organic compounds
(RS)-1-(1-Acetylindolin-5-yl)-2-chloropropan-1-one
aDepartment of Chemistry, Guangdong Medical College, Dongguan 523808, People's Republic of China
*Correspondence e-mail: xuemeiyang131@163.com
The molecule of the title compound, C13H14ClNO2, is roughly planar [maximum deviation = 0.060 (2) Å] with the disordered Cl/CH3 group asymetrically distributed on both sides of the mean plane. Indeed, the Cl and CH3 located on the stereogenic carbon exchange each other with occupancy factors in the ratio 0.60:0.40. The whole crystal is a racemate. Non-classical C—H⋯O hydrogen bonds and π–π interactions [centroid–centroid distance = 3.6959 (9) Å] between symmetry-related phenyl rings stabilize the crystal structure.
Related literature
The title compound was synthesised as an intermediate in a search for a new synthetic route for silodosin, an adrenoceptor antagonist, see: Asselin et al. (2000); Bremner et al. (2000); Elworthy et al. (1997); Sorbera et al. (2001). For related structures, see: Moreno et al. (1998); Wang et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810020969/dn2565sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810020969/dn2565Isup2.hkl
3.3 g aluminium trichloride was added to 20 ml dichloromethane, and stirred for 10 min. Then 2 g chloropropionylchloride was added, controling the temperature below 5¯C. A dichloromethane solution of 1-acetyl-indoline was added dropwise to the reaction solution, and stirred overnight to get 1.3 g crystalline solid (yield 72%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution. Spectroscopic analysis: 1H NMR (CDCl3,δ, p.p.m.): 1.723–1.760(d, 3H), 2.259–2.269(s, 3H), 3.232–3.289(t, 2H), 4.109–4.166(t, 2H), 5.197–5.263(m, 1H), 7.864(s,1H), 7.864–7.895(d, 1H), 8.245–8.273(d, 1H).
All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl), 0.99 Å (methylene) and 1.0 Å (methine) with Uiso(H) = 1.2Ueq(Cmethine, Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl).
The Cl and CH3 substituents on the stereogenic carbon are exchanging each other and such disorder induces two configurations. Two sets of positions were defined for the atoms of this group and the site occupation factor of each conformation were refined while restraining their sum to unity and using restraints on C—C and C—Cl distances with the help of SAME and PART instructions within SHELXL97 (Sheldrick, 2008). In the last stage of
the disordered Cl and C atoms were anisotropically refined but the anistropic thermal parameters of the C atoms were restrained to have similar atomic displacement parameters within a tolerance s.u. of 0.01 Å2.Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C13H14ClNO2 | Z = 2 |
Mr = 251.70 | F(000) = 264 |
Triclinic, P1 | Dx = 1.403 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4748 (5) Å | Cell parameters from 4108 reflections |
b = 9.0928 (5) Å | θ = 2.6–27.0° |
c = 9.4952 (5) Å | µ = 0.31 mm−1 |
α = 112.071 (1)° | T = 173 K |
β = 110.345 (1)° | Block, colorless |
γ = 99.913 (1)° | 0.46 × 0.36 × 0.15 mm |
V = 595.92 (6) Å3 |
Bruker SMART 1000 CCD diffractometer | 2594 independent reflections |
Radiation source: fine-focus sealed tube | 2242 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 27.1°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −10→10 |
Tmin = 0.871, Tmax = 0.955 | k = −11→11 |
6682 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0322P)2 + 0.3925P] where P = (Fo2 + 2Fc2)/3 |
2594 reflections | (Δ/σ)max = 0.001 |
178 parameters | Δρmax = 0.27 e Å−3 |
3 restraints | Δρmin = −0.21 e Å−3 |
C13H14ClNO2 | γ = 99.913 (1)° |
Mr = 251.70 | V = 595.92 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.4748 (5) Å | Mo Kα radiation |
b = 9.0928 (5) Å | µ = 0.31 mm−1 |
c = 9.4952 (5) Å | T = 173 K |
α = 112.071 (1)° | 0.46 × 0.36 × 0.15 mm |
β = 110.345 (1)° |
Bruker SMART 1000 CCD diffractometer | 2594 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 2242 reflections with I > 2σ(I) |
Tmin = 0.871, Tmax = 0.955 | Rint = 0.018 |
6682 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 3 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.18 | Δρmax = 0.27 e Å−3 |
2594 reflections | Δρmin = −0.21 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.9779 (2) | −0.01243 (19) | 0.2587 (2) | 0.0410 (4) | |
O2 | 0.35372 (18) | 0.39091 (17) | 0.09272 (18) | 0.0348 (3) | |
N1 | 0.7298 (2) | −0.10127 (19) | 0.28713 (19) | 0.0271 (3) | |
C1 | 0.6190 (3) | −0.2154 (3) | 0.3214 (3) | 0.0394 (5) | |
H1A | 0.6802 | −0.1916 | 0.4415 | 0.047* | |
H1B | 0.5956 | −0.3354 | 0.2463 | 0.047* | |
C2 | 0.4441 (3) | −0.1788 (2) | 0.2847 (3) | 0.0323 (4) | |
H2A | 0.3427 | −0.2765 | 0.1824 | 0.039* | |
H2B | 0.4166 | −0.1526 | 0.3827 | 0.039* | |
C3 | 0.4790 (2) | −0.0270 (2) | 0.2553 (2) | 0.0252 (4) | |
C4 | 0.3712 (2) | 0.0667 (2) | 0.2265 (2) | 0.0253 (4) | |
H4 | 0.2594 | 0.0427 | 0.2300 | 0.030* | |
C5 | 0.4281 (2) | 0.1977 (2) | 0.1918 (2) | 0.0249 (4) | |
C6 | 0.5941 (2) | 0.2322 (2) | 0.1900 (2) | 0.0279 (4) | |
H6 | 0.6319 | 0.3208 | 0.1661 | 0.033* | |
C7 | 0.7055 (2) | 0.1416 (2) | 0.2219 (2) | 0.0292 (4) | |
H7 | 0.8188 | 0.1677 | 0.2217 | 0.035* | |
C8 | 0.6455 (2) | 0.0109 (2) | 0.2544 (2) | 0.0245 (4) | |
C9 | 0.8883 (2) | −0.1095 (2) | 0.2860 (2) | 0.0296 (4) | |
C10 | 0.9462 (3) | −0.2455 (3) | 0.3189 (3) | 0.0358 (4) | |
H10A | 0.8635 | −0.3568 | 0.2239 | 0.054* | |
H10B | 0.9452 | −0.2369 | 0.4246 | 0.054* | |
H10C | 1.0679 | −0.2313 | 0.3298 | 0.054* | |
C11 | 0.3175 (2) | 0.3004 (2) | 0.1525 (2) | 0.0264 (4) | |
C12 | 0.1597 (3) | 0.2956 (2) | 0.1952 (2) | 0.0306 (4) | |
H12 | 0.1025 | 0.1787 | 0.1740 | 0.037* | |
C13 | 0.0115 (16) | 0.3460 (17) | 0.0833 (16) | 0.058 (4) | 0.60 |
H13A | −0.0826 | 0.3497 | 0.1206 | 0.087* | 0.60 |
H13B | −0.0414 | 0.2617 | −0.0370 | 0.087* | 0.60 |
H13C | 0.0678 | 0.4576 | 0.0975 | 0.087* | 0.60 |
Cl1 | 0.2419 (3) | 0.4356 (3) | 0.40972 (18) | 0.0464 (6) | 0.60 |
C13B | 0.244 (2) | 0.4216 (19) | 0.4003 (16) | 0.072 (6) | 0.40 |
H13D | 0.3329 | 0.3851 | 0.4631 | 0.108* | 0.40 |
H13E | 0.1470 | 0.4173 | 0.4347 | 0.108* | 0.40 |
H13F | 0.3008 | 0.5379 | 0.4258 | 0.108* | 0.40 |
Cl1B | 0.0086 (5) | 0.3588 (5) | 0.0840 (4) | 0.0361 (9) | 0.40 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0371 (8) | 0.0425 (8) | 0.0621 (10) | 0.0207 (7) | 0.0328 (7) | 0.0302 (8) |
O2 | 0.0361 (8) | 0.0331 (7) | 0.0443 (8) | 0.0126 (6) | 0.0193 (6) | 0.0256 (7) |
N1 | 0.0263 (8) | 0.0247 (7) | 0.0326 (8) | 0.0101 (6) | 0.0141 (6) | 0.0145 (6) |
C1 | 0.0302 (10) | 0.0397 (11) | 0.0618 (14) | 0.0153 (9) | 0.0227 (10) | 0.0337 (11) |
C2 | 0.0300 (10) | 0.0315 (10) | 0.0448 (11) | 0.0132 (8) | 0.0193 (9) | 0.0236 (9) |
C3 | 0.0254 (9) | 0.0245 (8) | 0.0262 (9) | 0.0074 (7) | 0.0123 (7) | 0.0123 (7) |
C4 | 0.0241 (8) | 0.0263 (9) | 0.0282 (9) | 0.0089 (7) | 0.0139 (7) | 0.0134 (7) |
C5 | 0.0261 (9) | 0.0228 (8) | 0.0234 (8) | 0.0082 (7) | 0.0106 (7) | 0.0092 (7) |
C6 | 0.0298 (9) | 0.0242 (9) | 0.0324 (9) | 0.0073 (7) | 0.0160 (8) | 0.0150 (8) |
C7 | 0.0269 (9) | 0.0290 (9) | 0.0350 (10) | 0.0095 (7) | 0.0174 (8) | 0.0152 (8) |
C8 | 0.0247 (9) | 0.0234 (8) | 0.0240 (8) | 0.0091 (7) | 0.0112 (7) | 0.0094 (7) |
C9 | 0.0280 (9) | 0.0282 (9) | 0.0300 (9) | 0.0120 (7) | 0.0137 (8) | 0.0097 (8) |
C10 | 0.0338 (10) | 0.0345 (10) | 0.0415 (11) | 0.0183 (8) | 0.0179 (9) | 0.0168 (9) |
C11 | 0.0277 (9) | 0.0208 (8) | 0.0253 (9) | 0.0056 (7) | 0.0091 (7) | 0.0094 (7) |
C12 | 0.0346 (10) | 0.0273 (9) | 0.0390 (10) | 0.0151 (8) | 0.0197 (8) | 0.0195 (8) |
C13 | 0.058 (7) | 0.049 (6) | 0.073 (7) | 0.007 (4) | 0.035 (5) | 0.034 (5) |
Cl1 | 0.0466 (10) | 0.0642 (12) | 0.0263 (6) | 0.0269 (8) | 0.0168 (6) | 0.0158 (6) |
C13B | 0.091 (12) | 0.052 (7) | 0.118 (12) | 0.036 (7) | 0.066 (9) | 0.060 (8) |
Cl1B | 0.0366 (17) | 0.0457 (16) | 0.0344 (14) | 0.0273 (14) | 0.0139 (11) | 0.0231 (12) |
O1—C9 | 1.225 (2) | C7—C8 | 1.393 (3) |
O2—C11 | 1.216 (2) | C7—H7 | 0.9500 |
N1—C9 | 1.362 (2) | C9—C10 | 1.504 (3) |
N1—C8 | 1.408 (2) | C10—H10A | 0.9800 |
N1—C1 | 1.482 (2) | C10—H10B | 0.9800 |
C1—C2 | 1.525 (3) | C10—H10C | 0.9800 |
C1—H1A | 0.9900 | C11—C12 | 1.525 (3) |
C1—H1B | 0.9900 | C12—C13 | 1.598 (10) |
C2—C3 | 1.509 (2) | C12—C13B | 1.641 (13) |
C2—H2A | 0.9900 | C12—Cl1B | 1.689 (3) |
C2—H2B | 0.9900 | C12—Cl1 | 1.736 (3) |
C3—C4 | 1.380 (2) | C12—H12 | 0.9997 |
C3—C8 | 1.398 (2) | C13—H13A | 0.9800 |
C4—C5 | 1.402 (2) | C13—H13B | 0.9800 |
C4—H4 | 0.9500 | C13—H13C | 0.9800 |
C5—C6 | 1.395 (3) | C13B—H13D | 0.9800 |
C5—C11 | 1.487 (2) | C13B—H13E | 0.9800 |
C6—C7 | 1.385 (3) | C13B—H13F | 0.9800 |
C6—H6 | 0.9500 | ||
C9—N1—C8 | 126.44 (15) | N1—C9—C10 | 116.09 (17) |
C9—N1—C1 | 123.37 (15) | C9—C10—H10A | 109.5 |
C8—N1—C1 | 110.18 (14) | C9—C10—H10B | 109.5 |
N1—C1—C2 | 105.33 (15) | H10A—C10—H10B | 109.5 |
N1—C1—H1A | 110.7 | C9—C10—H10C | 109.5 |
C2—C1—H1A | 110.7 | H10A—C10—H10C | 109.5 |
N1—C1—H1B | 110.7 | H10B—C10—H10C | 109.5 |
C2—C1—H1B | 110.7 | O2—C11—C5 | 121.51 (17) |
H1A—C1—H1B | 108.8 | O2—C11—C12 | 119.99 (16) |
C3—C2—C1 | 104.15 (15) | C5—C11—C12 | 118.47 (15) |
C3—C2—H2A | 110.9 | C11—C12—C13 | 112.2 (5) |
C1—C2—H2A | 110.9 | C11—C12—C13B | 106.7 (7) |
C3—C2—H2B | 110.9 | C13—C12—C13B | 112.7 (8) |
C1—C2—H2B | 110.9 | C11—C12—Cl1B | 112.0 (2) |
H2A—C2—H2B | 108.9 | C13—C12—Cl1B | 2.8 (6) |
C4—C3—C8 | 120.43 (16) | C13B—C12—Cl1B | 110.3 (6) |
C4—C3—C2 | 129.55 (16) | C11—C12—Cl1 | 108.14 (15) |
C8—C3—C2 | 109.99 (15) | C13—C12—Cl1 | 109.6 (5) |
C3—C4—C5 | 119.36 (16) | C13B—C12—Cl1 | 3.1 (7) |
C3—C4—H4 | 120.3 | Cl1B—C12—Cl1 | 107.28 (18) |
C5—C4—H4 | 120.3 | C11—C12—H12 | 109.1 |
C6—C5—C4 | 119.17 (16) | C13—C12—H12 | 108.7 |
C6—C5—C11 | 117.85 (16) | C13B—C12—H12 | 107.3 |
C4—C5—C11 | 122.97 (16) | Cl1B—C12—H12 | 111.2 |
C7—C6—C5 | 122.22 (16) | Cl1—C12—H12 | 109.0 |
C7—C6—H6 | 118.9 | C12—C13—H13A | 109.5 |
C5—C6—H6 | 118.9 | C12—C13—H13B | 109.5 |
C6—C7—C8 | 117.69 (17) | C12—C13—H13C | 109.5 |
C6—C7—H7 | 121.2 | C12—C13B—H13D | 109.5 |
C8—C7—H7 | 121.2 | C12—C13B—H13E | 109.5 |
C7—C8—C3 | 121.11 (16) | H13D—C13B—H13E | 109.5 |
C7—C8—N1 | 129.13 (16) | C12—C13B—H13F | 109.5 |
C3—C8—N1 | 109.75 (15) | H13D—C13B—H13F | 109.5 |
O1—C9—N1 | 121.97 (17) | H13E—C13B—H13F | 109.5 |
O1—C9—C10 | 121.94 (17) | ||
C9—N1—C1—C2 | −172.04 (17) | C9—N1—C8—C3 | 175.76 (17) |
C8—N1—C1—C2 | 7.0 (2) | C1—N1—C8—C3 | −3.2 (2) |
N1—C1—C2—C3 | −7.7 (2) | C8—N1—C9—O1 | 1.8 (3) |
C1—C2—C3—C4 | −175.90 (19) | C1—N1—C9—O1 | −179.33 (19) |
C1—C2—C3—C8 | 6.2 (2) | C8—N1—C9—C10 | −177.82 (17) |
C8—C3—C4—C5 | 1.6 (3) | C1—N1—C9—C10 | 1.1 (3) |
C2—C3—C4—C5 | −176.09 (18) | C6—C5—C11—O2 | 12.3 (3) |
C3—C4—C5—C6 | −1.0 (3) | C4—C5—C11—O2 | −166.21 (17) |
C3—C4—C5—C11 | 177.50 (16) | C6—C5—C11—C12 | −165.37 (16) |
C4—C5—C6—C7 | −0.2 (3) | C4—C5—C11—C12 | 16.1 (3) |
C11—C5—C6—C7 | −178.82 (17) | O2—C11—C12—C13 | 25.4 (6) |
C5—C6—C7—C8 | 0.8 (3) | C5—C11—C12—C13 | −156.9 (5) |
C6—C7—C8—C3 | −0.2 (3) | O2—C11—C12—C13B | −98.5 (6) |
C6—C7—C8—N1 | 178.75 (17) | C5—C11—C12—C13B | 79.3 (6) |
C4—C3—C8—C7 | −1.0 (3) | O2—C11—C12—Cl1B | 22.4 (3) |
C2—C3—C8—C7 | 177.12 (17) | C5—C11—C12—Cl1B | −159.9 (2) |
C4—C3—C8—N1 | 179.83 (16) | O2—C11—C12—Cl1 | −95.6 (2) |
C2—C3—C8—N1 | −2.0 (2) | C5—C11—C12—Cl1 | 82.12 (19) |
C9—N1—C8—C7 | −3.3 (3) | C5—C11—C12—Cl1 | 82.12 (19) |
C1—N1—C8—C7 | 177.69 (19) | C5—C11—C12—Cl1B | −159.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O2i | 0.99 | 2.44 | 3.252 (3) | 139 |
C4—H4···O1ii | 0.95 | 2.48 | 3.430 (2) | 177 |
C12—H12···O1ii | 1.00 | 2.41 | 3.318 (2) | 151 |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C13H14ClNO2 |
Mr | 251.70 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 8.4748 (5), 9.0928 (5), 9.4952 (5) |
α, β, γ (°) | 112.071 (1), 110.345 (1), 99.913 (1) |
V (Å3) | 595.92 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.46 × 0.36 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.871, 0.955 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6682, 2594, 2242 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.640 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.111, 1.18 |
No. of reflections | 2594 |
No. of parameters | 178 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.21 |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O2i | 0.99 | 2.44 | 3.252 (3) | 138.7 |
C4—H4···O1ii | 0.95 | 2.48 | 3.430 (2) | 176.5 |
C12—H12···O1ii | 1.00 | 2.41 | 3.318 (2) | 151.3 |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z. |
Centroid–Centroid (Å) | Centroid-to-plane (Å) | Slippage (Å) | |
Cg1···Cg1iii | 3.6959 (9) | 3.4713 (6) | 1.269 |
Acknowledgements
The author thanks Mr Feng for helpful discussions.
References
Asselin, A. A., Humber, L. G., Crocilla, D., Oshiro, G., Wojdan, A., Grimes, D., Heaslip, R. J., Rimele, T. J. & Shaw, C. C. (2000). J. Med. Chem. 29, 1009–1015. CrossRef Web of Science Google Scholar
Bremner, J. B., Coban, B., Griffith, G., Groenewoud, K. M. & Yates, B. F. (2000). Bioorg. Med. Chem. 8, 201–214. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Elworthy, T. R., Ford, A. P., Bantle, G. W. & Morgans, D. J. (1997). J. Med. Chem. 40, 2674–2687. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Moreno, M. M. T., Santos, R. H. A., Gambardella, M. T. P., Camargo, A. J., da Silva, A. B. F. & Trsic, M. (1998). Struct. Chem. 9, 365–373. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sorbera, L. A., Caster, J. & Silvestre, J. S. (2001). Drugs Future, 26, 553–555. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Wan, W., Jiang, H. & Hao, J. (2007). J. Org. Chem. 72, 9364–9367. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In searching for new synthetic route of silodosin, a adrenoceptor antagonist (Sorbera et al. 2001; Elworthy et al. 1997; Asselin et al. 2000; Bremner et al. 2000), we synthesized the racemic intermediate,(R/S)-1-(1-acetylindolin-5-yl)-2-chloropropan-1-one.
The single-crystal structure analysis shows that the Cl and CH3 located on the stereogenic carbon exchange each other with occupancy factor in the ration 60/40. Except for these disordered atoms, the molecule is roughly planar with the largest deviation from the mean plane (all heavy atoms except Cl and C13) being 0.060 (2)Å at C7 (Fig. 1). The two disordered atoms are dissymetrically distributed on both side of the mean plane. The geometry within the 1-acetylindoline fragment compares well with related structures as 1-acetylindoline (Moreno et al., 1998) or 1-(trifluoro)acetylindoline (Wang et al., 2007).
Non-classical C—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules forming layers parallel to the (0 0 1) plane. These layers are further connected throught π-π interactions between symmetry related phenyl rings (Table 2).