metal-organic compounds
catena-Poly[di-μ1,1-azido-(1,10-phenanthroline)cadmium(II)]
aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China, and bGraduate School, the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
*Correspondence e-mail: zfk@fjirsm.ac.cn
The II compound, [Cd(N3)2(C12H8N2)]n, contains a CdII atom, located on a twofold axis passing through the middle of the phenanthroline molecule, one azide ion and half of a 1,10-phenanthroline molecule. The CdII atom exhibits a distorted octahedral coordination including one chelating 1,10-phenanthroline ligand and four azide ligands. The features chains along the c direction in which azide groups doubly bridge two adjacent CdII atoms in an end-on (EO) mode. Interchain π–π stacking interactions, with centroid–centroid separations of 3.408 (2) Å between the central aromatic rings of 1,10-phenanthroline molecules, lead to a supramolecular sheet parallel to the bc plane.
of the title CdRelated literature
For the structures of related metal-azido compounds, see: Goher et al. (2008); Ribas et al. (1999); Liu et al. (2007); Cano et al. (2005); Abu-Youssef et al. (2000); Bose et al. (2004); Mautner et al. (2010); Meyer et al. (2005); Gao et al. (2004).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2002); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810019318/dn2567sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810019318/dn2567Isup2.hkl
A mixture of Cd(NO3)2.4H2O (0.308 g, 1.00 mmol), NaN3 (0.065 g, 1.00 mmol), Na(3-cba) (0.085 g, 0.50 mmol 3-Hcba = 3-cyanobenzoate acid), 1,10-phenanthroline (0.099 g, 0.50 mmol) and H2O (8 ml) was placed in a Teflon-lined stainless container, and then heated at 453 K for 2 days, after cooled to room temperature for 2 days. Pale-yellow prism-shaped crystals of the title compound were obtained. IR peaks (KBr, cm-1): 2053 s, 2037 s h, 1589 w, 1515 w, 1425 w, 1333 w, 1284 w, 846 m, 772 w, 727 m, 656 w. A strong band around 2053 cm-1 indicates the presence of the azido group.
Hydrogen atoms were allowed to ride on their respective parent atoms with C—H distances of 0.93 Å, and were included in the
with isotropic displacement parameters Uiso(H) = 1.2Ueq(C).Data collection: CrystalClear (Rigaku, 2002); cell
CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cd(N3)2(C12H8N2)] | F(000) = 736 |
Mr = 376.67 | Dx = 1.906 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1622 reflections |
a = 19.4591 (17) Å | θ = 2.3–27.5° |
b = 10.2988 (6) Å | µ = 1.67 mm−1 |
c = 6.8151 (6) Å | T = 293 K |
β = 106.033 (4)° | Prism, pale-yellow |
V = 1312.66 (18) Å3 | 0.30 × 0.20 × 0.18 mm |
Z = 4 |
Rigaku Mercury CCD diffractometer | 1217 independent reflections |
Radiation source: fine-focus sealed tube | 1133 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 25.5°, θmin = 3.6° |
CCD_Profile_fitting scans | h = −23→22 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | k = −12→12 |
Tmin = 0.774, Tmax = 1.000 | l = −8→8 |
4185 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0373P)2 + 0.2202P] where P = (Fo2 + 2Fc2)/3 |
1217 reflections | (Δ/σ)max = 0.001 |
96 parameters | Δρmax = 0.78 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
[Cd(N3)2(C12H8N2)] | V = 1312.66 (18) Å3 |
Mr = 376.67 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.4591 (17) Å | µ = 1.67 mm−1 |
b = 10.2988 (6) Å | T = 293 K |
c = 6.8151 (6) Å | 0.30 × 0.20 × 0.18 mm |
β = 106.033 (4)° |
Rigaku Mercury CCD diffractometer | 1217 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | 1133 reflections with I > 2σ(I) |
Tmin = 0.774, Tmax = 1.000 | Rint = 0.023 |
4185 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.78 e Å−3 |
1217 reflections | Δρmin = −0.48 e Å−3 |
96 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.5000 | 0.922344 (19) | 0.2500 | 0.03485 (12) | |
N1 | 0.43055 (13) | 1.0473 (2) | −0.0103 (3) | 0.0446 (5) | |
N2 | 0.37375 (13) | 1.0889 (2) | −0.0144 (4) | 0.0459 (6) | |
N3 | 0.31894 (16) | 1.1315 (4) | −0.0167 (6) | 0.0898 (10) | |
N11 | 0.43063 (10) | 0.73525 (19) | 0.1345 (3) | 0.0367 (4) | |
C11 | 0.36250 (14) | 0.7349 (3) | 0.0214 (4) | 0.0488 (6) | |
H11A | 0.3404 | 0.8140 | −0.0213 | 0.059* | |
C12 | 0.32340 (16) | 0.6220 (4) | −0.0352 (5) | 0.0587 (8) | |
H12A | 0.2758 | 0.6260 | −0.1114 | 0.070* | |
C13 | 0.35523 (17) | 0.5055 (3) | 0.0218 (4) | 0.0551 (8) | |
H13A | 0.3293 | 0.4291 | −0.0144 | 0.066* | |
C14 | 0.42742 (16) | 0.5003 (2) | 0.1357 (4) | 0.0447 (6) | |
C15 | 0.46270 (13) | 0.6200 (2) | 0.1908 (3) | 0.0344 (5) | |
C16 | 0.46560 (18) | 0.3819 (3) | 0.1969 (4) | 0.0552 (8) | |
H16A | 0.4420 | 0.3032 | 0.1619 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.03961 (17) | 0.03359 (16) | 0.02969 (16) | 0.000 | 0.00680 (11) | 0.000 |
N1 | 0.0461 (13) | 0.0517 (11) | 0.0384 (12) | 0.0101 (11) | 0.0156 (10) | 0.0139 (10) |
N2 | 0.0417 (14) | 0.0477 (13) | 0.0439 (13) | 0.0009 (10) | 0.0047 (10) | −0.0005 (9) |
N3 | 0.0428 (16) | 0.116 (3) | 0.105 (3) | 0.0208 (18) | 0.0108 (16) | −0.008 (2) |
N11 | 0.0368 (10) | 0.0410 (11) | 0.0332 (10) | 0.0009 (9) | 0.0109 (8) | −0.0043 (8) |
C11 | 0.0405 (13) | 0.0601 (17) | 0.0449 (14) | 0.0015 (13) | 0.0099 (11) | −0.0113 (13) |
C12 | 0.0430 (15) | 0.084 (2) | 0.0481 (16) | −0.0126 (16) | 0.0112 (13) | −0.0179 (16) |
C13 | 0.0651 (19) | 0.0630 (18) | 0.0434 (15) | −0.0282 (16) | 0.0257 (14) | −0.0187 (13) |
C14 | 0.0678 (18) | 0.0436 (14) | 0.0314 (12) | −0.0137 (12) | 0.0282 (13) | −0.0088 (10) |
C15 | 0.0436 (13) | 0.0385 (11) | 0.0241 (11) | −0.0021 (11) | 0.0146 (10) | −0.0024 (9) |
C16 | 0.099 (2) | 0.0354 (11) | 0.0409 (16) | −0.0135 (14) | 0.0363 (15) | −0.0077 (11) |
Cd1—N1i | 2.303 (2) | C11—C12 | 1.385 (5) |
Cd1—N1 | 2.303 (2) | C11—H11A | 0.9300 |
Cd1—N11 | 2.3596 (19) | C12—C13 | 1.357 (5) |
Cd1—N11i | 2.3596 (19) | C12—H12A | 0.9300 |
Cd1—N1ii | 2.411 (2) | C13—C14 | 1.406 (4) |
Cd1—N1iii | 2.411 (2) | C13—H13A | 0.9300 |
N1—N2 | 1.179 (3) | C14—C15 | 1.410 (4) |
N1—Cd1ii | 2.411 (2) | C14—C16 | 1.429 (4) |
N2—N3 | 1.149 (4) | C15—C15i | 1.453 (5) |
N11—C11 | 1.337 (3) | C16—C16i | 1.335 (7) |
N11—C15 | 1.347 (3) | C16—H16A | 0.9300 |
N1i—Cd1—N1 | 112.07 (12) | C11—N11—Cd1 | 125.41 (18) |
N1i—Cd1—N11 | 150.83 (8) | C15—N11—Cd1 | 116.58 (15) |
N1—Cd1—N11 | 92.25 (8) | N11—C11—C12 | 122.9 (3) |
N1i—Cd1—N11i | 92.25 (8) | N11—C11—H11A | 118.5 |
N1—Cd1—N11i | 150.83 (8) | C12—C11—H11A | 118.5 |
N11—Cd1—N11i | 70.51 (9) | C13—C12—C11 | 119.4 (3) |
N1i—Cd1—N1ii | 97.46 (8) | C13—C12—H12A | 120.3 |
N1—Cd1—N1ii | 74.05 (9) | C11—C12—H12A | 120.3 |
N11—Cd1—N1ii | 104.83 (8) | C12—C13—C14 | 119.9 (3) |
N11i—Cd1—N1ii | 87.47 (7) | C12—C13—H13A | 120.0 |
N1i—Cd1—N1iii | 74.05 (9) | C14—C13—H13A | 120.0 |
N1—Cd1—N1iii | 97.46 (8) | C13—C14—C15 | 116.9 (3) |
N11—Cd1—N1iii | 87.47 (7) | C13—C14—C16 | 123.6 (3) |
N11i—Cd1—N1iii | 104.83 (8) | C15—C14—C16 | 119.5 (3) |
N1ii—Cd1—N1iii | 165.09 (11) | N11—C15—C14 | 122.8 (2) |
N2—N1—Cd1 | 124.66 (19) | N11—C15—C15i | 118.13 (13) |
N2—N1—Cd1ii | 129.35 (18) | C14—C15—C15i | 119.09 (16) |
Cd1—N1—Cd1ii | 105.95 (9) | C16i—C16—C14 | 121.41 (17) |
N3—N2—N1 | 178.8 (3) | C16i—C16—H16A | 119.3 |
C11—N11—C15 | 118.0 (2) | C14—C16—H16A | 119.3 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+2, −z; (iii) x, −y+2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(N3)2(C12H8N2)] |
Mr | 376.67 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 19.4591 (17), 10.2988 (6), 6.8151 (6) |
β (°) | 106.033 (4) |
V (Å3) | 1312.66 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.67 |
Crystal size (mm) | 0.30 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2002) |
Tmin, Tmax | 0.774, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4185, 1217, 1133 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.605 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.056, 1.05 |
No. of reflections | 1217 |
No. of parameters | 96 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.78, −0.48 |
Computer programs: CrystalClear (Rigaku, 2002), SHELXTL (Sheldrick, 2008).
Acknowledgements
We gratefully acknowledge financial support from National Natural Science Foundation of China (20871115).
References
Abu-Youssef, M. A. M., Escuer, A., Goher, M. A. S., Mautner, F. A., Reiss, G. J. & Vicente, R. (2000). Angew. Chem. Int. Ed. 39, 1624–1626. CrossRef CAS Google Scholar
Bose, D., Rahaman, S. H., Mostafa, G., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2004). Polyhedron, 23, 545–552. Web of Science CSD CrossRef CAS Google Scholar
Cano, J., Journaux, Y., Goher, M. A. S., Abu-Youssef, M. A. M., Mautner, F. A., Reiss, G. J., Escuer, A. & Vicente, R. (2005). New J. Chem. 29, 306–314. Web of Science CSD CrossRef CAS Google Scholar
Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z., Zhang, S.-W. & Yan, C.-H. (2004). Chem. Mater. 16, 1590–1596. Web of Science CSD CrossRef CAS Google Scholar
Goher, M. A. S., Mautner, F. A., Gatterer, K., Abu-Youssef, M. A. M., Badr, A. M. A., Sodin, B. & Gspan, C. (2008). J. Mol. Struct. 876, 199–205. Web of Science CSD CrossRef CAS Google Scholar
Liu, F.-C., Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Bu, X.-H., Ribas, J. & Cano, J. (2007). Inorg. Chem. 46, 1520–1522. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mautner, F. A., Egger, A., Sodin, B., Goher, M. A. S., Abu-Youssef, M. A. M., Massoud, A., Escuer, A. & Vicente, R. (2010). J. Mol. Struct. 969, 192–196. Web of Science CSD CrossRef CAS Google Scholar
Meyer, F., Demeshko, S., Leibeling, G., Kersting, B., Kaifer, E. & Pritzkow, H. (2005). Chem. Eur. J. 11, 1518–1526. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193–195, 1027–1068. Web of Science CrossRef CAS Google Scholar
Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many compounds with uncommon magnetic properties have been widely investigated by using azido ligand, resulting from its rich coordination fashions (Ribas et al., 1999; Gao et al., 2004). The azido ligand exhibits a variety of bridging modes such as bi-dentate end-on (EO) and end-to-end (EE) bridging fashions (Liu et al., 2007; Cano et al., 2005; Goher et al., 2008; Mautner et al., 2010). A number of compounds with various structures have been obtained by introducing auxiliary ligands to the metal-azido system (Abu-Youssef et al., 2000; Bose et al., 2004; Meyer et al., 2005). The present example shows an infinite wavelike chain compound with 1,10-phenanthroline as an auxiliary ligand, [Cd(N3)2(C12H8N2)], in which azido ligand adopts the EO mode.
The asymmetric unit of the title compound contains half a CdII ion, one azido ion and half a 1,10-phenanthroline molecule (Fig. 1). The CdII ion exhibits a distorted octahedral geometry, coordinated by one chelating 1,10-phenanthroline ligand and four azido ligands with the end-on (EO) mode. The distances of Cd—N vary from 2.306 (2) to 2.411 (3) Å . The azido ligands doubly bridge neighbouring CdII centers in the EO fashion, yielding an infinite wave-like CdII-azido chain along the c direction with the shortest Cd···Cd separation being 3.764 (3) Å.
The adjacent CdII-azido chains are mediated by interchained π-π stacking interactions between the aromatic rings of 1,10-phenanthroline molecules, which arrange in the opposite direction alternatively. The centroid-to-centroid distance between the central rings of the phenanthroline is 3.408 (2)Å and the centroid-to-plane distance is 3.28 Å leading to a slippage of 0.936Å. This π-π stacking builts up a 2-D supramolecular layer parallel to the bc plane (Fig. 2).