organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(RS)-1-(1-Acetyl­indolin-5-yl)-2-chloro­propan-1-one

aDepartment of Chemistry, Guangdong Medical College, Dongguan 523808, People's Republic of China
*Correspondence e-mail: xuemeiyang131@163.com

(Received 12 May 2010; accepted 1 June 2010; online 9 June 2010)

The mol­ecule of the title compound, C13H14ClNO2, is roughly planar [maximum deviation = 0.060 (2) Å] with the disordered Cl/CH3 group asymetrically distributed on both sides of the mean plane. Indeed, the Cl and CH3 located on the stereogenic carbon exchange each other with occupancy factors in the ratio 0.60:0.40. The whole crystal is a racemate. Non-classical C—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distance = 3.6959 (9) Å] between symmetry-related phenyl rings stabilize the crystal structure.

Related literature

The title compound was synthesised as an inter­mediate in a search for a new synthetic route for silodosin, an adrenoceptor antagonist, see: Asselin et al. (2000[Asselin, A. A., Humber, L. G., Crocilla, D., Oshiro, G., Wojdan, A., Grimes, D., Heaslip, R. J., Rimele, T. J. & Shaw, C. C. (2000). J. Med. Chem. 29, 1009-1015.]); Bremner et al. (2000[Bremner, J. B., Coban, B., Griffith, G., Groenewoud, K. M. & Yates, B. F. (2000). Bioorg. Med. Chem. 8, 201-214.]); Elworthy et al. (1997[Elworthy, T. R., Ford, A. P., Bantle, G. W. & Morgans, D. J. (1997). J. Med. Chem. 40, 2674-2687.]); Sorbera et al. (2001[Sorbera, L. A., Caster, J. & Silvestre, J. S. (2001). Drugs Future, 26, 553-555.]). For related structures, see: Moreno et al. (1998[Moreno, M. M. T., Santos, R. H. A., Gambardella, M. T. P., Camargo, A. J., da Silva, A. B. F. & Trsic, M. (1998). Struct. Chem. 9, 365-373.]); Wang et al. (2007[Wang, Z., Wan, W., Jiang, H. & Hao, J. (2007). J. Org. Chem. 72, 9364-9367.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14ClNO2

  • Mr = 251.70

  • Triclinic, [P \overline 1]

  • a = 8.4748 (5) Å

  • b = 9.0928 (5) Å

  • c = 9.4952 (5) Å

  • α = 112.071 (1)°

  • β = 110.345 (1)°

  • γ = 99.913 (1)°

  • V = 595.92 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 173 K

  • 0.46 × 0.36 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.871, Tmax = 0.955

  • 6682 measured reflections

  • 2594 independent reflections

  • 2242 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.18

  • 2594 reflections

  • 178 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.99 2.44 3.252 (3) 139
C4—H4⋯O1ii 0.95 2.48 3.430 (2) 177
C12—H12⋯O1ii 1.00 2.41 3.318 (2) 151
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In searching for new synthetic route of silodosin, a adrenoceptor antagonist (Sorbera et al. 2001; Elworthy et al. 1997; Asselin et al. 2000; Bremner et al. 2000), we synthesized the racemic intermediate,(R/S)-1-(1-acetylindolin-5-yl)-2-chloropropan-1-one.

The single-crystal structure analysis shows that the Cl and CH3 located on the stereogenic carbon exchange each other with occupancy factor in the ration 60/40. Except for these disordered atoms, the molecule is roughly planar with the largest deviation from the mean plane (all heavy atoms except Cl and C13) being 0.060 (2)Å at C7 (Fig. 1). The two disordered atoms are dissymetrically distributed on both side of the mean plane. The geometry within the 1-acetylindoline fragment compares well with related structures as 1-acetylindoline (Moreno et al., 1998) or 1-(trifluoro)acetylindoline (Wang et al., 2007).

Non-classical C—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules forming layers parallel to the (0 0 1) plane. These layers are further connected throught π-π interactions between symmetry related phenyl rings (Table 2).

Related literature top

The title compound was synthesised as an intermediate in a search for a new synthetic route for silodosin, a adrenoceptor antagonist, see: Asselin et al. (2000); Bremner et al. (2000); Elworthy et al. (1997); Sorbera et al. (2001). For related structures, see: Moreno et al. (1998); Wang et al. (2007).

Experimental top

3.3 g aluminium trichloride was added to 20 ml dichloromethane, and stirred for 10 min. Then 2 g chloropropionylchloride was added, controling the temperature below 5¯C. A dichloromethane solution of 1-acetyl-indoline was added dropwise to the reaction solution, and stirred overnight to get 1.3 g crystalline solid (yield 72%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution. Spectroscopic analysis: 1H NMR (CDCl3,δ, p.p.m.): 1.723–1.760(d, 3H), 2.259–2.269(s, 3H), 3.232–3.289(t, 2H), 4.109–4.166(t, 2H), 5.197–5.263(m, 1H), 7.864(s,1H), 7.864–7.895(d, 1H), 8.245–8.273(d, 1H).

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl), 0.99 Å (methylene) and 1.0 Å (methine) with Uiso(H) = 1.2Ueq(Cmethine, Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl).

The Cl and CH3 substituents on the stereogenic carbon are exchanging each other and such disorder induces two configurations. Two sets of positions were defined for the atoms of this group and the site occupation factor of each conformation were refined while restraining their sum to unity and using restraints on C—C and C—Cl distances with the help of SAME and PART instructions within SHELXL97 (Sheldrick, 2008). In the last stage of refinement, the disordered Cl and C atoms were anisotropically refined but the anistropic thermal parameters of the C atoms were restrained to have similar atomic displacement parameters within a tolerance s.u. of 0.01 Å2.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. For clarity, only the major component of the disorder is represented.
[Figure 2] Fig. 2. Packing view showing the layers formed by C—H···O interaction. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
(RS)-1-(1-Acetylindolin-5-yl)-2-chloropropan-1-one top
Crystal data top
C13H14ClNO2Z = 2
Mr = 251.70F(000) = 264
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4748 (5) ÅCell parameters from 4108 reflections
b = 9.0928 (5) Åθ = 2.6–27.0°
c = 9.4952 (5) ŵ = 0.31 mm1
α = 112.071 (1)°T = 173 K
β = 110.345 (1)°Block, colorless
γ = 99.913 (1)°0.46 × 0.36 × 0.15 mm
V = 595.92 (6) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2594 independent reflections
Radiation source: fine-focus sealed tube2242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1010
Tmin = 0.871, Tmax = 0.955k = 1111
6682 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.3925P]
where P = (Fo2 + 2Fc2)/3
2594 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.27 e Å3
3 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H14ClNO2γ = 99.913 (1)°
Mr = 251.70V = 595.92 (6) Å3
Triclinic, P1Z = 2
a = 8.4748 (5) ÅMo Kα radiation
b = 9.0928 (5) ŵ = 0.31 mm1
c = 9.4952 (5) ÅT = 173 K
α = 112.071 (1)°0.46 × 0.36 × 0.15 mm
β = 110.345 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2594 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2242 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.955Rint = 0.018
6682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.18Δρmax = 0.27 e Å3
2594 reflectionsΔρmin = 0.21 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.9779 (2)0.01243 (19)0.2587 (2)0.0410 (4)
O20.35372 (18)0.39091 (17)0.09272 (18)0.0348 (3)
N10.7298 (2)0.10127 (19)0.28713 (19)0.0271 (3)
C10.6190 (3)0.2154 (3)0.3214 (3)0.0394 (5)
H1A0.68020.19160.44150.047*
H1B0.59560.33540.24630.047*
C20.4441 (3)0.1788 (2)0.2847 (3)0.0323 (4)
H2A0.34270.27650.18240.039*
H2B0.41660.15260.38270.039*
C30.4790 (2)0.0270 (2)0.2553 (2)0.0252 (4)
C40.3712 (2)0.0667 (2)0.2265 (2)0.0253 (4)
H40.25940.04270.23000.030*
C50.4281 (2)0.1977 (2)0.1918 (2)0.0249 (4)
C60.5941 (2)0.2322 (2)0.1900 (2)0.0279 (4)
H60.63190.32080.16610.033*
C70.7055 (2)0.1416 (2)0.2219 (2)0.0292 (4)
H70.81880.16770.22170.035*
C80.6455 (2)0.0109 (2)0.2544 (2)0.0245 (4)
C90.8883 (2)0.1095 (2)0.2860 (2)0.0296 (4)
C100.9462 (3)0.2455 (3)0.3189 (3)0.0358 (4)
H10A0.86350.35680.22390.054*
H10B0.94520.23690.42460.054*
H10C1.06790.23130.32980.054*
C110.3175 (2)0.3004 (2)0.1525 (2)0.0264 (4)
C120.1597 (3)0.2956 (2)0.1952 (2)0.0306 (4)
H120.10250.17870.17400.037*
C130.0115 (16)0.3460 (17)0.0833 (16)0.058 (4)0.60
H13A0.08260.34970.12060.087*0.60
H13B0.04140.26170.03700.087*0.60
H13C0.06780.45760.09750.087*0.60
Cl10.2419 (3)0.4356 (3)0.40972 (18)0.0464 (6)0.60
C13B0.244 (2)0.4216 (19)0.4003 (16)0.072 (6)0.40
H13D0.33290.38510.46310.108*0.40
H13E0.14700.41730.43470.108*0.40
H13F0.30080.53790.42580.108*0.40
Cl1B0.0086 (5)0.3588 (5)0.0840 (4)0.0361 (9)0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0371 (8)0.0425 (8)0.0621 (10)0.0207 (7)0.0328 (7)0.0302 (8)
O20.0361 (8)0.0331 (7)0.0443 (8)0.0126 (6)0.0193 (6)0.0256 (7)
N10.0263 (8)0.0247 (7)0.0326 (8)0.0101 (6)0.0141 (6)0.0145 (6)
C10.0302 (10)0.0397 (11)0.0618 (14)0.0153 (9)0.0227 (10)0.0337 (11)
C20.0300 (10)0.0315 (10)0.0448 (11)0.0132 (8)0.0193 (9)0.0236 (9)
C30.0254 (9)0.0245 (8)0.0262 (9)0.0074 (7)0.0123 (7)0.0123 (7)
C40.0241 (8)0.0263 (9)0.0282 (9)0.0089 (7)0.0139 (7)0.0134 (7)
C50.0261 (9)0.0228 (8)0.0234 (8)0.0082 (7)0.0106 (7)0.0092 (7)
C60.0298 (9)0.0242 (9)0.0324 (9)0.0073 (7)0.0160 (8)0.0150 (8)
C70.0269 (9)0.0290 (9)0.0350 (10)0.0095 (7)0.0174 (8)0.0152 (8)
C80.0247 (9)0.0234 (8)0.0240 (8)0.0091 (7)0.0112 (7)0.0094 (7)
C90.0280 (9)0.0282 (9)0.0300 (9)0.0120 (7)0.0137 (8)0.0097 (8)
C100.0338 (10)0.0345 (10)0.0415 (11)0.0183 (8)0.0179 (9)0.0168 (9)
C110.0277 (9)0.0208 (8)0.0253 (9)0.0056 (7)0.0091 (7)0.0094 (7)
C120.0346 (10)0.0273 (9)0.0390 (10)0.0151 (8)0.0197 (8)0.0195 (8)
C130.058 (7)0.049 (6)0.073 (7)0.007 (4)0.035 (5)0.034 (5)
Cl10.0466 (10)0.0642 (12)0.0263 (6)0.0269 (8)0.0168 (6)0.0158 (6)
C13B0.091 (12)0.052 (7)0.118 (12)0.036 (7)0.066 (9)0.060 (8)
Cl1B0.0366 (17)0.0457 (16)0.0344 (14)0.0273 (14)0.0139 (11)0.0231 (12)
Geometric parameters (Å, º) top
O1—C91.225 (2)C7—C81.393 (3)
O2—C111.216 (2)C7—H70.9500
N1—C91.362 (2)C9—C101.504 (3)
N1—C81.408 (2)C10—H10A0.9800
N1—C11.482 (2)C10—H10B0.9800
C1—C21.525 (3)C10—H10C0.9800
C1—H1A0.9900C11—C121.525 (3)
C1—H1B0.9900C12—C131.598 (10)
C2—C31.509 (2)C12—C13B1.641 (13)
C2—H2A0.9900C12—Cl1B1.689 (3)
C2—H2B0.9900C12—Cl11.736 (3)
C3—C41.380 (2)C12—H120.9997
C3—C81.398 (2)C13—H13A0.9800
C4—C51.402 (2)C13—H13B0.9800
C4—H40.9500C13—H13C0.9800
C5—C61.395 (3)C13B—H13D0.9800
C5—C111.487 (2)C13B—H13E0.9800
C6—C71.385 (3)C13B—H13F0.9800
C6—H60.9500
C9—N1—C8126.44 (15)N1—C9—C10116.09 (17)
C9—N1—C1123.37 (15)C9—C10—H10A109.5
C8—N1—C1110.18 (14)C9—C10—H10B109.5
N1—C1—C2105.33 (15)H10A—C10—H10B109.5
N1—C1—H1A110.7C9—C10—H10C109.5
C2—C1—H1A110.7H10A—C10—H10C109.5
N1—C1—H1B110.7H10B—C10—H10C109.5
C2—C1—H1B110.7O2—C11—C5121.51 (17)
H1A—C1—H1B108.8O2—C11—C12119.99 (16)
C3—C2—C1104.15 (15)C5—C11—C12118.47 (15)
C3—C2—H2A110.9C11—C12—C13112.2 (5)
C1—C2—H2A110.9C11—C12—C13B106.7 (7)
C3—C2—H2B110.9C13—C12—C13B112.7 (8)
C1—C2—H2B110.9C11—C12—Cl1B112.0 (2)
H2A—C2—H2B108.9C13—C12—Cl1B2.8 (6)
C4—C3—C8120.43 (16)C13B—C12—Cl1B110.3 (6)
C4—C3—C2129.55 (16)C11—C12—Cl1108.14 (15)
C8—C3—C2109.99 (15)C13—C12—Cl1109.6 (5)
C3—C4—C5119.36 (16)C13B—C12—Cl13.1 (7)
C3—C4—H4120.3Cl1B—C12—Cl1107.28 (18)
C5—C4—H4120.3C11—C12—H12109.1
C6—C5—C4119.17 (16)C13—C12—H12108.7
C6—C5—C11117.85 (16)C13B—C12—H12107.3
C4—C5—C11122.97 (16)Cl1B—C12—H12111.2
C7—C6—C5122.22 (16)Cl1—C12—H12109.0
C7—C6—H6118.9C12—C13—H13A109.5
C5—C6—H6118.9C12—C13—H13B109.5
C6—C7—C8117.69 (17)C12—C13—H13C109.5
C6—C7—H7121.2C12—C13B—H13D109.5
C8—C7—H7121.2C12—C13B—H13E109.5
C7—C8—C3121.11 (16)H13D—C13B—H13E109.5
C7—C8—N1129.13 (16)C12—C13B—H13F109.5
C3—C8—N1109.75 (15)H13D—C13B—H13F109.5
O1—C9—N1121.97 (17)H13E—C13B—H13F109.5
O1—C9—C10121.94 (17)
C9—N1—C1—C2172.04 (17)C9—N1—C8—C3175.76 (17)
C8—N1—C1—C27.0 (2)C1—N1—C8—C33.2 (2)
N1—C1—C2—C37.7 (2)C8—N1—C9—O11.8 (3)
C1—C2—C3—C4175.90 (19)C1—N1—C9—O1179.33 (19)
C1—C2—C3—C86.2 (2)C8—N1—C9—C10177.82 (17)
C8—C3—C4—C51.6 (3)C1—N1—C9—C101.1 (3)
C2—C3—C4—C5176.09 (18)C6—C5—C11—O212.3 (3)
C3—C4—C5—C61.0 (3)C4—C5—C11—O2166.21 (17)
C3—C4—C5—C11177.50 (16)C6—C5—C11—C12165.37 (16)
C4—C5—C6—C70.2 (3)C4—C5—C11—C1216.1 (3)
C11—C5—C6—C7178.82 (17)O2—C11—C12—C1325.4 (6)
C5—C6—C7—C80.8 (3)C5—C11—C12—C13156.9 (5)
C6—C7—C8—C30.2 (3)O2—C11—C12—C13B98.5 (6)
C6—C7—C8—N1178.75 (17)C5—C11—C12—C13B79.3 (6)
C4—C3—C8—C71.0 (3)O2—C11—C12—Cl1B22.4 (3)
C2—C3—C8—C7177.12 (17)C5—C11—C12—Cl1B159.9 (2)
C4—C3—C8—N1179.83 (16)O2—C11—C12—Cl195.6 (2)
C2—C3—C8—N12.0 (2)C5—C11—C12—Cl182.12 (19)
C9—N1—C8—C73.3 (3)C5—C11—C12—Cl182.12 (19)
C1—N1—C8—C7177.69 (19)C5—C11—C12—Cl1B159.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.992.443.252 (3)139
C4—H4···O1ii0.952.483.430 (2)177
C12—H12···O1ii1.002.413.318 (2)151
Symmetry codes: (i) x, y1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H14ClNO2
Mr251.70
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.4748 (5), 9.0928 (5), 9.4952 (5)
α, β, γ (°)112.071 (1), 110.345 (1), 99.913 (1)
V3)595.92 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.46 × 0.36 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.871, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
6682, 2594, 2242
Rint0.018
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.18
No. of reflections2594
No. of parameters178
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.992.443.252 (3)138.7
C4—H4···O1ii0.952.483.430 (2)176.5
C12—H12···O1ii1.002.413.318 (2)151.3
Symmetry codes: (i) x, y1, z; (ii) x1, y, z.
π-π stacking between symmetry-related phenyl rings. [Symmetry code: (iii) 1-x, -y, -z] top
Centroid–Centroid (Å)Centroid-to-plane (Å)Slippage (Å)
Cg1···Cg1iii3.6959 (9)3.4713 (6)1.269
 

Acknowledgements

The author thanks Mr Feng for helpful discussions.

References

First citationAsselin, A. A., Humber, L. G., Crocilla, D., Oshiro, G., Wojdan, A., Grimes, D., Heaslip, R. J., Rimele, T. J. & Shaw, C. C. (2000). J. Med. Chem. 29, 1009–1015.  CrossRef Web of Science Google Scholar
First citationBremner, J. B., Coban, B., Griffith, G., Groenewoud, K. M. & Yates, B. F. (2000). Bioorg. Med. Chem. 8, 201–214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationElworthy, T. R., Ford, A. P., Bantle, G. W. & Morgans, D. J. (1997). J. Med. Chem. 40, 2674–2687.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMoreno, M. M. T., Santos, R. H. A., Gambardella, M. T. P., Camargo, A. J., da Silva, A. B. F. & Trsic, M. (1998). Struct. Chem. 9, 365–373.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorbera, L. A., Caster, J. & Silvestre, J. S. (2001). Drugs Future, 26, 553–555.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Wan, W., Jiang, H. & Hao, J. (2007). J. Org. Chem. 72, 9364–9367.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds