organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benz­yl(meth­yl)phosphinic acid

aUniversité Paris-Nord, UFR-SMBH, Laboratoire de Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques, (FRE 3043 CNRS), 74 rue M. Cachin, 93017 Bobigny Cedex, France, and bService de Cristallochimie, Institut de Chimie des Substances Naturelles, CNRS, 1 Av. de la Terrasse, 91198 Gif sur-Yvette cedex, France
*Correspondence e-mail: carole.barbey@smbh.univ-paris13.fr

(Received 28 May 2010; accepted 21 June 2010; online 26 June 2010)

The title compound, C8H11O2P, is a phosphinic compound with a tetra­coordinate penta­valent P atom. The phosphinic function plays a predominant role in the cohesion of the crystal structure, both by forming chains along the b axis via strong inter­molecular O—H⋯O hydrogen bonds and by cross-linking these chains perpendicularly via weak inter­molecular C—H⋯O hydrogen bonds, generating a two-dimensional network parallel to (001).

Related literature

For general background to phosphinic compounds and their biological applications, see: Ye et al. (2007[Ye, Y., Liu, M., Kao, J. L.-F. & Marshall, G. R. (2007). Biopolymers, 89, 72-85.]); Abrunhosa-Thomas et al. (2007[Abrunhosa-Thomas, I., Sellers, C. E. & Montchamp, J.-L. (2007). J. Org. Chem. 72, 2851-2856.]); Wang et al. (2009[Wang, Y., Wang, Y., Yu, J., Miao, Z. & Chen, R. (2009). Chem. Eur. J. 15, 9290-9293.]). For their inhibitor properties and use as anti­bacterial agents, see: Boyd et al. (1994[Boyd, E. A., Regan, A. C. & James, K. (1994). Tetrahedron Lett. 35, 4223-4226.]); Matziari et al. (2004[Matziari, M., Beau, F., Cuniasse, P., Dive, V. & Yiotakis, A. (2004). J. Med. Chem. 47, 325-336.]); Ryglowski & Kafarski (1996[Ryglowski, A. & Kafarski, P. (1996). Tetrahedron, 52, 10685-10692.]). For the preparation of phosphinic acid, see: Montchamp (2005[Montchamp, J. L. (2005). J. Organomet. Chem. 690, 2388-2406.]); Dingwall et al. (1989[Dingwall, J. G., Ehrenfreund, J. & Hall, R. G. (1989). Tetrahedron, 45, 3787-3808.]); Fougère et al. (2009[Fougère, C., Guénin, E., Hardouin, J. & Lecouvey, M. (2009). Eur. J. Org. Chem. 34, 6048-6054.]). For related structures, see: Frantz et al. (2003[Frantz, R., Durand, J. O., Carré, F., Lanneau, G., Le Bideau, J., Alonso, B. & Massiot, D. (2003). Chem. Eur. J. 9, 770-775.]); Langley et al. (1996[Langley, K. J., Squattrito, P., Adani, F. & Montoneri, E. (1996). Inorg. Chim. Acta, 253, 77-85.]); Cai et al. (2003[Cai, J., Zhou, Z., Zhao, G. & Tang, C. (2003). Heteroat. Chem. 14, 312-315.]); Meyer et al. (2003[Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210-1250.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11O2P

  • Mr = 170.14

  • Monoclinic, P 21 /c

  • a = 9.3075 (4) Å

  • b = 8.2526 (4) Å

  • c = 11.8890 (4) Å

  • β = 108.657 (3)°

  • V = 865.22 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.60 × 0.25 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 10548 measured reflections

  • 1767 independent reflections

  • 1320 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.05

  • 1767 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.70 2.493 (2) 162
C7—H7⋯O2ii 0.93 2.54 3.377 (3) 151
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and CrystalBuilder (Welter, 2006[Welter, R. (2006). Acta Cryst. A62, s252.]).

Supporting information


Comment top

The title compound, C8H11O2P, belongs to the phosphinic acid family (R'P(O)OHR''). These compounds are important substrates in the study of biochemical processes, and those comprising tetracoordinate pentavalent phosphorus are widely used as biologically active compounds. Mimics of amino acids in which the carboxylic function is replaced by phosphorus analogues have attracted particular interest. Among these phosphorus functions, phosphinic acid moiety is an excellent mimic of the tetrahedral transition state of amid bond hydrolysis and is more stable than phosphonic or phosphonamidic isosters. Thus, phosphinic compounds occupy an important place and reveal diverse and interesting biological and biochemical properties (Ye et al., 2007; Abrunhosa-Thomas et al., 2007; Wang et al., 2009): phosphinic peptides have been reported to be potent inhibitors of several matrixins (MMPs) (Matziari et al., 2004) and are widely studied as antibacterial agents, enzyme inhibitors, haptens for catalytic antibodies, or anti HIV agents (Boyd et al., 1994; Ryglowski & Kafarski, 1996).

The development of methods for the preparation of phosphinic acids is so important and currently attracting growing interest (Montchamp, 2005; Dingwall et al., 1989). The most commonly employed methods to prepare phosphinic acids suffer from several limitations: large excess of reagents, difficulties to avoid formation of symmetrically disubstituted phosphinic acids, handling difficulties of some starting materials. A new synthesis of unsymmetrical phosphinic acids R'P(O)OHR'' was performed. The first P—C bond formation was achieved using a base-promoted H-phosphinate alkylation from a protected H-phosphinate, easier and safer to handle. A one pot methodology was developed for the second P–C bond formation involving sila-Arbuzov reaction (Fougère et al., 2009).

An ORTEP plot of the molecule is given in Fig. 1. Geometric parameters are in the usual ranges, e.g.; typical P = O, P—O and P—C bonds as it was found earlier in phosphonic acid crystal structures (Langley et al., 1996; Frantz et al., 2003; Meyer et al., 2003; Cai et al., 2003 ).

In the crystal packing, one molecule is linked to two adjacent symmetric molecules via strong intermolecular O–H···O==P hydrogen bonds (Table 1). These hydrogen bonds between phosphinic groups built an infinite intermolecular hydrogen-bond network along the b direction (Fig. 2), forming chains of molecules. These chains are perpendicularly cross-linked via weak hydrogen bonds between C-H from the aromatic ring and O from the phosphinic group (Table 1, Fig 2), that give rise to a bidimensionnal organization parallel to the (001) plane. The packing of the structure can also be described as a bidimensionnal organization piled up to the third direction with hydrophobic functions face to face.

Related literature top

For general background to phosphinic compounds and their biological applications, see: Ye et al. (2007); Abrunhosa-Thomas et al. (2007); Wang et al. (2009). For their inhibitor properties and use as antibacterial agents, see: Boyd et al. (1994); Matziari et al. (2004); Ryglowski & Kafarski (1996). For the preparation of phosphinic acid, see: Montchamp (2005); Dingwall et al. (1989); Fougère et al. (2009). For related structures, see: Frantz et al. (2003); Langley et al. (1996); Cai et al. (2003); Meyer et al. (2003).

Experimental top

To benzyl phosphinate (20 mmol) in acetonitrile (20 ml), bromotrimethylsilane (7 equiv) was added under argon bubbling. The triethylamine (2 equiv) was added, followed 5 minutes later by the bromide derivatives (1 equiv). The mixture was cooled to 0°C and absolute ethanol was added to quench the reaction. After 30 min., the solvent was removed and the residue was taken up in distilled water and extracted with ethyl acetate. The organic layer was dried under MgSO4; filtrated and evaporated under reduced pressure to give the crude product. This product was taken up in water (20 ml) and washed with ether (3 x 20 ml), followed by a reversed phase column chromatography (water/methanol 1:1) to give a white solid with high yield (76%). Single crystals suitable for X-ray structure analysis could be obtained by slow evaporation of a concentrated water/methanol (1/1) solution at room temperature.

Refinement top

All Hydrogen atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å (methylene) or 0.97 Å (secondary CH2 group) with Uiso(H) = 1.2 Ueq(C) (aromatic) or 1.5 Ueq(C) for others. H atom of the hydroxyl was located in difference Fourier syntheses and was treated in the last stage of refinement as riding on it parent O atom with O—H = 0.82 Å and Uiso(H) = 1.2 Ueq(O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and CrystalBuilder (Welter, 2006).

Figures top
[Figure 1] Fig. 1. Molecular View of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing view with intermolecular hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) x-1, y, z]
Benzyl(methyl)phosphinic acid top
Crystal data top
C8H11O2PF(000) = 360
Mr = 170.14Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 1896 reflections
a = 9.3075 (4) Åθ = 0.4–26.4°
b = 8.2526 (4) ŵ = 0.27 mm1
c = 11.8890 (4) ÅT = 293 K
β = 108.657 (3)°Parallelepipedic, colourless
V = 865.22 (6) Å30.60 × 0.25 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1320 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 26.3°, θmin = 2.3°
Detector resolution: 9 pixels mm-1h = 1111
ϕ and ω scansk = 1010
10548 measured reflectionsl = 1414
1767 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.2898P]
where P = (Fo2 + 2Fc2)/3
1767 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C8H11O2PV = 865.22 (6) Å3
Mr = 170.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3075 (4) ŵ = 0.27 mm1
b = 8.2526 (4) ÅT = 293 K
c = 11.8890 (4) Å0.60 × 0.25 × 0.06 mm
β = 108.657 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1320 reflections with I > 2σ(I)
10548 measured reflectionsRint = 0.050
1767 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
1767 reflectionsΔρmin = 0.29 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.37056 (5)0.18896 (6)0.22698 (4)0.03697 (18)
C10.3422 (3)0.2500 (3)0.36151 (18)0.0574 (6)
H110.34500.15660.41030.086*
H120.24540.30230.34410.086*
H130.42090.32410.40290.086*
O10.36315 (16)0.34293 (17)0.15063 (12)0.0487 (4)
H10.41890.41280.19090.058*
O20.51352 (16)0.09571 (18)0.24906 (16)0.0606 (4)
C20.2113 (2)0.0707 (2)0.14174 (19)0.0440 (5)
H210.22280.04880.06490.066*
H220.21440.03260.18140.066*
C30.0567 (2)0.1455 (2)0.12169 (17)0.0376 (5)
C40.0016 (3)0.2590 (3)0.03332 (17)0.0485 (5)
H40.05570.29140.01400.058*
C50.1435 (3)0.3248 (3)0.0144 (2)0.0618 (7)
H50.18120.40110.04540.074*
C60.2295 (3)0.2779 (3)0.0838 (2)0.0640 (7)
H60.32550.32180.07090.077*
C70.1734 (3)0.1669 (3)0.1716 (2)0.0613 (7)
H70.23120.13520.21870.074*
C80.0310 (2)0.1011 (3)0.19124 (19)0.0509 (6)
H80.00640.02600.25190.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0327 (3)0.0317 (3)0.0455 (3)0.0038 (2)0.0113 (2)0.0036 (2)
C10.0587 (14)0.0668 (16)0.0453 (12)0.0012 (12)0.0147 (10)0.0005 (12)
O10.0563 (9)0.0378 (9)0.0471 (8)0.0077 (7)0.0097 (6)0.0053 (6)
O20.0367 (8)0.0452 (9)0.0993 (12)0.0114 (7)0.0209 (8)0.0051 (9)
C20.0418 (11)0.0336 (11)0.0557 (12)0.0018 (9)0.0143 (9)0.0032 (9)
C30.0343 (10)0.0351 (11)0.0406 (10)0.0066 (8)0.0081 (8)0.0062 (8)
C40.0508 (12)0.0475 (13)0.0442 (11)0.0013 (11)0.0111 (10)0.0027 (10)
C50.0581 (15)0.0499 (15)0.0602 (14)0.0081 (12)0.0050 (11)0.0017 (12)
C60.0364 (12)0.0625 (17)0.0836 (17)0.0008 (12)0.0061 (12)0.0282 (15)
C70.0463 (13)0.0689 (17)0.0751 (16)0.0124 (13)0.0284 (12)0.0164 (14)
C80.0471 (13)0.0531 (14)0.0525 (12)0.0080 (11)0.0159 (10)0.0034 (11)
Geometric parameters (Å, º) top
P1—O21.4859 (14)C3—C41.382 (3)
P1—O11.5502 (14)C3—C81.384 (3)
P1—C11.775 (2)C4—C51.378 (3)
P1—C21.793 (2)C4—H40.9300
C1—H110.9600C5—C61.377 (4)
C1—H120.9600C5—H50.9300
C1—H130.9600C6—C71.361 (4)
O1—H10.8200C6—H60.9300
C2—C31.514 (3)C7—C81.381 (3)
C2—H210.9700C7—H70.9300
C2—H220.9700C8—H80.9300
O2—P1—O1113.42 (9)C4—C3—C8118.07 (19)
O2—P1—C1111.74 (11)C4—C3—C2121.23 (18)
O1—P1—C1107.66 (10)C8—C3—C2120.70 (18)
O2—P1—C2110.46 (9)C5—C4—C3120.9 (2)
O1—P1—C2103.96 (9)C5—C4—H4119.5
C1—P1—C2109.24 (10)C3—C4—H4119.5
P1—C1—H11109.5C6—C5—C4120.1 (2)
P1—C1—H12109.5C6—C5—H5119.9
H11—C1—H12109.5C4—C5—H5119.9
P1—C1—H13109.5C7—C6—C5119.6 (2)
H11—C1—H13109.5C7—C6—H6120.2
H12—C1—H13109.5C5—C6—H6120.2
P1—O1—H1109.5C6—C7—C8120.5 (2)
C3—C2—P1116.08 (14)C6—C7—H7119.8
C3—C2—H21108.3C8—C7—H7119.8
P1—C2—H21108.3C7—C8—C3120.8 (2)
C3—C2—H22108.3C7—C8—H8119.6
P1—C2—H22108.3C3—C8—H8119.6
H21—C2—H22107.4
O2—P1—C2—C3174.91 (15)C3—C4—C5—C60.0 (3)
O1—P1—C2—C363.09 (17)C4—C5—C6—C70.3 (4)
C1—P1—C2—C351.61 (18)C5—C6—C7—C80.1 (4)
P1—C2—C3—C481.4 (2)C6—C7—C8—C30.5 (4)
P1—C2—C3—C899.0 (2)C4—C3—C8—C70.8 (3)
C8—C3—C4—C50.6 (3)C2—C3—C8—C7178.8 (2)
C2—C3—C4—C5179.01 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.702.493 (2)162
C7—H7···O2ii0.932.543.377 (3)151
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H11O2P
Mr170.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.3075 (4), 8.2526 (4), 11.8890 (4)
β (°) 108.657 (3)
V3)865.22 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.60 × 0.25 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10548, 1767, 1320
Rint0.050
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.05
No. of reflections1767
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.29

Computer programs: COLLECT (Hooft, 1998), HKL (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and CrystalBuilder (Welter, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.702.493 (2)161.6
C7—H7···O2ii0.932.543.377 (3)150.6
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

The authors thank Dr Nathalie Dupont and Professor Marc Lecouvey for advice.

References

First citationAbrunhosa-Thomas, I., Sellers, C. E. & Montchamp, J.-L. (2007). J. Org. Chem. 72, 2851–2856.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoyd, E. A., Regan, A. C. & James, K. (1994). Tetrahedron Lett. 35, 4223–4226.  CrossRef CAS Web of Science Google Scholar
First citationCai, J., Zhou, Z., Zhao, G. & Tang, C. (2003). Heteroat. Chem. 14, 312–315.  Web of Science CSD CrossRef CAS Google Scholar
First citationDingwall, J. G., Ehrenfreund, J. & Hall, R. G. (1989). Tetrahedron, 45, 3787–3808.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFougère, C., Guénin, E., Hardouin, J. & Lecouvey, M. (2009). Eur. J. Org. Chem. 34, 6048–6054.  Google Scholar
First citationFrantz, R., Durand, J. O., Carré, F., Lanneau, G., Le Bideau, J., Alonso, B. & Massiot, D. (2003). Chem. Eur. J. 9, 770–775.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLangley, K. J., Squattrito, P., Adani, F. & Montoneri, E. (1996). Inorg. Chim. Acta, 253, 77–85.  CSD CrossRef CAS Web of Science Google Scholar
First citationMatziari, M., Beau, F., Cuniasse, P., Dive, V. & Yiotakis, A. (2004). J. Med. Chem. 47, 325–336.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210–1250.  Web of Science CrossRef CAS Google Scholar
First citationMontchamp, J. L. (2005). J. Organomet. Chem. 690, 2388–2406.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRyglowski, A. & Kafarski, P. (1996). Tetrahedron, 52, 10685–10692.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Wang, Y., Yu, J., Miao, Z. & Chen, R. (2009). Chem. Eur. J. 15, 9290–9293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWelter, R. (2006). Acta Cryst. A62, s252.  CrossRef IUCr Journals Google Scholar
First citationYe, Y., Liu, M., Kao, J. L.-F. & Marshall, G. R. (2007). Biopolymers, 89, 72–85.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds