organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Methyl­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 May 2010; accepted 27 May 2010; online 5 June 2010)

In the title compound, C11H11NO3, the conformation of the N—H bond is anti to the C=O bond in the amide segment, while it is syn to the ortho-methyl group in the phenyl ring. In the maleamic acid unit, the amide C=O bond is anti to the adjacent C—H bond, while the carboxyl C=O bond is syn to the adjacent C—H bond. The C=O and O—H bonds of the acid group are in the relatively rare anti position to each other. This is an obvious consequence of the intra­molecular O—H⋯O hydrogen bond donated to the amide carbonyl group. The ortho-substituted phenyl ring makes a dihedral angle of 12.7 (1)° with the mean plane of the maleamic acid unit. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains parallel to [001]. These chains are further linked into sheet by weak ππ inter­actions [centroid–centroid distance = 3.425 (2) Å].

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2009a[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874.],c[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009c). Acta Cryst. E65, o2945.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891-o892.]). For the modes of inter­linking carb­oxy­lic acids by hydrogen bonds, see: Jagannathan et al. (1994[Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.]); Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO3

  • Mr = 205.21

  • Monoclinic, P 21 /c

  • a = 7.3942 (3) Å

  • b = 11.5898 (4) Å

  • c = 12.9903 (3) Å

  • β = 114.534 (2)°

  • V = 1012.72 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.58 × 0.42 × 0.42 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.922, Tmax = 0.962

  • 15644 measured reflections

  • 1776 independent reflections

  • 1453 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.07

  • 1776 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 2.22 3.0665 (14) 167
O2—H2A⋯O1 0.92 1.56 2.4822 (13) 178
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Bran­denburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitutions on the crystal structures of this class of compounds (Gowda et al., 2009a,b,c; Prasad et al., 2002), the crystal structure of N-(2-methylphenyl)-maleamic acid (I) has been determined (Fig. 1). The conformations of the N—H and the C=O bonds in the amide segment are anti to each other. But the conformation of the N—H bond is syn to the ortho-methyl group in the phenyl ring. In the maleamic acid moiety, the amide C=O bond is anti to the adjacent C—H bond, while the carboxyl C=O bond is syn to the adjacent C—H bond. The observed rare anti conformation of the C=O and O—H bonds of the acid group is similar to that obsrved in N-(2,6-dimethylphenyl)-maleamic acid (Gowda et al., 2009a), N-(3,4-dimethylphenyl)-maleamic acid (Gowda et al., 2009b) and N-(2,4,6-trimethylphenyl)- maleamic acid (Gowda et al., 2009c).

The ortho-substituted phenyl ring makes a dihedral angle of 12.7 (1)° with the mean plane of the maleamic acid moiety (atoms C1, C2, C3, C4, N1, O1, O2 and O3). The orientation of the central amide group –NHOC– with respect to the phenyl ring is partially affected by the intramolecular hydrogen bond C10—H10···O1(amide) and is given by the torsion angle C10—C5—N1—C1 = -17.3 (2)°. Short intramolecular hydrogen bond O—H···O (Table 1) is important characteristic of the maleamic acid moiety. The C2–C3 bond length of 1.330 (2)Å clearly indicates the double bond character. In the crystal structure, the intermolecular N–H···O hydrogen bonds, having the amide N1 atom as donor and carbonyl O3 atom of the carboxyl group as acceptor, link the molecules into zigzag chains running along the [0 0 1] direction. Due to weak π-π interaction between the phenyl and maleamic acid moieties the chains are assembled to form sheets parallel to the bc-plane. One mode of the chain coupling is shown in Fig. 2 as a short contact between the phenyl ring centroid Cg and the C4 atom of the carboxylic group at (-x,-y + 1,-z + 1).

The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Related literature top

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2009a,b,c); Prasad et al. (2002). For the modes of interlinking carboxylic acids by hydrogen bonds, see: Jagannathan et al. (1994); Leiserowitz (1976).

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 2-methylaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2-methylaniline. The resultant solid N-(2-methylphenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

All H atoms attached to C atoms, N atom and O atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic), N—H = 0.86 Å and O—H= 0.92Å with Uiso(H) = 1.2Ueq(Caromatic, N) or Uiso(H) = 1.5Ueq(Cmethyl, O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the zigzag chains generated by N—H···O hydrogen bonds and extending parallel to the c axis. The chains are weakly coupled by π-π interaction between the phenyl rings and maleamic acid groups. The dashed lines depict the hydrogen bonds, the dotted line depicts the short contact Cg···C4ii. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes (i): x, -y + 3/2, z - 1/2; (ii) -x,-y + 1,-z + 1].
N-(2-Methylphenyl)maleamic acid top
Crystal data top
C11H11NO3F(000) = 432
Mr = 205.21Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8927 reflections
a = 7.3942 (3) Åθ = 2.5–29.5°
b = 11.5898 (4) ŵ = 0.10 mm1
c = 12.9903 (3) ÅT = 295 K
β = 114.534 (2)°Prism, colourless
V = 1012.72 (5) Å30.58 × 0.42 × 0.42 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1776 independent reflections
Graphite monochromator1453 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.027
ω scansθmax = 25°, θmin = 2.5°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 88
Tmin = 0.922, Tmax = 0.962k = 1313
15644 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.056P)2 + 0.0996P]
where P = (Fo2 + 2Fc2)/3
1776 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C11H11NO3V = 1012.72 (5) Å3
Mr = 205.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3942 (3) ŵ = 0.10 mm1
b = 11.5898 (4) ÅT = 295 K
c = 12.9903 (3) Å0.58 × 0.42 × 0.42 mm
β = 114.534 (2)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1776 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
1453 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.962Rint = 0.027
15644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
1776 reflectionsΔρmin = 0.13 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24625 (18)0.49123 (8)0.59119 (8)0.0661 (3)
O20.26421 (19)0.62958 (9)0.74100 (8)0.0701 (4)
H2A0.26000.57700.68700.105*
O30.24623 (18)0.81655 (10)0.75227 (8)0.0711 (4)
N10.24594 (15)0.49437 (9)0.41733 (8)0.0432 (3)
H1N0.23680.53890.36240.052*
C10.23624 (18)0.54568 (11)0.50723 (9)0.0416 (3)
C20.2115 (2)0.67235 (11)0.49860 (10)0.0444 (3)
H20.19310.70440.42930.053*
C30.2122 (2)0.74646 (11)0.57694 (11)0.0463 (3)
H30.18920.82240.55170.056*
C40.2424 (2)0.73222 (12)0.69681 (11)0.0488 (4)
C50.26967 (19)0.37432 (11)0.40204 (11)0.0432 (3)
C60.2264 (2)0.33549 (12)0.29220 (11)0.0502 (4)
C70.2520 (2)0.21851 (13)0.27818 (14)0.0614 (4)
H70.22470.19100.20600.074*
C80.3162 (3)0.14215 (13)0.36698 (15)0.0680 (5)
H80.33030.06430.35470.082*
C90.3591 (3)0.18185 (13)0.47378 (14)0.0648 (4)
H90.40310.13070.53450.078*
C100.3376 (2)0.29766 (12)0.49199 (12)0.0550 (4)
H100.36880.32420.56500.066*
C110.1553 (3)0.41495 (15)0.19286 (12)0.0711 (5)
H11A0.13420.37210.12560.107*
H11B0.25320.47370.20410.107*
H11C0.03260.45020.18490.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1258 (10)0.0400 (6)0.0506 (6)0.0030 (6)0.0547 (6)0.0022 (5)
O20.1294 (10)0.0507 (6)0.0420 (5)0.0101 (6)0.0472 (6)0.0033 (4)
O30.1142 (10)0.0573 (7)0.0486 (6)0.0083 (6)0.0406 (6)0.0134 (5)
N10.0616 (7)0.0386 (6)0.0353 (5)0.0011 (5)0.0261 (5)0.0029 (5)
C10.0547 (8)0.0400 (7)0.0348 (6)0.0020 (6)0.0233 (6)0.0022 (5)
C20.0620 (8)0.0418 (7)0.0327 (6)0.0025 (6)0.0231 (6)0.0018 (5)
C30.0650 (9)0.0367 (6)0.0397 (7)0.0057 (6)0.0243 (6)0.0008 (5)
C40.0642 (9)0.0468 (8)0.0397 (7)0.0051 (6)0.0260 (6)0.0044 (6)
C50.0500 (8)0.0392 (7)0.0474 (7)0.0045 (5)0.0272 (6)0.0079 (6)
C60.0567 (8)0.0491 (8)0.0485 (7)0.0072 (6)0.0254 (6)0.0151 (6)
C70.0701 (10)0.0541 (9)0.0626 (9)0.0079 (7)0.0301 (8)0.0254 (8)
C80.0793 (11)0.0406 (8)0.0926 (13)0.0042 (7)0.0441 (10)0.0151 (8)
C90.0849 (12)0.0444 (8)0.0776 (11)0.0072 (7)0.0461 (9)0.0057 (8)
C100.0737 (10)0.0482 (8)0.0532 (8)0.0046 (7)0.0364 (7)0.0016 (6)
C110.1050 (13)0.0666 (10)0.0427 (8)0.0016 (9)0.0316 (9)0.0134 (7)
Geometric parameters (Å, º) top
O1—C11.2355 (14)C5—C61.4005 (17)
O2—C41.3015 (17)C6—C71.391 (2)
O2—H2A0.9200C6—C111.492 (2)
O3—C41.2076 (16)C7—C81.373 (2)
N1—C11.3387 (14)C7—H70.9300
N1—C51.4265 (16)C8—C91.368 (2)
N1—H1N0.8602C8—H80.9300
C1—C21.4779 (18)C9—C101.384 (2)
C2—C31.3301 (18)C9—H90.9300
C2—H20.9300C10—H100.9300
C3—C41.4876 (18)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C5—C101.3856 (19)C11—H11C0.9600
C4—O2—H2A108.1C7—C6—C11120.42 (12)
C1—N1—C5127.52 (10)C5—C6—C11122.15 (12)
C1—N1—H1N116.3C8—C7—C6122.44 (14)
C5—N1—H1N116.2C8—C7—H7118.8
O1—C1—N1122.54 (11)C6—C7—H7118.8
O1—C1—C2122.32 (10)C9—C8—C7119.28 (14)
N1—C1—C2115.14 (10)C9—C8—H8120.4
C3—C2—C1128.49 (11)C7—C8—H8120.4
C3—C2—H2115.8C8—C9—C10120.33 (15)
C1—C2—H2115.8C8—C9—H9119.8
C2—C3—C4132.88 (12)C10—C9—H9119.8
C2—C3—H3113.6C9—C10—C5120.33 (13)
C4—C3—H3113.6C9—C10—H10119.8
O3—C4—O2120.58 (12)C5—C10—H10119.8
O3—C4—C3119.39 (13)C6—C11—H11A109.5
O2—C4—C3120.03 (11)C6—C11—H11B109.5
C10—C5—C6120.17 (12)H11A—C11—H11B109.5
C10—C5—N1122.04 (11)C6—C11—H11C109.5
C6—C5—N1117.77 (11)H11A—C11—H11C109.5
C7—C6—C5117.43 (13)H11B—C11—H11C109.5
C5—N1—C1—O10.5 (2)N1—C5—C6—C7179.30 (12)
C5—N1—C1—C2179.87 (12)C10—C5—C6—C11179.25 (14)
O1—C1—C2—C35.8 (2)N1—C5—C6—C110.7 (2)
N1—C1—C2—C3174.52 (14)C5—C6—C7—C80.3 (2)
C1—C2—C3—C42.1 (3)C11—C6—C7—C8179.68 (15)
C2—C3—C4—O3175.97 (16)C6—C7—C8—C90.8 (2)
C2—C3—C4—O24.1 (3)C7—C8—C9—C100.2 (2)
C1—N1—C5—C1017.3 (2)C8—C9—C10—C50.9 (2)
C1—N1—C5—C6164.21 (12)C6—C5—C10—C91.4 (2)
C10—C5—C6—C70.8 (2)N1—C5—C10—C9179.82 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.223.0665 (14)167
O2—H2A···O10.921.562.4822 (13)178
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H11NO3
Mr205.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.3942 (3), 11.5898 (4), 12.9903 (3)
β (°) 114.534 (2)
V3)1012.72 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.42 × 0.42
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.922, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
15644, 1776, 1453
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.07
No. of reflections1776
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.223.0665 (14)166.7
O2—H2A···O10.921.562.4822 (13)177.5
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. K. thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009c). Acta Cryst. E65, o2945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds