organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(3,4-Dimeth­­oxy­benzyl­­idene)amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 June 2010; accepted 16 June 2010; online 23 June 2010)

The imino–carbon double-bond in the title Schiff base, C20H21N3O3, has an E configuration; the six-membered aromatic substituent (r.m.s. deviation = 0.012 Å) is nearly coplanar with five-membered pyrazole substituent (r.m.s. deviation = 0.031 Å), the dihedral angle between the two systems being 11.4 (1)°]. The phenyl ring connected to the pyrazole ring is aligned at 45.5 (1)° with respect to this five-membered ring. The N atoms in the ring show pyramidal coordinations.

Related literature

For background literature on Schiff bases derived from 4-amino­anti­pyridine, see: Montalvo-González & Ariza-Castolo (2003[Montalvo-González, R. & Ariza-Castolo, A. (2003). J. Mol. Struct. 655, 375-389.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3O3

  • Mr = 351.40

  • Monoclinic, P 21 /c

  • a = 12.5584 (8) Å

  • b = 10.4752 (7) Å

  • c = 14.6002 (9) Å

  • β = 109.039 (1)°

  • V = 1815.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 16900 measured reflections

  • 4164 independent reflections

  • 3442 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.00

  • 4164 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

4-Aminoantipyrine (4-amino-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one) possesses an aminopyrazolone unit, a feature that allows the compound to condense with aromatic aldehydes to yield Schiff bases. The Schiff base derived from the benzaldehyde homolog has nearly coplanar phenyl and pyrazoly rings (Montalvo-González & Ariza-Castolo, 2003). In the title benzaldehyde analog (Scheme I, Fig. 1), the 6-membered ring is nearly coplanar with 5-membered pyrazolyl ring [dihedral angle between the two systems 11.4 (1) °]. The phenyl ring connected to the pyrazolyl ring is aligned at 45.5 (1)°.

Related literature top

For background literature on Schiff bases derived from 4-aminoantipyridine, see: Montalvo-González & Ariza-Castolo (2003).

Experimental top

3,4-Dimethoxybenzaldehyde (0.36 g, 2.2 mmol) and 4-aminoantipyrine (0.45 g, 2.2 mmol) here heated in methanol (15 ml) for 5 h to afford a colorless precipitate. The solid material was collected and recrystallized from methanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, U(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C20H21N3O3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-[(3,4-Dimethoxybenzylidene)amino]-1,5-dimethyl-2-phenyl- 1H-pyrazol-3(2H)-one top
Crystal data top
C20H21N3O3F(000) = 744
Mr = 351.40Dx = 1.286 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6153 reflections
a = 12.5584 (8) Åθ = 2.4–28.2°
b = 10.4752 (7) ŵ = 0.09 mm1
c = 14.6002 (9) ÅT = 100 K
β = 109.039 (1)°Prism, colourless
V = 1815.6 (2) Å30.35 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3442 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
ω scansh = 1616
16900 measured reflectionsk = 1312
4164 independent reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.5659P]
where P = (Fo2 + 2Fc2)/3
4164 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H21N3O3V = 1815.6 (2) Å3
Mr = 351.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5584 (8) ŵ = 0.09 mm1
b = 10.4752 (7) ÅT = 100 K
c = 14.6002 (9) Å0.35 × 0.25 × 0.15 mm
β = 109.039 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3442 reflections with I > 2σ(I)
16900 measured reflectionsRint = 0.031
4164 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
4164 reflectionsΔρmin = 0.24 e Å3
239 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28425 (6)0.77513 (8)0.59527 (6)0.01980 (19)
O20.86240 (7)0.62990 (8)0.50221 (6)0.02147 (19)
O30.86452 (8)0.84966 (8)0.42541 (7)0.0292 (2)
N10.26678 (8)0.60441 (9)0.69085 (7)0.0185 (2)
N20.33485 (8)0.50111 (9)0.73701 (7)0.0190 (2)
N30.50498 (8)0.62594 (9)0.60372 (7)0.0187 (2)
C10.18777 (9)0.65675 (11)0.73138 (8)0.0189 (2)
C20.09077 (9)0.71284 (11)0.66951 (9)0.0204 (2)
H20.07780.71550.60170.025*
C30.01286 (10)0.76508 (12)0.70792 (9)0.0235 (3)
H30.05300.80520.66620.028*
C40.03033 (10)0.75915 (12)0.80662 (9)0.0252 (3)
H40.02400.79360.83230.030*
C50.12751 (11)0.70267 (13)0.86781 (9)0.0258 (3)
H50.13940.69820.93540.031*
C60.20713 (10)0.65278 (12)0.83089 (9)0.0230 (3)
H60.27450.61610.87310.028*
C70.31965 (9)0.67280 (11)0.63587 (8)0.0171 (2)
C80.41934 (9)0.59911 (11)0.64197 (8)0.0173 (2)
C90.42229 (9)0.49573 (11)0.70009 (8)0.0179 (2)
C100.50361 (10)0.38826 (12)0.72347 (9)0.0231 (3)
H10A0.56630.40770.69960.035*
H10B0.46570.31020.69240.035*
H10C0.53260.37590.79380.035*
C110.27490 (10)0.38645 (11)0.75111 (9)0.0225 (3)
H11A0.23430.40540.79650.034*
H11B0.32920.31770.77740.034*
H11C0.22120.35970.68880.034*
C120.49724 (9)0.72136 (11)0.54678 (8)0.0191 (2)
H120.43040.77130.52740.023*
C130.59014 (9)0.75419 (11)0.51128 (8)0.0187 (2)
C140.68242 (9)0.67130 (11)0.52633 (8)0.0182 (2)
H140.68380.59190.55820.022*
C150.77102 (9)0.70504 (11)0.49495 (8)0.0186 (2)
C160.77122 (10)0.82494 (11)0.45064 (9)0.0213 (2)
C170.68007 (11)0.90626 (12)0.43516 (9)0.0241 (3)
H170.67940.98670.40490.029*
C180.58924 (10)0.86946 (11)0.46420 (9)0.0222 (3)
H180.52570.92420.45150.027*
C190.87115 (10)0.51317 (11)0.55464 (9)0.0229 (3)
H19A0.94040.46870.55640.034*
H19B0.80600.45900.52260.034*
H19C0.87300.53160.62090.034*
C200.86692 (15)0.96944 (14)0.37878 (14)0.0452 (4)
H20A0.93810.97750.36520.068*
H20B0.86051.03930.42130.068*
H20C0.80380.97350.31790.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0190 (4)0.0167 (4)0.0230 (4)0.0009 (3)0.0060 (3)0.0034 (3)
O20.0217 (4)0.0182 (4)0.0269 (4)0.0041 (3)0.0112 (3)0.0044 (3)
O30.0333 (5)0.0184 (4)0.0463 (6)0.0023 (4)0.0273 (4)0.0066 (4)
N10.0171 (4)0.0173 (5)0.0208 (5)0.0008 (4)0.0060 (4)0.0036 (4)
N20.0183 (4)0.0165 (5)0.0216 (5)0.0006 (4)0.0057 (4)0.0036 (4)
N30.0178 (4)0.0192 (5)0.0192 (5)0.0019 (4)0.0062 (4)0.0020 (4)
C10.0170 (5)0.0173 (5)0.0228 (6)0.0038 (4)0.0071 (4)0.0013 (5)
C20.0188 (5)0.0214 (6)0.0208 (6)0.0040 (4)0.0060 (4)0.0001 (5)
C30.0176 (5)0.0232 (6)0.0293 (6)0.0018 (5)0.0071 (5)0.0010 (5)
C40.0241 (6)0.0237 (6)0.0319 (7)0.0058 (5)0.0147 (5)0.0083 (5)
C50.0302 (6)0.0271 (7)0.0212 (6)0.0061 (5)0.0097 (5)0.0051 (5)
C60.0220 (6)0.0236 (6)0.0211 (6)0.0021 (5)0.0039 (5)0.0013 (5)
C70.0164 (5)0.0169 (5)0.0167 (5)0.0032 (4)0.0038 (4)0.0016 (4)
C80.0163 (5)0.0172 (5)0.0174 (5)0.0008 (4)0.0042 (4)0.0013 (4)
C90.0169 (5)0.0179 (5)0.0170 (5)0.0012 (4)0.0030 (4)0.0019 (4)
C100.0232 (6)0.0190 (6)0.0258 (6)0.0036 (5)0.0064 (5)0.0027 (5)
C110.0249 (6)0.0185 (6)0.0251 (6)0.0033 (5)0.0096 (5)0.0031 (5)
C120.0184 (5)0.0198 (6)0.0189 (5)0.0007 (4)0.0060 (4)0.0012 (4)
C130.0207 (5)0.0190 (6)0.0171 (5)0.0008 (4)0.0070 (4)0.0022 (4)
C140.0219 (5)0.0160 (5)0.0170 (5)0.0006 (4)0.0069 (4)0.0001 (4)
C150.0206 (5)0.0161 (5)0.0192 (5)0.0017 (4)0.0069 (4)0.0019 (4)
C160.0250 (6)0.0184 (6)0.0253 (6)0.0005 (5)0.0149 (5)0.0008 (5)
C170.0325 (6)0.0166 (6)0.0284 (6)0.0030 (5)0.0169 (5)0.0034 (5)
C180.0256 (6)0.0191 (6)0.0241 (6)0.0046 (5)0.0113 (5)0.0006 (5)
C190.0246 (6)0.0176 (6)0.0273 (6)0.0028 (5)0.0095 (5)0.0041 (5)
C200.0552 (9)0.0222 (7)0.0797 (12)0.0092 (7)0.0513 (9)0.0175 (7)
Geometric parameters (Å, º) top
O1—C71.2354 (14)C9—C101.4830 (16)
O2—C151.3669 (14)C10—H10A0.9800
O2—C191.4277 (14)C10—H10B0.9800
O3—C161.3627 (14)C10—H10C0.9800
O3—C201.4326 (16)C11—H11A0.9800
N1—C71.3950 (14)C11—H11B0.9800
N1—N21.4072 (13)C11—H11C0.9800
N1—C11.4206 (15)C12—C131.4638 (16)
N2—C91.3731 (15)C12—H120.9500
N2—C111.4673 (14)C13—C181.3876 (17)
N3—C121.2833 (15)C13—C141.4067 (16)
N3—C81.3926 (14)C14—C151.3804 (16)
C1—C21.3883 (16)C14—H140.9500
C1—C61.3933 (17)C15—C161.4132 (16)
C2—C31.3890 (17)C16—C171.3851 (17)
C2—H20.9500C17—C181.3946 (17)
C3—C41.3865 (18)C17—H170.9500
C3—H30.9500C18—H180.9500
C4—C51.3879 (19)C19—H19A0.9800
C4—H40.9500C19—H19B0.9800
C5—C61.3839 (18)C19—H19C0.9800
C5—H50.9500C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—C81.4486 (15)C20—H20C0.9800
C8—C91.3688 (16)
C15—O2—C19116.78 (9)H10B—C10—H10C109.5
C16—O3—C20116.62 (10)N2—C11—H11A109.5
C7—N1—N2109.98 (9)N2—C11—H11B109.5
C7—N1—C1124.72 (10)H11A—C11—H11B109.5
N2—N1—C1119.67 (9)N2—C11—H11C109.5
C9—N2—N1106.39 (9)H11A—C11—H11C109.5
C9—N2—C11122.28 (10)H11B—C11—H11C109.5
N1—N2—C11115.93 (9)N3—C12—C13120.78 (10)
C12—N3—C8120.78 (10)N3—C12—H12119.6
C2—C1—C6120.57 (11)C13—C12—H12119.6
C2—C1—N1118.44 (10)C18—C13—C14119.19 (11)
C6—C1—N1120.99 (10)C18—C13—C12120.08 (10)
C1—C2—C3119.23 (11)C14—C13—C12120.71 (10)
C1—C2—H2120.4C15—C14—C13120.15 (11)
C3—C2—H2120.4C15—C14—H14119.9
C4—C3—C2120.56 (11)C13—C14—H14119.9
C4—C3—H3119.7O2—C15—C14125.03 (10)
C2—C3—H3119.7O2—C15—C16114.87 (10)
C3—C4—C5119.73 (11)C14—C15—C16120.10 (10)
C3—C4—H4120.1O3—C16—C17125.23 (11)
C5—C4—H4120.1O3—C16—C15115.00 (10)
C6—C5—C4120.37 (12)C17—C16—C15119.77 (11)
C6—C5—H5119.8C16—C17—C18119.66 (11)
C4—C5—H5119.8C16—C17—H17120.2
C5—C6—C1119.50 (11)C18—C17—H17120.2
C5—C6—H6120.2C13—C18—C17121.05 (11)
C1—C6—H6120.2C13—C18—H18119.5
O1—C7—N1123.87 (10)C17—C18—H18119.5
O1—C7—C8131.33 (10)O2—C19—H19A109.5
N1—C7—C8104.77 (9)O2—C19—H19B109.5
C9—C8—N3122.68 (10)H19A—C19—H19B109.5
C9—C8—C7107.92 (10)O2—C19—H19C109.5
N3—C8—C7129.26 (10)H19A—C19—H19C109.5
C8—C9—N2110.34 (10)H19B—C19—H19C109.5
C8—C9—C10128.36 (11)O3—C20—H20A109.5
N2—C9—C10121.31 (10)O3—C20—H20B109.5
C9—C10—H10A109.5H20A—C20—H20B109.5
C9—C10—H10B109.5O3—C20—H20C109.5
H10A—C10—H10B109.5H20A—C20—H20C109.5
C9—C10—H10C109.5H20B—C20—H20C109.5
H10A—C10—H10C109.5
C7—N1—N2—C98.00 (12)C7—C8—C9—N23.61 (13)
C1—N1—N2—C9162.78 (10)N3—C8—C9—C108.03 (19)
C7—N1—N2—C11147.65 (10)C7—C8—C9—C10175.83 (11)
C1—N1—N2—C1157.57 (13)N1—N2—C9—C87.08 (12)
C7—N1—C1—C258.12 (15)C11—N2—C9—C8143.54 (11)
N2—N1—C1—C2151.03 (10)N1—N2—C9—C10172.41 (10)
C7—N1—C1—C6121.50 (12)C11—N2—C9—C1035.94 (16)
N2—N1—C1—C629.34 (16)C8—N3—C12—C13176.26 (10)
C6—C1—C2—C30.05 (17)N3—C12—C13—C18168.62 (11)
N1—C1—C2—C3179.68 (10)N3—C12—C13—C149.85 (17)
C1—C2—C3—C41.31 (18)C18—C13—C14—C150.35 (17)
C2—C3—C4—C51.22 (18)C12—C13—C14—C15178.13 (10)
C3—C4—C5—C60.25 (19)C19—O2—C15—C146.31 (16)
C4—C5—C6—C11.59 (19)C19—O2—C15—C16174.22 (10)
C2—C1—C6—C51.50 (18)C13—C14—C15—O2177.20 (10)
N1—C1—C6—C5178.89 (11)C13—C14—C15—C162.23 (17)
N2—N1—C7—O1172.69 (10)C20—O3—C16—C170.3 (2)
C1—N1—C7—O119.46 (17)C20—O3—C16—C15178.96 (13)
N2—N1—C7—C85.75 (12)O2—C15—C16—O32.53 (15)
C1—N1—C7—C8158.98 (10)C14—C15—C16—O3177.98 (11)
C12—N3—C8—C9177.56 (11)O2—C15—C16—C17176.81 (11)
C12—N3—C8—C77.18 (18)C14—C15—C16—C172.68 (18)
O1—C7—C8—C9176.90 (12)O3—C16—C17—C18179.80 (12)
N1—C7—C8—C91.37 (12)C15—C16—C17—C180.52 (19)
O1—C7—C8—N31.1 (2)C14—C13—C18—C172.54 (18)
N1—C7—C8—N3177.18 (11)C12—C13—C18—C17175.95 (11)
N3—C8—C9—N2172.54 (10)C16—C17—C18—C132.10 (19)

Experimental details

Crystal data
Chemical formulaC20H21N3O3
Mr351.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.5584 (8), 10.4752 (7), 14.6002 (9)
β (°) 109.039 (1)
V3)1815.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16900, 4164, 3442
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.00
No. of reflections4164
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMontalvo-González, R. & Ariza-Castolo, A. (2003). J. Mol. Struct. 655, 375–389.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds