—C22117.45 (12)
C2—C7—H7119.3N1—C21—C20122.83 (13)
C6—C7—C2121.41 (13)N1—C21—H21118.6
C6—C7—H7119.3C20—C21—H21118.6
O3—C8—H8A109.5O7—C22—N2123.72 (13)
O3—C8—H8B109.5O7—C22—C20119.57 (12)
O3—C8—H8C109.5N2—C22—C20116.69 (12)
O7i—Cu1—O2—C1166.69 (9)C6—C5—O3—C86.9 (2)
O8—Cu1—O2—C195.87 (9)O3—C5—C4—C3179.07 (13)
N1—Cu1—O2—C178.48 (9)C6—C5—C4—C30.9 (2)
O7i—Cu1—O5—C9177.06 (9)O3—C5—C6—C7179.92 (13)
O8—Cu1—O5—C979.78 (9)C4—C5—C6—C70.0 (2)
N1—Cu1—O5—C994.69 (9)C5—C6—C7—C20.8 (2)
O2—Cu1—N1—C17128.61 (11)O4—C9—C10—C11168.45 (13)
O2—Cu1—N1—C2162.33 (11)O4—C9—C10—C159.4 (2)
O5—Cu1—N1—C1748.59 (11)O5—C9—C10—C119.80 (19)
O5—Cu1—N1—C21120.47 (11)O5—C9—C10—C15172.30 (12)
O7i—Cu1—N1—C17146.05 (11)C9—C10—C15—C14178.15 (13)
O7i—Cu1—N1—C2123.01 (10)C11—C10—C15—C140.2 (2)
Cu1—O2—C1—O10.05 (16)C12—C11—C10—C9177.95 (13)
Cu1—O2—C1—C2179.28 (9)C12—C11—C10—C150.0 (2)
Cu1—O5—C9—O48.36 (17)C10—C11—C12—C130.3 (2)
Cu1—O5—C9—C10169.82 (9)C11—C12—C13—O6179.65 (13)
C16—O6—C13—C125.6 (2)C11—C12—C13—C140.4 (2)
C16—O6—C13—C14174.33 (13)O6—C13—C14—C15179.84 (13)
Cu1—N1—C17—C18168.29 (11)C12—C13—C14—C150.2 (2)
C21—N1—C17—C181.0 (2)C13—C14—C15—C100.1 (2)
Cu1—N1—C21—C20166.33 (10)C19—C18—C17—N11.6 (2)
C17—N1—C21—C203.0 (2)C17—C18—C19—C202.2 (2)
O1—C1—C2—C3178.44 (12)C21—C20—C19—C180.4 (2)
O1—C1—C2—C72.31 (19)C22—C20—C19—C18176.58 (13)
O2—C1—C2—C30.91 (19)C19—C20—C21—N12.3 (2)
O2—C1—C2—C7178.33 (12)C22—C20—C21—N1174.18 (12)
C1—C2—C7—C6178.58 (12)O7—C22—C20—C19170.96 (14)
C3—C2—C7—C60.7 (2)O7—C22—C20—C215.28 (19)
C4—C3—C2—C1179.42 (13)N2—C22—O7—Cu1i29.9 (2)
C4—C3—C2—C70.2 (2)N2—C22—C20—C197.8 (2)
C2—C3—C4—C50.9 (2)N2—C22—C20—C21175.94 (13)
C4—C5—O3—C8173.01 (14)C20—C22—O7—Cu1i148.77 (10)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.86 (2)2.03 (2)2.8407 (18)158 (2)
N2—H2B···O4iii0.83 (2)2.29 (2)2.9897 (17)141.4 (18)
O8—H81···O1iv0.79 (3)1.97 (3)2.7236 (15)159 (3)
O8—H82···O4iv0.825 (18)1.803 (18)2.6052 (16)163.9 (18)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C8H7O3)4(C6H6N2O)2(H2O)2]
Mr1011.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)14.1707 (3), 8.4319 (2), 18.0225 (3)
β (°) 95.847 (2)
V3)2142.23 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.37 × 0.37 × 0.23
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.678, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
20329, 5403, 4813
Rint0.021
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.05
No. of reflections5403
No. of parameters316
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.86 (2)2.03 (2)2.8407 (18)158 (2)
N2—H2B···O4ii0.83 (2)2.29 (2)2.9897 (17)141.4 (18)
O8—H81···O1iii0.79 (3)1.97 (3)2.7236 (15)159 (3)
O8—H82···O4iii0.825 (18)1.803 (18)2.6052 (16)163.9 (18)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1037–m1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1365–m1366.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1416–m1417.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m807-m808
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds