organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1872-o1873

Hydrogen bis­­[2-(4-ammonio­phen­­oxy)acetate] triiodide

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wxwang_1109@yahoo.cn

(Received 4 June 2010; accepted 24 June 2010; online 30 June 2010)

In the title compound, C16H19N2O6+·I3, the carboxyl­ate groups of a pair of (4-amino­phen­oxy) acetate ligands are bridged by an H atom in a rather classical configuration. The H atom is located on an inversion center and the pair of carboxyl­ate groups are centrosymmetrically related with an O⋯O distance of 2.494 (5) Å. The I3 anion is also located on an inversion center. In the crystal, N—H⋯O and N—H⋯I hydrogen-bond inter­actions build up a three-dimensionnal network.

Related literature

For dielectric–ferroelectric materials, see: Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026-2029.]); Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]). For related structures, see: Antolic et al. (1999[Antolic, S., Salopek, B., Kojic-Prodic, B., Magnus, V. & Cohen, J. D. (1999). Plant. Growth Regul. 27, 21-31.]); Bacon et al. (1977[Bacon, G. E., Walker, C. R. & Speakman, J. C. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 979-983.]); Chen & Mak (1994[Chen, X.-M. & Mak, T. C. W. (1994). Acta Cryst. C50, 1807-1809.]); Godzisz et al. (2003[Godzisz, D., Llczyszyn, M. & Ciunik, Z. (2003). Spectrochim. Acta Part A, 59, 235-244.]); Kay (1977[Kay, M. I. (1977). Ferroelectrics, 17, 415-418.]); Li et al. (1998[Li, P., Wang, T., Emge, T. & Zhao, K. (1998). J. Am. Chem. Soc. 120, 7391-7392.]); McAdam et al. (1971[McAdam, A., Currie, M. & Speakman, J. C. (1971). J. Chem. Soc. A, pp. 1994-1997.]); Pogorzelec & Garbarczyk (2002[Pogorzelec, K. & Garbarczyk, J. (2002). Mol. Phys. Rep. 35, 132-141.]); Sridhar et al. (2001[Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2001). Acta Cryst. E57, o1004-o1006.]); Videnova-Adrabinska et al. (2007[Videnova-Adrabinska, V., Obara, E. & Lis, T. (2007). New J. Chem. 31, 287-295.]); Zhu et al. (2002[Zhu, H.-F., Fan, J., Okamura, T., Sun, W.-Y. & Ueyama, N. (2002). Chem. Lett. pp. 898-899.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N2O6+·I3

  • Mr = 716.03

  • Monoclinic, P 21 /n

  • a = 5.065 (1) Å

  • b = 13.780 (3) Å

  • c = 14.982 (3) Å

  • β = 91.45 (3)°

  • V = 1045.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.52 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.52, Tmax = 0.58

  • 10680 measured reflections

  • 2408 independent reflections

  • 2182 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.062

  • S = 1.14

  • 2408 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O3i 1.25 1.25 2.495 (5) 180
N1—H1A⋯I1ii 0.89 2.85 3.665 (3) 152
N1—H1B⋯O2iii 0.89 2.13 2.907 (4) 146
N1—H1C⋯O2iv 0.89 2.05 2.935 (4) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y+1, z; (iii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We are interested in the dielectric-ferroelectric materials, including organic ligands (Li et al.,2008), metal-organic coordination compounds (Hang et al., 2009) and organic-inorganic hybrids. Recent studies have revealed that in amino acid-inorganic acid complexes, when the number of H atoms liberated from the inorganic acid is less than the number of amino acids, the H atom is shared by two amino acids, resulting in short symmetric O—H···O hydrogen bonds, as evidenced in triglycine sulfate (Kay et al., 1977), leading to phase transitions. Thus, we want to find aromatic compounds containing amidogens having dielectric-ferroelectric properties. As part of our ongoing studies, we report here the crystal structure of the title compound.

In the title compound, C16H19N2O6+.I3-, the carboxylate groups of a pair of (4-aminophenoxy) acetate are bridged by a proton (Fig. 1) as already observed in many carboxylate derivative (Antolic et al., 1999; Bacon et al.,1977; Chen & Mak, 1994; Godzisz et al., 2003; Kay, 1977; Li et al., 1998; McAdam et al.,1971; Pogorzelec & Garbarczyk, 2002; Sridhar et al., 2001; Videnova-Adrabinska et al., 2007; Zhu et al., 2002). The proton is located on an inversion center and the pair of carboxylate groups are centrosymmetrically related with an O···O distance of ca 2.494 (5) Å. The two carboxylate frameworks are in the same plane with the largest deviation from the plane being 0.013 (3) Å. This plane is making a dihedral angle of 84.1 (1)° with the phenyl ring.

The anion I3- is also located around inversion center. The occurence of N-H···O and N-H···I hydrogen interactions build up a three dimensionnal network (Fig. 2).

Related literature top

For dielectric–ferroelectric materials, see: Hang et al. (2009); Li et al. (2008). For related structures, see: Antolic et al. (1999); Bacon et al. (1977); Chen & Mak (1994); Godzisz et al. (2003); Kay (1977); Li et al. (1998); McAdam et al. (1971); Pogorzelec & Garbarczyk (2002); Sridhar et al. (2001); Videnova-Adrabinska et al. (2007); Zhu et al. (2002).

Experimental top

ethyl 2-(4-aminophenoxy)acetate (1.95 g) and methanol(30 ml) were added to a round-bottomed flask with a magnetic stirrer bar, then hydrofluoric acid(52%) 2.4 g was added into the mixture. Yellow plate-like crystals of (I) were grown from an ethanol solution of the title compound by slow evaporation at room temperature.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C,N,O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry codes : (i) -x+1, -y, -z+1; (ii) 1-x, 1-y, 1-z]
[Figure 2] Fig. 2. Packing view of the title compound, the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity.
Hydrogen bis[2-(4-ammoniophenoxy)acetate] triiodide top
Crystal data top
C16H19N2O6+·I3F(000) = 672
Mr = 716.03Dx = 2.275 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10680 reflections
a = 5.065 (1) Åθ = 3.1–27.5°
b = 13.780 (3) ŵ = 4.52 mm1
c = 14.982 (3) ÅT = 293 K
β = 91.45 (3)°Prism, yellow
V = 1045.4 (4) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2408 independent reflections
Radiation source: fine-focus sealed tube2182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.52, Tmax = 0.58l = 1919
10680 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0183P)2 + 1.2671P]
where P = (Fo2 + 2Fc2)/3
2408 reflections(Δ/σ)max = 0.002
124 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
C16H19N2O6+·I3V = 1045.4 (4) Å3
Mr = 716.03Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.065 (1) ŵ = 4.52 mm1
b = 13.780 (3) ÅT = 293 K
c = 14.982 (3) Å0.40 × 0.30 × 0.20 mm
β = 91.45 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2408 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2182 reflections with I > 2σ(I)
Tmin = 0.52, Tmax = 0.58Rint = 0.034
10680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.14Δρmax = 0.85 e Å3
2408 reflectionsΔρmin = 0.75 e Å3
124 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2218 (4)0.67887 (15)0.58467 (15)0.0326 (5)
O20.8079 (4)0.56039 (18)0.62140 (14)0.0365 (5)
O30.6743 (4)0.55858 (17)0.47780 (15)0.0367 (5)
H30.50000.50000.50000.044*
N11.1886 (6)1.0177 (2)0.7898 (2)0.0412 (7)
H1A1.22381.06750.75420.049*
H1B1.31081.01440.83340.049*
H1C1.03041.02590.81320.049*
C30.8242 (6)0.5871 (2)0.5433 (2)0.0266 (6)
C41.1951 (6)0.7628 (2)0.63381 (19)0.0253 (6)
C91.1900 (6)0.9274 (2)0.73775 (19)0.0295 (6)
C111.3912 (6)0.7776 (2)0.6988 (2)0.0335 (7)
H11A1.52510.73210.70700.040*
C131.3875 (6)0.8600 (2)0.7513 (2)0.0332 (7)
H13A1.51720.86980.79550.040*
C140.9956 (6)0.9123 (3)0.6741 (2)0.0369 (7)
H14A0.86170.95790.66620.044*
C150.9965 (6)0.8299 (3)0.6217 (2)0.0361 (7)
H15A0.86400.81990.57850.043*
C161.0386 (6)0.6569 (2)0.5143 (2)0.0311 (7)
H16A1.13240.62840.46510.037*
H16B0.95700.71660.49310.037*
I10.53672 (6)0.162582 (19)0.624725 (17)0.05293 (10)
I20.50000.00000.50000.03753 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0381 (12)0.0215 (10)0.0377 (12)0.0003 (9)0.0087 (9)0.0031 (9)
O20.0356 (12)0.0465 (14)0.0272 (11)0.0053 (10)0.0027 (9)0.0036 (10)
O30.0373 (12)0.0434 (13)0.0290 (11)0.0057 (10)0.0059 (9)0.0062 (10)
N10.0396 (16)0.0464 (17)0.0376 (16)0.0077 (13)0.0043 (12)0.0193 (13)
C30.0285 (15)0.0233 (14)0.0280 (15)0.0060 (11)0.0017 (11)0.0031 (12)
C40.0283 (14)0.0212 (14)0.0264 (14)0.0055 (11)0.0002 (11)0.0026 (11)
C90.0344 (16)0.0309 (16)0.0234 (14)0.0087 (13)0.0041 (12)0.0055 (12)
C110.0330 (16)0.0298 (16)0.0372 (17)0.0007 (13)0.0100 (13)0.0042 (14)
C130.0341 (16)0.0382 (17)0.0269 (15)0.0050 (14)0.0084 (12)0.0009 (13)
C140.0332 (17)0.0375 (18)0.0398 (18)0.0090 (14)0.0057 (13)0.0088 (15)
C150.0295 (16)0.0404 (19)0.0379 (18)0.0040 (13)0.0117 (13)0.0102 (15)
C160.0413 (18)0.0228 (15)0.0290 (15)0.0011 (12)0.0050 (13)0.0014 (12)
I10.0714 (2)0.04395 (16)0.04379 (15)0.00423 (12)0.00786 (12)0.00539 (11)
I20.04291 (18)0.04059 (18)0.02891 (16)0.00398 (13)0.00235 (12)0.00590 (12)
Geometric parameters (Å, º) top
O1—C41.380 (4)C4—C111.388 (4)
O1—C161.419 (4)C9—C141.369 (4)
O2—C31.232 (4)C9—C131.376 (5)
O3—C31.287 (4)C11—C131.382 (5)
O3—O3i2.495 (5)C11—H11A0.9300
O3—H31.2476C13—H13A0.9300
N1—C91.467 (4)C14—C151.381 (5)
N1—H1A0.8899C14—H14A0.9300
N1—H1B0.8896C15—H15A0.9300
N1—H1C0.8899C16—H16A0.9700
C3—C161.522 (4)C16—H16B0.9700
C4—C151.375 (4)I1—I22.9203 (5)
C4—O1—C16120.3 (2)C13—C11—C4120.0 (3)
C3—O3—O3i113.7 (2)C13—C11—H11A120.0
C3—O3—H3113.7C4—C11—H11A120.0
C9—N1—H1A109.4C9—C13—C11119.4 (3)
C9—N1—H1B109.5C9—C13—H13A120.3
H1A—N1—H1B109.5C11—C13—H13A120.3
C9—N1—H1C109.5C9—C14—C15120.6 (3)
H1A—N1—H1C109.5C9—C14—H14A119.7
H1B—N1—H1C109.5C15—C14—H14A119.7
O2—C3—O3125.5 (3)C4—C15—C14119.3 (3)
O2—C3—C16121.7 (3)C4—C15—H15A120.3
O3—C3—C16112.8 (3)C14—C15—H15A120.3
C15—C4—O1125.1 (3)O1—C16—C3112.4 (2)
C15—C4—C11120.2 (3)O1—C16—H16A109.1
O1—C4—C11114.8 (3)C3—C16—H16A109.1
C14—C9—C13120.5 (3)O1—C16—H16B109.1
C14—C9—N1119.1 (3)C3—C16—H16B109.1
C13—C9—N1120.4 (3)H16A—C16—H16B107.9
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O3i1.251.252.495 (5)180
N1—H1A···I1ii0.892.853.665 (3)152
N1—H1B···O2iii0.892.132.907 (4)146
N1—H1C···O2iv0.892.052.935 (4)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+5/2, y+1/2, z+3/2; (iv) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H19N2O6+·I3
Mr716.03
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.065 (1), 13.780 (3), 14.982 (3)
β (°) 91.45 (3)
V3)1045.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.52
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.52, 0.58
No. of measured, independent and
observed [I > 2σ(I)] reflections
10680, 2408, 2182
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.062, 1.14
No. of reflections2408
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.75

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O3i1.251.252.495 (5)180.0
N1—H1A···I1ii0.892.853.665 (3)152.2
N1—H1B···O2iii0.892.132.907 (4)145.9
N1—H1C···O2iv0.892.052.935 (4)171.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+5/2, y+1/2, z+3/2; (iv) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationAntolic, S., Salopek, B., Kojic-Prodic, B., Magnus, V. & Cohen, J. D. (1999). Plant. Growth Regul. 27, 21–31.  CAS Google Scholar
First citationBacon, G. E., Walker, C. R. & Speakman, J. C. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 979–983.  CSD CrossRef Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChen, X.-M. & Mak, T. C. W. (1994). Acta Cryst. C50, 1807–1809.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGodzisz, D., Llczyszyn, M. & Ciunik, Z. (2003). Spectrochim. Acta Part A, 59, 235–244.  CrossRef CAS Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.  Web of Science CSD CrossRef Google Scholar
First citationKay, M. I. (1977). Ferroelectrics, 17, 415–418.  CrossRef CAS Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationLi, P., Wang, T., Emge, T. & Zhao, K. (1998). J. Am. Chem. Soc. 120, 7391–7392.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcAdam, A., Currie, M. & Speakman, J. C. (1971). J. Chem. Soc. A, pp. 1994–1997.  CrossRef Google Scholar
First citationPogorzelec, K. & Garbarczyk, J. (2002). Mol. Phys. Rep. 35, 132–141.  CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B., Srinivasan, N. & Rajaram, R. K. (2001). Acta Cryst. E57, o1004–o1006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVidenova-Adrabinska, V., Obara, E. & Lis, T. (2007). New J. Chem. 31, 287–295.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, H.-F., Fan, J., Okamura, T., Sun, W.-Y. & Ueyama, N. (2002). Chem. Lett. pp. 898–899.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1872-o1873
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds