metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m824-m825

Bis(μ-4-phenyl­pyridine N-oxide-κ2O:O)bis­­[bis­­(1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato)copper(II)]

aDepartment of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 9 June 2010; accepted 12 June 2010; online 23 June 2010)

The asymmetric unit of the title compound, [Cu2(C5HF6O2)4(C11H9NO)2], contains one half of the centrosymmetric dinuclear complex. The coordination geometry of the CuII atom is octa­hedral, exhibiting a typical Jahn–Teller distortion. One trifluoro­methyl group is rotationally disordered between two orientations in a 1:1 ratio.

Related literature

For the use of copper complexes in optical devices, see: Akkılıç et al. (2010[Akkılıç, K., Ocak, Y. S., Kılıçoğlu, T., İlhan, S. & Temel, H. (2010). Curr. Appl. Phys. 10, 337-341.]); Armaroli et al. (2007[Armaroli, N., Accorsi, G., Cardinali, F. & Listorti, A. (2007). Top. Curr. Chem. 280, 69-115.]); Bessho et al. (2008[Bessho, T., Constable, E. C., Graetzel, M., Redondo, A. H., Housecroft, C. E., Kylberg, W., Nazeeruddin, M. K., Neuburger, M. & Schaffner, S. (2008). Chem. Commun. pp. 3717-3719.]); Chan et al. (2010[Chan, C. P., Lam, H. & Surya, C. (2010). Sol. Energ. Mater. 94, 207-211.]); Daniel et al. (2009[Daniel, A., Le Pen, C., Archambeau, C. & Reniers, F. (2009). Appl. Surf. Sci. 256, S82-S85.]); Jeon et al. (2008[Jeon, B. P., Lee, S. & Lee, J. K. (2008). Surf. Coat. Technol. 202, 1839-1846.]); Kambayashi et al. (2005[Kambayashi, T., Ohta, H., Hoshi, H., Hirano, M., Hosono, H., Takezoe, H. & Ishikawa, K. (2005). Cryst. Growth Des. 5, 143-146.]); Peranantham et al. (2007[Peranantham, P., Jeyachandran, Y. L., Viswanathan, C., Praveena, N. N., Chitra, P. C., Mangalaraj, D. & Narayandass, S. K. (2007). Mater. Charact. 58, 756-764.]); Si et al. (2008[Si, Z., Li, J., Li, B., Lui, S. & Li, W. (2008). J. Lumin. 129, 181-186.]); Vogler & Kunkely (2001[Vogler, A. & Kunkely, H. (2001). Topics in Current Chemistry, 1st ed. Berlin: Springer-Verlag.]); Walsh et al. (2009[Walsh, P. J., Lundin, N. J., Gordon, K. C., Kim, J.-Y. & Lee, C.-H. (2009). Opt. Mat. 31, 1525-1531.]). For related complexes with 4-phenyl­pyridine-N-oxide, see: Papadaki et al. (1999[Papadaki, H., Christofides, A., Jeffery, J. C. & Bakas, T. (1999). J. Coord. Chem. 47, 559-572.]); Watson & Johnson (1971[Watson, W. H. & Johnson, D. R. (1971). J. Coord. Chem. 1, 145-153.]). For general background to studies on copper complexes from our research group, see: Fernandes et al. (2010[Fernandes, J. A., Ramos, A. I., Silva, P., Braga, S. S., Ribeiro-Claro, P., Rocha, J. & Almeida Paz, F. A. (2010). Acta Cryst. E66, m626-m627.]); Shi et al. (2006[Shi, F.-N., Almeida Paz, F. A., Trindade, T. & Rocha, J. (2006). Acta Cryst. E62, m335-m338.]); Paz et al. (2005[Almeida Paz, F. A., Shi, F.-N., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m2247-m2250.]); Girginova et al. (2005[Girginova, P. I., Paz, F. A. A., Nogueira, H. I. S., Silva, N. J. O., Amaral, V. S., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 737, 221-229.]); Brandão et al. (2005[Brandão, P., Paz, F. A. A. & Rocha, J. (2005). Chem. Commun. pp. 171-173.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C5HF6O2)4(C11H9NO)2]

  • Mr = 1297.70

  • Triclinic, [P \overline 1]

  • a = 10.3830 (4) Å

  • b = 10.7870 (4) Å

  • c = 11.2498 (4) Å

  • α = 99.055 (2)°

  • β = 99.036 (2)°

  • γ = 98.258 (2)°

  • V = 1210.40 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 150 K

  • 0.18 × 0.10 × 0.09 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.836, Tmax = 0.913

  • 47759 measured reflections

  • 6427 independent reflections

  • 5461 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.04

  • 6427 reflections

  • 397 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.40 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS, Delft, The Netherlands.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of 4-phenylpyridine-N-oxide (PPNO; C11H9NO) is rather unknown. Surveying the Cambridge Structural Database (Allen, 2002) only two coordination compounds were found, namely a copper (Watson & Johnson, 1971) and a tin compound (Papadaki et al., 1999).

The title compound, [Cu(C5HF6O2)2(C11H9NO)2] (I) (where C5HF6O2- is hexafluoroacetylacetonate and C11H9NO corresponds to 4-phenylpyridine-N-oxide), has a bright green colour which is of interest for the potential use as a dye in several applications, such as in organic electronics. Coloured materials, including metal coordination compounds, have been explored in the last decades because pigmentation is a strong indicative of promising physical and optical properties (Vogler & Kunkely, 2001). Recent applications of copper coordination complexes include a Schottky diode based on a macrocyclic binuclear Cu2+ complex (Akkılıç et al., 2010) and a series of Graetzel solar cells using 6,6'-dimethyl-dicarboxylated-bipyridine complexes (Bessho et al., 2008). The use of Cu2+ complexes in OLEDs is still limited (Armaroli et al., 2007), and emission still relies mostly on Cu+ complexes, such as [Cu(I)bis(triphenylphosphine)dipyridophenazine] (Walsh et al., 2009) and three Cu(I)pyridylbenzimidazole complexes (Si et al., 2008). In addition, copper complexes are advantageous from the technological processing perspective, adaptable to various film deposition techniques: molecular beam epitaxy (Kambayashi et al., 2005), vacuum evaporation (Peranantham et al., 2007), electrodeposition (Chan et al., 2010) and chemical vapour deposition (CVD), either plasma-enhanced (Daniel et al., 2009) or the widespread metal organic CVD (Jeon et al., 2008).

Following our interest in the preparation and study of the properties of copper compounds (Fernandes et al., 2010; Shi et al., 2006; Paz et al., 2005; Girginova et al., 2005; Brandão et al., 2005) we have reacted [Cu(hfac)2] (where hfac- stands for hexafluoroacetylacetonate) with PPNO, affording the title compound as a vivid green crystalline material, whose crystal structure we report herein.

The structure is dimeric having a point of inversion in the geometrical centre of the quadrangle defined by Cu1···O5···Cu1(i)···O5(i) (Figure 1) [symmetry code: (i) 2 - x, -y, -z]. The asymmetric unit contains one PPNO ligand and one [Cu(hfac)2] moiety. The atoms Cu1, O2, O4 and O5, and their symmetry-related counterparts [symmetry code (i)], form a plane (longest distance to the average plane of about 0.041 Å). Likewise, atoms Cu1, O1 and O3, and their symmetry-related counterparts [symmetry code (i)], define a second plane (longest distance to this average plane of about 0.048 Å), which is perpendicular to the previous one. The Cu2+ centre exhibits a typical octahedral coordination environment with a strong Jahn-Teller distortion: the Cu—O bonds (equatorial plane) range from 1.9500 (19) to 1.9751 (18) Å, while the Cu—O bonds (at apical positions) are either 2.251 (2) or 2.4427 (18) Å. With the exception of the angles O5—Cu1—O5(i) [76.90 (7)°] and O2—Cu1—O4 [101.08 (8)°], the cis octahedral angles fall within a rather short range around the ideal value: 84.55 (7)–97.37 (8)° (Table 1). The trans octahedral angles are between 161.06 (8)° and 174.96 (8)°. The two average planes containing the aromatic rings of PPNO are mutually rotated by ca 37°. The structure exhibits crystallographic disorder associated with the fluorine atoms F4, F5 and F6 (rates of occupancy 50% for each location). Noteworthy, symmetry-related copper complexes are located at the vertex of the unit cell (Figure 2), with the inner space being essentially occupied by the coordinated organic ligands, leading to a hydrophobic empty space of about 36 Å3.

Related literature top

For the use of copper complexes in optical devices, see: Akkılıç et al. (2010); Armaroli et al. (2007); Bessho et al. (2008); Chan et al. (2010); Daniel et al. (2009); Jeon et al. (2008); Kambayashi et al. (2005); Peranantham et al. (2007); Si et al. (2008) Vogler & Kunkely (2001); Walsh et al. (2009). For related complexes with 4-phenylpyridine-N-oxide, see: Papadaki et al. (1999); Watson & Johnson (1971). For general background to studies on copper complexes from our research group, see: Fernandes et al. (2010); Shi et al. (2006); Paz et al. (2005); Girginova et al. (2005); Brandão et al. (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Chemicals were purchased from commercial sources and were used as received without purification.

4-Phenylpyridine-N-oxide (PPNO, 71.7 mg, 0.419 mmol, Aldrich) was slowly added to a previously-prepared [Cu(hfac)2] (100.0 mg, 0.209 mmol; hfac- stands for hexafluoroacetylacetonate) solution in 10 ml of acetone. The resulting solution was magnetically stirred at 30 °C for 30 minutes. By slow evaporation to dryness, a green solid was obtained, which was dissolved in ethanol, gravity filtered and deposited above a water layer. Green crystals of the title compound formed after two days.

Refinement top

Hydrogen atoms bound to carbon were located at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å. The isotropic displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective carbon atom.

The substituent —CF3 groups were found to be severely affected by thermal disorder. Attempts to model this disorder were only successful for one moiety which was included in the final structure with two crystallographic positions (fixed rate of occupancy of 50% for each). In order to ensure a chemically reasonable geometry for this disorder moiety all C—F and F···F distances in the structure were restrained to common refineable values.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Schematic representation, in ball-and-stick and polyhedral fashions, of the molecular structure of the title compound. The crystallographic disorder associated with the —CF3 group was omitted for simplicity. Symmetry code: (i) 2 - x, -y, -z.
[Figure 2] Fig. 2. Perspective view along the c axis of the unit cell of the crystal packing of the title compound.
Bis(µ-4-phenylpyridine N-oxide-κ2O:O)bis[bis(1,1,1,5,5,5- hexafluoropentane-2,4-dionato)copper(II)] top
Crystal data top
[Cu2(C5HF6O2)4(C11H9NO)2]Z = 1
Mr = 1297.70F(000) = 642
Triclinic, P1Dx = 1.780 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3830 (4) ÅCell parameters from 9842 reflections
b = 10.7870 (4) Åθ = 2.9–28.6°
c = 11.2498 (4) ŵ = 1.03 mm1
α = 99.055 (2)°T = 150 K
β = 99.036 (2)°Block, green
γ = 98.258 (2)°0.18 × 0.10 × 0.09 mm
V = 1210.40 (8) Å3
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
6427 independent reflections
Radiation source: fine-focus sealed tube5461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω/phi scansθmax = 29.1°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1414
Tmin = 0.836, Tmax = 0.913k = 1414
47759 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0712P)2 + 2.0571P]
where P = (Fo2 + 2Fc2)/3
6427 reflections(Δ/σ)max = 0.003
397 parametersΔρmax = 1.21 e Å3
24 restraintsΔρmin = 1.40 e Å3
Crystal data top
[Cu2(C5HF6O2)4(C11H9NO)2]γ = 98.258 (2)°
Mr = 1297.70V = 1210.40 (8) Å3
Triclinic, P1Z = 1
a = 10.3830 (4) ÅMo Kα radiation
b = 10.7870 (4) ŵ = 1.03 mm1
c = 11.2498 (4) ÅT = 150 K
α = 99.055 (2)°0.18 × 0.10 × 0.09 mm
β = 99.036 (2)°
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
6427 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
5461 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.913Rint = 0.029
47759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04824 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.04Δρmax = 1.21 e Å3
6427 reflectionsΔρmin = 1.40 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu11.01536 (3)0.13209 (3)0.07044 (3)0.02205 (10)
O11.17596 (17)0.20733 (17)0.05247 (16)0.0235 (4)
O21.12021 (19)0.2109 (2)0.21003 (18)0.0312 (4)
O30.86603 (19)0.05900 (18)0.20302 (18)0.0284 (4)
O40.93026 (17)0.27435 (17)0.01281 (18)0.0255 (4)
O50.91578 (18)0.02993 (17)0.08021 (16)0.0238 (4)
N10.8997 (2)0.0995 (2)0.18579 (19)0.0217 (4)
C11.4020 (2)0.2518 (2)0.14122 (18)0.0382 (7)
C21.2903 (2)0.2335 (2)0.0291 (2)0.0227 (5)
C31.3311 (3)0.2502 (3)0.0794 (2)0.0273 (5)
H31.42330.26860.07950.033*
C41.2419 (3)0.2411 (3)0.1900 (2)0.0261 (5)
C51.3046 (2)0.2749 (3)0.2985 (2)0.0426 (7)
C60.6641 (2)0.03964 (18)0.3416 (2)0.0404 (7)
C70.7645 (3)0.1076 (3)0.2257 (2)0.0272 (5)
C80.7299 (3)0.2135 (3)0.1602 (3)0.0329 (6)
H80.64590.23590.18520.039*
C90.8158 (2)0.2876 (2)0.0585 (2)0.0247 (5)
C100.7717 (3)0.4038 (3)0.0107 (3)0.0303 (6)
C111.0036 (3)0.1754 (3)0.2619 (2)0.0272 (5)
H111.09030.17610.24460.033*
C120.9841 (3)0.2522 (3)0.3650 (2)0.0261 (5)
H121.05800.30480.41920.031*
C130.8573 (2)0.2537 (2)0.3912 (2)0.0214 (4)
C140.7527 (2)0.1713 (3)0.3101 (2)0.0256 (5)
H140.66510.16770.32580.031*
C150.7754 (2)0.0959 (2)0.2086 (2)0.0249 (5)
H150.70350.04080.15390.030*
C160.8344 (2)0.3403 (2)0.4986 (2)0.0228 (5)
C170.9250 (3)0.3653 (3)0.6087 (2)0.0299 (5)
H171.00180.32650.61480.036*
C180.9035 (3)0.4465 (3)0.7091 (3)0.0356 (6)
H180.96570.46310.78370.043*
C190.7924 (3)0.5035 (3)0.7018 (3)0.0365 (6)
H190.77830.55910.77110.044*
C200.7019 (3)0.4793 (3)0.5936 (3)0.0398 (7)
H200.62540.51850.58840.048*
C210.7225 (3)0.3976 (3)0.4916 (3)0.0325 (6)
H210.65980.38110.41730.039*
F11.36023 (19)0.2437 (2)0.24323 (16)0.0546 (6)
F21.4801 (3)0.3614 (3)0.1595 (2)0.1153 (16)
F31.4749 (3)0.1648 (3)0.1247 (2)0.150 (2)
F41.3541 (8)0.3951 (3)0.2833 (5)0.122 (4)0.50
F51.4012 (5)0.2125 (7)0.3118 (5)0.084 (3)0.50
F61.2224 (4)0.2467 (7)0.4024 (3)0.0588 (17)0.50
F4'1.2595 (7)0.3725 (7)0.3328 (9)0.109 (4)0.50
F5'1.4329 (2)0.3025 (8)0.2815 (7)0.098 (4)0.50
F6'1.2680 (10)0.1810 (7)0.3909 (6)0.199 (8)0.50
F70.7002 (2)0.0620 (2)0.3950 (2)0.0803 (9)
F80.6504 (3)0.1140 (2)0.4212 (2)0.0945 (12)
F90.54684 (19)0.0040 (2)0.3187 (2)0.0723 (8)
F100.85443 (17)0.51032 (16)0.01099 (18)0.0366 (4)
F110.7719 (2)0.3931 (2)0.12708 (19)0.0483 (5)
F120.65074 (17)0.41987 (19)0.0375 (2)0.0465 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01770 (15)0.02152 (16)0.02440 (17)0.00386 (11)0.00051 (11)0.00057 (11)
O10.0194 (8)0.0263 (9)0.0232 (8)0.0029 (7)0.0011 (6)0.0031 (7)
O20.0260 (9)0.0402 (11)0.0265 (9)0.0039 (8)0.0006 (7)0.0109 (8)
O30.0249 (9)0.0284 (9)0.0276 (9)0.0032 (7)0.0020 (7)0.0005 (7)
O40.0194 (8)0.0235 (8)0.0314 (9)0.0055 (7)0.0009 (7)0.0023 (7)
O50.0282 (9)0.0230 (8)0.0208 (8)0.0081 (7)0.0062 (7)0.0007 (6)
N10.0212 (9)0.0218 (9)0.0222 (10)0.0047 (8)0.0049 (8)0.0026 (8)
C10.0215 (12)0.060 (2)0.0305 (14)0.0032 (13)0.0010 (11)0.0098 (13)
C20.0196 (10)0.0218 (11)0.0250 (12)0.0052 (9)0.0009 (9)0.0031 (9)
C30.0187 (11)0.0348 (14)0.0291 (13)0.0053 (10)0.0032 (9)0.0088 (10)
C40.0272 (12)0.0279 (12)0.0260 (12)0.0100 (10)0.0061 (10)0.0074 (10)
C50.0358 (16)0.065 (2)0.0313 (15)0.0122 (15)0.0082 (12)0.0154 (15)
C60.0387 (16)0.0369 (16)0.0368 (16)0.0026 (13)0.0103 (13)0.0061 (13)
C70.0217 (11)0.0285 (12)0.0276 (13)0.0030 (10)0.0033 (9)0.0077 (10)
C80.0198 (12)0.0331 (14)0.0421 (16)0.0046 (10)0.0038 (11)0.0054 (12)
C90.0197 (11)0.0221 (11)0.0330 (13)0.0031 (9)0.0046 (9)0.0081 (10)
C100.0209 (12)0.0301 (13)0.0405 (15)0.0068 (10)0.0048 (10)0.0062 (11)
C110.0189 (11)0.0329 (13)0.0283 (13)0.0016 (10)0.0064 (9)0.0013 (10)
C120.0217 (11)0.0303 (13)0.0236 (12)0.0002 (10)0.0041 (9)0.0008 (10)
C130.0215 (11)0.0227 (11)0.0208 (11)0.0045 (9)0.0043 (9)0.0049 (9)
C140.0180 (11)0.0312 (13)0.0268 (12)0.0053 (9)0.0039 (9)0.0022 (10)
C150.0185 (11)0.0270 (12)0.0267 (12)0.0034 (9)0.0011 (9)0.0008 (10)
C160.0240 (11)0.0237 (11)0.0202 (11)0.0025 (9)0.0047 (9)0.0036 (9)
C170.0266 (13)0.0378 (14)0.0242 (12)0.0063 (11)0.0033 (10)0.0033 (11)
C180.0371 (15)0.0429 (16)0.0214 (13)0.0002 (13)0.0017 (11)0.0002 (11)
C190.0498 (18)0.0337 (15)0.0253 (13)0.0071 (13)0.0126 (12)0.0019 (11)
C200.0433 (17)0.0414 (17)0.0357 (16)0.0191 (14)0.0085 (13)0.0012 (13)
C210.0330 (14)0.0362 (14)0.0270 (13)0.0135 (12)0.0007 (11)0.0003 (11)
F10.0415 (11)0.0933 (18)0.0272 (9)0.0156 (11)0.0025 (8)0.0110 (10)
F20.084 (2)0.159 (3)0.0636 (18)0.081 (2)0.0360 (15)0.046 (2)
F30.147 (3)0.261 (5)0.0483 (15)0.177 (4)0.0346 (18)0.029 (2)
F40.228 (11)0.058 (4)0.073 (5)0.050 (5)0.081 (7)0.007 (3)
F50.048 (3)0.180 (9)0.061 (4)0.065 (4)0.038 (3)0.063 (5)
F60.035 (2)0.128 (6)0.0152 (19)0.018 (3)0.0034 (15)0.016 (3)
F4'0.070 (4)0.180 (10)0.137 (8)0.059 (5)0.055 (5)0.135 (8)
F5'0.029 (2)0.201 (10)0.090 (5)0.011 (4)0.018 (3)0.101 (7)
F6'0.313 (19)0.144 (9)0.111 (8)0.082 (10)0.155 (11)0.072 (7)
F70.0761 (18)0.0833 (19)0.0559 (15)0.0243 (15)0.0267 (13)0.0345 (14)
F80.128 (3)0.0745 (18)0.0489 (14)0.0453 (18)0.0450 (15)0.0346 (13)
F90.0367 (12)0.0837 (18)0.0747 (17)0.0197 (12)0.0092 (11)0.0045 (14)
F100.0320 (9)0.0236 (8)0.0516 (11)0.0037 (7)0.0063 (8)0.0015 (7)
F110.0546 (12)0.0560 (12)0.0441 (11)0.0220 (10)0.0241 (10)0.0124 (9)
F120.0235 (8)0.0407 (10)0.0724 (14)0.0138 (7)0.0003 (9)0.0024 (9)
Geometric parameters (Å, º) top
Cu1—O11.9711 (17)C7—C81.383 (4)
Cu1—O22.251 (2)C8—C91.390 (4)
Cu1—O31.9500 (19)C8—H80.9500
Cu1—O41.9524 (18)C9—C101.535 (4)
Cu1—O52.4427 (18)C10—F101.331 (3)
Cu1—O5i1.9751 (18)C10—F111.332 (4)
O1—C21.258 (3)C10—F121.334 (3)
O2—C41.234 (3)C11—C121.375 (4)
O3—C71.252 (3)C11—H110.9500
O4—C91.256 (3)C12—C131.395 (3)
O5—N11.349 (3)C12—H120.9500
O5—Cu1i1.9751 (18)C13—C141.399 (4)
N1—C111.343 (3)C13—C161.479 (3)
N1—C151.351 (3)C14—C151.367 (4)
N1—Cu1i2.945 (2)C14—H140.9500
C1—F31.297 (4)C15—H150.9500
C1—F11.300 (3)C16—C211.390 (4)
C1—F21.301 (4)C16—C171.396 (4)
C1—C21.540 (3)C17—C181.384 (4)
C2—C31.383 (4)C17—H170.9500
C3—C41.410 (4)C18—C191.381 (5)
C3—H30.9500C18—H180.9500
C4—C51.540 (3)C19—C201.380 (5)
C5—F6'1.2982 (15)C19—H190.9500
C5—F41.2985 (15)C20—C211.397 (4)
C5—F61.2987 (15)C20—H200.9500
C5—F5'1.2989 (15)C21—H210.9500
C5—F4'1.2998 (15)F4—F4'1.025 (7)
C5—F51.3003 (15)F4—F5'1.379 (6)
C6—F71.298 (3)F5—F5'0.968 (7)
C6—F81.298 (3)F5—F6'1.485 (7)
C6—F91.301 (3)F6—F6'0.921 (9)
C6—C71.542 (3)F6—F4'1.423 (7)
O1—Cu1—O287.50 (7)O3—C7—C6115.7 (2)
O1—Cu1—O591.03 (7)C8—C7—C6115.7 (2)
O1—Cu1—O5i86.68 (8)C8—C7—Cu194.49 (17)
O2—Cu1—O5174.17 (7)C6—C7—Cu1149.74 (18)
O3—Cu1—O1174.96 (8)C7—C8—C9121.1 (2)
O3—Cu1—O287.73 (8)C7—C8—Cu160.54 (14)
O3—Cu1—O492.62 (8)C9—C8—Cu160.60 (15)
O3—Cu1—O593.57 (7)C7—C8—H8119.4
O3—Cu1—O5i92.35 (8)C9—C8—H8119.4
O4—Cu1—O189.86 (8)Cu1—C8—H8178.7
O4—Cu1—O2101.08 (8)O4—C9—C8128.7 (3)
O4—Cu1—O584.55 (7)O4—C9—C10112.6 (2)
O4—Cu1—O5i161.06 (8)C8—C9—C10118.7 (2)
O5i—Cu1—O297.37 (8)C8—C9—Cu194.28 (17)
O5i—Cu1—O576.90 (7)C10—C9—Cu1146.95 (18)
C2—O1—Cu1125.00 (16)F10—C10—F11107.2 (2)
C4—O2—Cu1120.66 (17)F10—C10—F12107.2 (2)
C7—O3—Cu1124.47 (18)F11—C10—F12107.7 (2)
C9—O4—Cu1124.12 (18)F10—C10—C9110.8 (2)
N1—O5—Cu1i123.68 (14)F11—C10—C9110.5 (2)
N1—O5—Cu1120.78 (14)F12—C10—C9113.3 (2)
Cu1i—O5—Cu1103.10 (7)N1—C11—C12119.8 (2)
C11—N1—O5120.6 (2)N1—C11—H11120.1
C11—N1—C15121.3 (2)C12—C11—H11120.1
O5—N1—C15117.9 (2)C11—C12—C13120.9 (2)
C11—N1—Cu1i109.45 (16)C11—C12—H12119.5
C15—N1—Cu1i120.81 (16)C13—C12—H12119.5
F3—C1—F1106.88 (13)C12—C13—C14117.0 (2)
F3—C1—F2106.82 (13)C12—C13—C16121.4 (2)
F1—C1—F2106.45 (13)C14—C13—C16121.6 (2)
F3—C1—C2109.60 (18)C15—C14—C13120.6 (2)
F1—C1—C2113.95 (18)C15—C14—H14119.7
F2—C1—C2112.73 (19)C13—C14—H14119.7
O1—C2—C3130.7 (2)N1—C15—C14120.2 (2)
O1—C2—C1113.9 (2)N1—C15—H15119.9
C3—C2—C1115.4 (2)C14—C15—H15119.9
C3—C2—Cu197.93 (16)C21—C16—C17119.1 (2)
C1—C2—Cu1145.40 (16)C21—C16—C13120.6 (2)
C2—C3—C4122.9 (2)C17—C16—C13120.3 (2)
C2—C3—H3118.5C18—C17—C16120.3 (3)
C4—C3—H3118.5C18—C17—H17119.9
O2—C4—C3128.2 (2)C16—C17—H17119.9
O2—C4—C5116.2 (2)C19—C18—C17120.6 (3)
C3—C4—C5115.6 (2)C19—C18—H18119.7
C3—C4—Cu189.46 (16)C17—C18—H18119.7
C5—C4—Cu1154.41 (17)C20—C19—C18119.7 (3)
F6'—C5—F4135.8 (5)C20—C19—H19120.1
F4—C5—F6106.84 (14)C18—C19—H19120.1
F6'—C5—F5'106.86 (14)C19—C20—C21120.3 (3)
F4—C5—F5'64.2 (3)C19—C20—H20119.9
F6—C5—F5'127.3 (4)C21—C20—H20119.9
F6'—C5—F4'106.77 (15)C16—C21—C20120.1 (3)
F4—C5—F4'46.5 (3)C16—C21—H21119.9
F6—C5—F4'66.4 (4)C20—C21—H21119.9
F5'—C5—F4'106.66 (14)F4'—F4—C566.82 (18)
F6'—C5—F569.7 (4)F4'—F4—F5'119.4 (3)
F4—C5—F5106.75 (14)C5—F4—F5'57.93 (16)
F6—C5—F5106.59 (14)F5'—F5—C568.07 (17)
F4'—C5—F5139.5 (4)F5'—F5—F6'114.9 (4)
F6'—C5—C4109.4 (4)C5—F5—F6'55.1 (2)
F4—C5—C4112.7 (3)F6'—F6—C569.2 (2)
F6—C5—C4113.5 (3)F6'—F6—F4'124.3 (2)
F5'—C5—C4117.6 (3)C5—F6—F4'56.8 (2)
F4'—C5—C4109.0 (3)F4—F4'—C566.69 (17)
F5—C5—C4110.1 (3)F4—F4'—F6115.9 (4)
F7—C6—F8107.26 (13)C5—F4'—F656.8 (2)
F7—C6—F9106.60 (13)F5—F5'—C568.22 (18)
F8—C6—F9106.74 (13)F5—F5'—F4124.5 (2)
F7—C6—C7112.20 (19)C5—F5'—F457.91 (16)
F8—C6—C7111.06 (18)F6—F6'—C569.3 (2)
F9—C6—C7112.64 (19)F6—F6'—F5118.1 (4)
O3—C7—C8128.7 (2)C5—F6'—F555.2 (2)
O4—Cu1—O1—C2124.4 (2)O4—Cu1—C8—C91.75 (16)
O5i—Cu1—O1—C274.2 (2)O1—Cu1—C8—C97.0 (2)
O2—Cu1—O1—C223.3 (2)O5i—Cu1—C8—C9151.74 (16)
O5—Cu1—O1—C2151.0 (2)O2—Cu1—C8—C9100.53 (17)
O3—Cu1—O2—C4158.9 (2)O5—Cu1—C8—C982.53 (17)
O4—Cu1—O2—C4108.8 (2)Cu1—O4—C9—C84.4 (4)
O1—Cu1—O2—C419.5 (2)Cu1—O4—C9—C10176.38 (17)
O5i—Cu1—O2—C466.9 (2)C7—C8—C9—O41.0 (5)
O4—Cu1—O3—C71.8 (2)Cu1—C8—C9—O42.5 (2)
O5i—Cu1—O3—C7163.5 (2)C7—C8—C9—C10179.8 (3)
O2—Cu1—O3—C799.2 (2)Cu1—C8—C9—C10178.3 (3)
O5—Cu1—O3—C786.5 (2)C7—C8—C9—Cu11.5 (3)
O3—Cu1—O4—C92.8 (2)O3—Cu1—C9—O4177.1 (2)
O1—Cu1—O4—C9178.4 (2)O1—Cu1—C9—O41.7 (2)
O5i—Cu1—O4—C9102.3 (3)O5i—Cu1—C9—O4131.5 (2)
O2—Cu1—O4—C991.0 (2)O2—Cu1—C9—O493.2 (2)
O5—Cu1—O4—C990.5 (2)O5—Cu1—C9—O487.5 (2)
O3—Cu1—O5—N1125.16 (16)O3—Cu1—C9—C80.53 (17)
O4—Cu1—O5—N132.87 (16)O4—Cu1—C9—C8176.5 (3)
O1—Cu1—O5—N156.90 (16)O1—Cu1—C9—C8174.81 (16)
O5i—Cu1—O5—N1143.3 (2)O5i—Cu1—C9—C852.0 (3)
O3—Cu1—O5—Cu1i91.59 (9)O2—Cu1—C9—C883.36 (18)
O4—Cu1—O5—Cu1i176.12 (9)O5—Cu1—C9—C895.98 (17)
O1—Cu1—O5—Cu1i86.35 (8)O3—Cu1—C9—C10176.8 (3)
O5i—Cu1—O5—Cu1i0.0O4—Cu1—C9—C106.1 (3)
Cu1i—O5—N1—C1179.3 (3)O1—Cu1—C9—C107.9 (3)
Cu1—O5—N1—C1156.3 (3)O5i—Cu1—C9—C10125.3 (3)
Cu1i—O5—N1—C15104.5 (2)O2—Cu1—C9—C1099.3 (3)
Cu1—O5—N1—C15119.9 (2)O5—Cu1—C9—C1081.4 (3)
Cu1—O5—N1—Cu1i135.6 (2)O4—C9—C10—F1059.0 (3)
Cu1—O1—C2—C318.9 (4)C8—C9—C10—F10120.3 (3)
Cu1—O1—C2—C1162.19 (14)Cu1—C9—C10—F1062.7 (4)
F3—C1—C2—O1116.4 (2)O4—C9—C10—F1159.7 (3)
F1—C1—C2—O13.3 (3)C8—C9—C10—F11121.0 (3)
F2—C1—C2—O1124.8 (2)Cu1—C9—C10—F1155.9 (4)
F3—C1—C2—C364.5 (3)O4—C9—C10—F12179.4 (2)
F1—C1—C2—C3175.8 (2)C8—C9—C10—F120.1 (4)
F2—C1—C2—C354.3 (3)Cu1—C9—C10—F12176.8 (2)
F3—C1—C2—Cu198.8 (3)O5—N1—C11—C12175.6 (2)
F1—C1—C2—Cu120.9 (3)C15—N1—C11—C120.5 (4)
F2—C1—C2—Cu1142.3 (3)Cu1i—N1—C11—C12148.8 (2)
O3—Cu1—C2—O1179.0 (2)N1—C11—C12—C130.8 (4)
O4—Cu1—C2—O157.4 (2)C11—C12—C13—C141.9 (4)
O5i—Cu1—C2—O1103.6 (2)C11—C12—C13—C16177.1 (2)
O2—Cu1—C2—O1154.8 (2)C12—C13—C14—C151.7 (4)
O5—Cu1—C2—O130.8 (2)C16—C13—C14—C15177.3 (2)
O3—Cu1—C2—C313.4 (3)C11—N1—C15—C140.7 (4)
O4—Cu1—C2—C3108.30 (17)O5—N1—C15—C14175.5 (2)
O1—Cu1—C2—C3165.7 (3)Cu1i—N1—C15—C14145.5 (2)
O5i—Cu1—C2—C390.73 (17)C13—C14—C15—N10.5 (4)
O2—Cu1—C2—C310.82 (16)C12—C13—C16—C21142.6 (3)
O5—Cu1—C2—C3163.51 (16)C14—C13—C16—C2136.3 (4)
O3—Cu1—C2—C1151.5 (2)C12—C13—C16—C1737.6 (4)
O4—Cu1—C2—C186.9 (3)C14—C13—C16—C17143.5 (3)
O1—Cu1—C2—C129.5 (2)C21—C16—C17—C180.2 (4)
O5i—Cu1—C2—C174.1 (3)C13—C16—C17—C18179.9 (3)
O2—Cu1—C2—C1175.7 (3)C16—C17—C18—C190.1 (5)
O5—Cu1—C2—C11.3 (3)C17—C18—C19—C200.0 (5)
O1—C2—C3—C41.0 (5)C18—C19—C20—C210.0 (5)
C1—C2—C3—C4177.9 (2)C17—C16—C21—C200.3 (4)
Cu1—C2—C3—C411.5 (3)C13—C16—C21—C20179.9 (3)
Cu1—O2—C4—C39.7 (4)C19—C20—C21—C160.2 (5)
Cu1—O2—C4—C5171.25 (17)F6'—C5—F4—F4'66.1 (6)
C2—C3—C4—O24.6 (5)F6—C5—F4—F4'30.2 (6)
C2—C3—C4—C5174.4 (2)F5'—C5—F4—F4'154.1 (6)
C2—C3—C4—Cu110.7 (3)F5—C5—F4—F4'144.0 (6)
O3—Cu1—C4—O222.0 (2)C4—C5—F4—F4'95.1 (6)
O4—Cu1—C4—O276.0 (2)F6'—C5—F4—F5'88.0 (4)
O1—Cu1—C4—O2159.0 (2)F6—C5—F4—F5'123.8 (5)
O5i—Cu1—C4—O2114.2 (2)F4'—C5—F4—F5'154.1 (6)
O5—Cu1—C4—O2168.04 (19)F5—C5—F4—F5'10.1 (5)
O3—Cu1—C4—C3165.59 (16)C4—C5—F4—F5'110.8 (4)
O4—Cu1—C4—C396.36 (16)F6'—C5—F5—F5'146.6 (6)
O1—Cu1—C4—C313.38 (16)F4—C5—F5—F5'13.2 (6)
O5i—Cu1—C4—C373.38 (16)F6—C5—F5—F5'127.1 (6)
O2—Cu1—C4—C3172.4 (3)F4'—C5—F5—F5'54.2 (9)
O5—Cu1—C4—C319.6 (3)C4—C5—F5—F5'109.4 (6)
O3—Cu1—C4—C53.6 (4)F4—C5—F5—F6'133.4 (5)
O4—Cu1—C4—C594.5 (4)F6—C5—F5—F6'19.4 (5)
O1—Cu1—C4—C5177.4 (4)F5'—C5—F5—F6'146.6 (6)
O5i—Cu1—C4—C595.8 (4)F4'—C5—F5—F6'92.3 (5)
O2—Cu1—C4—C518.4 (3)C4—C5—F5—F6'104.0 (4)
O5—Cu1—C4—C5149.6 (3)F4—C5—F6—F6'141.9 (6)
O2—C4—C5—F6'55.4 (6)F5'—C5—F6—F6'71.9 (6)
C3—C4—C5—F6'125.4 (6)F4'—C5—F6—F6'165.4 (7)
Cu1—C4—C5—F6'42.6 (7)F5—C5—F6—F6'28.1 (6)
O2—C4—C5—F4110.8 (5)C4—C5—F6—F6'93.2 (7)
C3—C4—C5—F468.4 (5)F6'—C5—F6—F4'165.4 (7)
Cu1—C4—C5—F4123.6 (5)F4—C5—F6—F4'23.5 (4)
O2—C4—C5—F610.8 (4)F5'—C5—F6—F4'93.5 (4)
C3—C4—C5—F6170.0 (4)F5—C5—F6—F4'137.3 (4)
Cu1—C4—C5—F62.0 (6)C4—C5—F6—F4'101.3 (3)
O2—C4—C5—F5'177.5 (5)F5'—F4—F4'—C525.2 (5)
C3—C4—C5—F5'3.3 (5)C5—F4—F4'—F629.3 (4)
Cu1—C4—C5—F5'164.7 (5)F5'—F4—F4'—F64.1 (8)
O2—C4—C5—F4'61.0 (5)F6'—C5—F4'—F4138.2 (6)
C3—C4—C5—F4'118.2 (5)F6—C5—F4'—F4148.3 (6)
Cu1—C4—C5—F4'73.8 (6)F5'—C5—F4'—F424.3 (6)
O2—C4—C5—F5130.2 (4)F5—C5—F4'—F460.1 (8)
C3—C4—C5—F550.6 (4)C4—C5—F4'—F4103.7 (5)
Cu1—C4—C5—F5117.3 (5)F6'—C5—F4'—F610.0 (5)
Cu1—O3—C7—C85.6 (4)F4—C5—F4'—F6148.3 (6)
Cu1—O3—C7—C6174.94 (14)F5'—C5—F4'—F6124.0 (5)
F7—C6—C7—O32.6 (3)F5—C5—F4'—F688.2 (5)
F8—C6—C7—O3117.5 (2)C4—C5—F4'—F6108.1 (3)
F9—C6—C7—O3122.9 (2)F6'—F6—F4'—F415.9 (10)
F7—C6—C7—C8177.0 (2)C5—F6—F4'—F432.5 (5)
F8—C6—C7—C863.0 (3)F6'—F6—F4'—C516.5 (7)
F9—C6—C7—C856.7 (3)F6'—F5—F5'—C529.9 (4)
F7—C6—C7—Cu18.2 (4)C5—F5—F5'—F414.5 (6)
F8—C6—C7—Cu1111.8 (3)F6'—F5—F5'—F415.4 (9)
F9—C6—C7—Cu1128.5 (3)F6'—C5—F5'—F532.7 (7)
O4—Cu1—C7—O3178.1 (2)F4—C5—F5'—F5165.9 (7)
O1—Cu1—C7—O3166.4 (2)F6—C5—F5'—F573.9 (5)
O5i—Cu1—C7—O317.9 (2)F4'—C5—F5'—F5146.6 (6)
O2—Cu1—C7—O380.6 (2)C4—C5—F5'—F590.8 (6)
O5—Cu1—C7—O394.6 (2)F6'—C5—F5'—F4133.3 (5)
O3—Cu1—C7—C8175.6 (3)F6—C5—F5'—F492.1 (3)
O4—Cu1—C7—C82.47 (17)F4'—C5—F5'—F419.3 (5)
O1—Cu1—C7—C817.9 (3)F5—C5—F5'—F4165.9 (7)
O5i—Cu1—C7—C8157.75 (17)C4—C5—F5'—F4103.3 (3)
O2—Cu1—C7—C8103.75 (18)F4'—F4—F5'—F511.6 (11)
O5—Cu1—C7—C881.09 (18)C5—F4—F5'—F515.9 (7)
O3—Cu1—C7—C69.1 (3)F4'—F4—F5'—C527.5 (6)
O4—Cu1—C7—C6172.8 (3)F4'—F6—F6'—C514.8 (7)
O1—Cu1—C7—C6157.4 (3)C5—F6—F6'—F526.6 (5)
O5i—Cu1—C7—C627.0 (3)F4'—F6—F6'—F511.8 (10)
O2—Cu1—C7—C671.5 (3)F4—C5—F6'—F657.8 (7)
O5—Cu1—C7—C6103.6 (3)F5'—C5—F6'—F6127.8 (6)
O3—C7—C8—C94.6 (5)F4'—C5—F6'—F613.9 (6)
C6—C7—C8—C9175.9 (2)F5—C5—F6'—F6151.2 (6)
Cu1—C7—C8—C91.5 (3)C4—C5—F6'—F6103.9 (6)
O3—C7—C8—Cu13.1 (2)F4—C5—F6'—F593.5 (5)
C6—C7—C8—Cu1177.4 (2)F6—C5—F6'—F5151.2 (6)
O3—Cu1—C8—C72.18 (16)F5'—C5—F6'—F523.4 (4)
O4—Cu1—C8—C7176.8 (2)F4'—C5—F6'—F5137.3 (4)
O1—Cu1—C8—C7171.52 (16)C4—C5—F6'—F5104.9 (3)
O5i—Cu1—C8—C729.7 (2)F5'—F5—F6'—F63.6 (8)
O2—Cu1—C8—C777.99 (18)C5—F5—F6'—F630.7 (6)
O5—Cu1—C8—C798.95 (18)F5'—F5—F6'—C534.3 (5)
O3—Cu1—C8—C9179.3 (2)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C5HF6O2)4(C11H9NO)2]
Mr1297.70
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.3830 (4), 10.7870 (4), 11.2498 (4)
α, β, γ (°)99.055 (2), 99.036 (2), 98.258 (2)
V3)1210.40 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.18 × 0.10 × 0.09
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.836, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
47759, 6427, 5461
Rint0.029
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.04
No. of reflections6427
No. of parameters397
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 1.40

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for specific funding toward the purchase of the single-crystal X-ray diffractometer, and for the post-doctoral and PhD research grants Nos. SFRH/BPD/63736/2009 (to JAF) and SFRH/BD/46601/2008 (to PS), respectively. We further acknowledge the FCT for additional funding under the R&D project PTDC/QUI/69302/2006.

References

First citationAkkılıç, K., Ocak, Y. S., Kılıçoğlu, T., İlhan, S. & Temel, H. (2010). Curr. Appl. Phys. 10, 337–341.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArmaroli, N., Accorsi, G., Cardinali, F. & Listorti, A. (2007). Top. Curr. Chem. 280, 69–115.  Web of Science CrossRef CAS Google Scholar
First citationBessho, T., Constable, E. C., Graetzel, M., Redondo, A. H., Housecroft, C. E., Kylberg, W., Nazeeruddin, M. K., Neuburger, M. & Schaffner, S. (2008). Chem. Commun. pp. 3717–3719.  Web of Science CSD CrossRef Google Scholar
First citationBrandão, P., Paz, F. A. A. & Rocha, J. (2005). Chem. Commun. pp. 171–173.  Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS, Delft, The Netherlands.  Google Scholar
First citationChan, C. P., Lam, H. & Surya, C. (2010). Sol. Energ. Mater. 94, 207–211.  CrossRef CAS Google Scholar
First citationDaniel, A., Le Pen, C., Archambeau, C. & Reniers, F. (2009). Appl. Surf. Sci. 256, S82–S85.  Web of Science CrossRef CAS Google Scholar
First citationFernandes, J. A., Ramos, A. I., Silva, P., Braga, S. S., Ribeiro-Claro, P., Rocha, J. & Almeida Paz, F. A. (2010). Acta Cryst. E66, m626–m627.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGirginova, P. I., Paz, F. A. A., Nogueira, H. I. S., Silva, N. J. O., Amaral, V. S., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 737, 221–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationJeon, B. P., Lee, S. & Lee, J. K. (2008). Surf. Coat. Technol. 202, 1839–1846.  Web of Science CrossRef CAS Google Scholar
First citationKambayashi, T., Ohta, H., Hoshi, H., Hirano, M., Hosono, H., Takezoe, H. & Ishikawa, K. (2005). Cryst. Growth Des. 5, 143–146.  Web of Science CrossRef CAS Google Scholar
First citationPapadaki, H., Christofides, A., Jeffery, J. C. & Bakas, T. (1999). J. Coord. Chem. 47, 559–572.  Web of Science CrossRef CAS Google Scholar
First citationAlmeida Paz, F. A., Shi, F.-N., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m2247–m2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeranantham, P., Jeyachandran, Y. L., Viswanathan, C., Praveena, N. N., Chitra, P. C., Mangalaraj, D. & Narayandass, S. K. (2007). Mater. Charact. 58, 756–764.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F.-N., Almeida Paz, F. A., Trindade, T. & Rocha, J. (2006). Acta Cryst. E62, m335–m338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSi, Z., Li, J., Li, B., Lui, S. & Li, W. (2008). J. Lumin. 129, 181–186.  Web of Science CrossRef Google Scholar
First citationVogler, A. & Kunkely, H. (2001). Topics in Current Chemistry, 1st ed. Berlin: Springer-Verlag.  Google Scholar
First citationWalsh, P. J., Lundin, N. J., Gordon, K. C., Kim, J.-Y. & Lee, C.-H. (2009). Opt. Mat. 31, 1525–1531.  Web of Science CrossRef CAS Google Scholar
First citationWatson, W. H. & Johnson, D. R. (1971). J. Coord. Chem. 1, 145–153.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m824-m825
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds