organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(4-Iodo­phen­yl)imino­meth­yl]-6-methyl­phenol

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: gozdemir@omu.edu.tr

(Received 6 May 2010; accepted 17 May 2010; online 5 June 2010)

The title compound, C14H12INO, adopts the phenol–imine tautomeric form. The dihedral angle between the aromatic rings is 20.6 (3)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond while in the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a zigzag chain parallel to the b axis.

Related literature

For background to the properties and uses of Schiff bases, see: Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, USA: Cornell University.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 1041-2051.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For comparative bond lengths, see: Şahin et al. (2009[Şahin, Z. S., Işık, Ş., Erşahin, F. & Ağar, E. (2009). Acta Cryst. E65, o811.]). For related structures, see: Özdemir et al. (2010[Özdemir Tarı, G., Tanak, H., Macit, M., Erşahin, F. & Isık, Ş. (2010). Acta Cryst. E66, o85.]); Tanak et al. (2009[Tanak, H., Erşahin, F., Köysal, Y., Agar, E., Işık, Ş. & Yavuz, M. (2009). J. Mol. Model. 15, 1281-1290.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12INO

  • Mr = 337.15

  • Orthorhombic, P 21 21 21

  • a = 4.6773 (4) Å

  • b = 11.6092 (12) Å

  • c = 23.6751 (4) Å

  • V = 1285.55 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 293 K

  • 0.48 × 0.24 × 0.09 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-AREA; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.520, Tmax = 0.769

  • 7548 measured reflections

  • 2267 independent reflections

  • 1541 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.078

  • S = 0.86

  • 2267 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 901 Friedel pairs

  • Flack parameter: 0.10 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.591 (8) 147
C13—H13⋯O1i 0.93 2.51 3.348 (8) 150
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton et al., 1979; Layer, 1963; Ingold 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002). There are two characteristic properties of Schiff bases, viz. Photochromism and thermochromism (Cohen et al., 1964). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (OH) and the keto-amine (NH) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine (Şahin et al., 2009) and N—H···O in keto-amine tautomers (Tanak et al., 2009). Another form of the Schiff base compounds is also known as zwitterion having an ionic intramolecular hydrogen bond (N+—H···O-) and this form is rarely seen in the solid state (Özdemir et al., 2010).

The molecular structure of the title compound, C14H17O1N1I1, shows that the molecule exists in the phenol-imine form (Fig. 1). The C1=N1 [1.269 (8) Å] and C9=N1 [1.397 (7) Å] bond distances are of double-bond character, whereas, C7—O1 [1.332 (8) Å] distance is single bond. These distances are similar to that reported in the literature [1.277 (3) Å] and [1.402 (3) Å] for C=N and [1.347 (3) Å] for C—O respectively (Şahin et al., 2009).

The molecule of title compound is non-planar (Fig. 1), the two phenyl rings are twisted by a dihedral angle of 20.6 (3)°. This conformation is stabilized by intramolecular N-H···O hydrogen bond (Table 1, Fig. 1) forming S(6) ring (Bernstein et al., 1995). weak intermolecular C-H···O hydrogen bonds link the molecules forming a zig-zag chain parallel to the b axis (Table 1, Fig. 2). The I atom is slightly out of the C9-C14 ring by 0.18 (1)Å.

Related literature top

For background to the properties and uses of Schiff bases, see: Barton & Ollis (1979); Layer (1963); Ingold (1969); Cohen et al. (1964); Taggi et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For comparative bond lengths, see: Şahin et al. (2009). For related structures, see: Özdemir et al. (2010); Tanak et al. (2009).

Experimental top

The compound (E)-2-[(4-Iodophenylimino)methyl]-6-methylphenol was prepared by reflux a mixture of a solution containing 3-methylsalicylaldehyde (0.1 ml 0.82 mmol) in 20 ml e thanol and solution containing 4-Iodoaniline (0.179 g 0.82 mmol) in 20 ml e thanol.The reaction mixture was stirred for 1 hunder reflux. The crystals of (E)-2-[(4-Iodophenylimino)methyl]-6-methylphenol suitable for x-ray analysis were obtained from ethylalcohol by slow evaporation (yield 51%; m.p.350-353 K).

Refinement top

The position of the H1 atom was obtained from a difference map of the electron density in the unit-cell and was refined freely. Other H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.93 Å for aromatic CH and at 0.96 Å for CH3. The displacement parameters of the H atoms were constrained as Uiso(H)= 1.2Ueq(1.5Ueq for methyl) of the parent atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are represented as small spheres of arbitrary radii. H bond is shown as dashed lines.
[Figure 2] Fig. 2. Partial packing view showing the formation of zig-zag chain parallel to the b axis. H atoms not involved in hydrogen bondings have been omitted for clarity. C-H···O hydrogen bonds are represented as dashed lines
(E)-2-[(4-Iodophenyl)iminomethyl]-6-methylphenol top
Crystal data top
C14H12INOF(000) = 656
Mr = 337.15Dx = 1.742 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7912 reflections
a = 4.6773 (4) Åθ = 1.7–27.8°
b = 11.6092 (12) ŵ = 2.47 mm1
c = 23.6751 (4) ÅT = 293 K
V = 1285.55 (17) Å3Prism, yellow
Z = 40.48 × 0.24 × 0.09 mm
Data collection top
Stoe IPDS II
diffractometer
2267 independent reflections
Radiation source: fine-focus sealed tube1541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 1.7°
rotation method scansh = 55
Absorption correction: numerical
(X-AREA; Stoe & Cie, 2002)
k = 1313
Tmin = 0.520, Tmax = 0.769l = 2828
7548 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0321P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
2267 reflectionsΔρmax = 0.65 e Å3
156 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 901 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (5)
Crystal data top
C14H12INOV = 1285.55 (17) Å3
Mr = 337.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.6773 (4) ŵ = 2.47 mm1
b = 11.6092 (12) ÅT = 293 K
c = 23.6751 (4) Å0.48 × 0.24 × 0.09 mm
Data collection top
Stoe IPDS II
diffractometer
2267 independent reflections
Absorption correction: numerical
(X-AREA; Stoe & Cie, 2002)
1541 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.769Rint = 0.086
7548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.65 e Å3
S = 0.86Δρmin = 0.29 e Å3
2267 reflectionsAbsolute structure: Flack (1983), 901 Friedel pairs
156 parametersAbsolute structure parameter: 0.10 (5)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.81565 (9)0.49212 (4)0.907466 (15)0.07878 (18)
O10.3098 (17)0.6170 (3)0.6324 (2)0.0759 (15)
H10.20280.60140.65880.114*
N10.0187 (10)0.4895 (5)0.69451 (16)0.0621 (12)
C10.0685 (14)0.4026 (6)0.6669 (2)0.0596 (16)
H150.00640.33060.67570.071*
C20.2788 (18)0.4106 (5)0.6224 (3)0.0553 (19)
C30.3704 (13)0.3134 (5)0.5941 (3)0.0639 (16)
H30.29330.24230.60370.077*
C40.5711 (17)0.3190 (6)0.5522 (3)0.071 (2)
H40.63690.25230.53480.085*
C50.6755 (18)0.4266 (6)0.5361 (3)0.0680 (18)
H50.80580.43070.50650.082*
C60.5925 (14)0.5272 (6)0.5624 (3)0.0660 (19)
C70.3895 (13)0.5201 (5)0.6065 (2)0.0568 (15)
C80.699 (2)0.6422 (6)0.5449 (3)0.091 (3)
H8A0.84170.63320.51610.137*
H8B0.54340.68720.53050.137*
H8C0.78180.68060.57690.137*
C90.2092 (13)0.4822 (5)0.7398 (2)0.0582 (13)
C100.3469 (18)0.5806 (5)0.7557 (3)0.068 (2)
H100.31620.64790.73530.082*
C110.5354 (18)0.5827 (6)0.8024 (3)0.069 (2)
H110.63400.64960.81180.083*
C120.5693 (13)0.4850 (7)0.8333 (2)0.0636 (15)
C130.4354 (17)0.3826 (6)0.8184 (3)0.0658 (19)
H130.46520.31580.83920.079*
C140.2599 (16)0.3824 (5)0.7726 (3)0.068 (2)
H140.16970.31410.76250.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0755 (3)0.0930 (3)0.0679 (2)0.0021 (4)0.0059 (2)0.0085 (3)
O10.099 (5)0.053 (2)0.076 (3)0.001 (3)0.001 (3)0.001 (2)
N10.060 (3)0.068 (3)0.058 (2)0.011 (4)0.002 (2)0.007 (3)
C10.058 (4)0.056 (4)0.064 (4)0.008 (3)0.009 (3)0.002 (3)
C20.050 (5)0.060 (4)0.057 (3)0.004 (3)0.001 (3)0.001 (3)
C30.068 (5)0.060 (3)0.064 (3)0.012 (3)0.003 (4)0.003 (3)
C40.071 (5)0.076 (5)0.067 (4)0.004 (4)0.000 (4)0.010 (3)
C50.060 (4)0.086 (5)0.058 (4)0.005 (5)0.006 (4)0.010 (3)
C60.066 (4)0.072 (5)0.060 (3)0.007 (4)0.011 (3)0.012 (3)
C70.059 (4)0.061 (4)0.051 (3)0.002 (4)0.012 (2)0.007 (3)
C80.109 (9)0.080 (5)0.085 (5)0.012 (6)0.006 (5)0.016 (4)
C90.058 (3)0.052 (3)0.066 (3)0.003 (4)0.003 (3)0.006 (3)
C100.078 (6)0.054 (4)0.073 (4)0.005 (4)0.007 (4)0.014 (3)
C110.078 (5)0.064 (4)0.067 (4)0.017 (4)0.001 (4)0.005 (3)
C120.063 (3)0.076 (5)0.052 (3)0.000 (4)0.004 (2)0.001 (4)
C130.075 (5)0.060 (4)0.063 (4)0.001 (4)0.004 (4)0.002 (3)
C140.074 (7)0.058 (4)0.071 (4)0.006 (4)0.010 (4)0.007 (3)
Geometric parameters (Å, º) top
I1—C122.102 (5)C6—C71.415 (8)
O1—C71.334 (7)C6—C81.484 (9)
O1—H10.8200C8—H8A0.9600
N1—C11.269 (8)C8—H8B0.9600
N1—C91.397 (7)C8—H8C0.9600
C1—C21.444 (10)C9—C101.364 (9)
C1—H150.9300C9—C141.414 (9)
C2—C31.381 (8)C10—C111.415 (10)
C2—C71.423 (9)C10—H100.9300
C3—C41.367 (9)C11—C121.358 (9)
C3—H30.9300C11—H110.9300
C4—C51.394 (10)C12—C131.389 (10)
C4—H40.9300C13—C141.359 (9)
C5—C61.379 (9)C13—H130.9300
C5—H50.9300C14—H140.9300
C7—O1—H1109.5C6—C8—H8B109.5
C1—N1—C9123.5 (6)H8A—C8—H8B109.5
N1—C1—C2122.9 (6)C6—C8—H8C109.5
N1—C1—H15118.5H8A—C8—H8C109.5
C2—C1—H15118.5H8B—C8—H8C109.5
C3—C2—C7119.2 (6)C10—C9—N1117.5 (6)
C3—C2—C1120.9 (6)C10—C9—C14117.1 (5)
C7—C2—C1119.9 (6)N1—C9—C14125.3 (6)
C4—C3—C2121.8 (6)C9—C10—C11121.6 (6)
C4—C3—H3119.1C9—C10—H10119.2
C2—C3—H3119.1C11—C10—H10119.2
C3—C4—C5118.8 (6)C12—C11—C10118.6 (6)
C3—C4—H4120.6C12—C11—H11120.7
C5—C4—H4120.6C10—C11—H11120.7
C6—C5—C4122.4 (6)C11—C12—C13121.7 (5)
C6—C5—H5118.8C11—C12—I1118.7 (5)
C4—C5—H5118.8C13—C12—I1119.5 (5)
C5—C6—C7118.3 (6)C14—C13—C12118.4 (6)
C5—C6—C8122.8 (6)C14—C13—H13120.8
C7—C6—C8118.9 (7)C12—C13—H13120.8
O1—C7—C6118.6 (6)C13—C14—C9122.5 (6)
O1—C7—C2122.0 (5)C13—C14—H14118.7
C6—C7—C2119.4 (6)C9—C14—H14118.7
C6—C8—H8A109.5
C9—N1—C1—C2176.1 (5)C3—C2—C7—C60.5 (9)
N1—C1—C2—C3179.1 (6)C1—C2—C7—C6179.1 (5)
N1—C1—C2—C72.3 (9)C1—N1—C9—C10162.2 (6)
C7—C2—C3—C42.0 (10)C1—N1—C9—C1421.4 (9)
C1—C2—C3—C4179.4 (6)N1—C9—C10—C11177.6 (6)
C2—C3—C4—C53.1 (10)C14—C9—C10—C110.8 (10)
C3—C4—C5—C62.8 (11)C9—C10—C11—C122.7 (11)
C4—C5—C6—C71.3 (10)C10—C11—C12—C133.3 (11)
C4—C5—C6—C8179.1 (7)C10—C11—C12—I1173.8 (5)
C5—C6—C7—O1179.6 (6)C11—C12—C13—C142.0 (11)
C8—C6—C7—O12.6 (9)I1—C12—C13—C14175.1 (5)
C5—C6—C7—C20.2 (9)C12—C13—C14—C90.1 (11)
C8—C6—C7—C2178.0 (6)C10—C9—C14—C130.5 (10)
C3—C2—C7—O1179.9 (7)N1—C9—C14—C13176.0 (6)
C1—C2—C7—O11.5 (9)C2—C1—N1—C9176.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.591 (8)147
C13—H13···O1i0.932.513.348 (8)150
Symmetry code: (i) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H12INO
Mr337.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.6773 (4), 11.6092 (12), 23.6751 (4)
V3)1285.55 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.48 × 0.24 × 0.09
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-AREA; Stoe & Cie, 2002)
Tmin, Tmax0.520, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
7548, 2267, 1541
Rint0.086
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.078, 0.86
No. of reflections2267
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.29
Absolute structureFlack (1983), 901 Friedel pairs
Absolute structure parameter0.10 (5)

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.591 (8)147.0
C13—H13···O1i0.932.513.348 (8)149.9
Symmetry code: (i) x, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.  Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 1041–2051.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIngold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, USA: Cornell University.  Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationÖzdemir Tarı, G., Tanak, H., Macit, M., Erşahin, F. & Isık, Ş. (2010). Acta Cryst. E66, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, Z. S., Işık, Ş., Erşahin, F. & Ağar, E. (2009). Acta Cryst. E65, o811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTanak, H., Erşahin, F., Köysal, Y., Agar, E., Işık, Ş. & Yavuz, M. (2009). J. Mol. Model. 15, 1281–1290.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds