organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,3,4,9-Tetra­hydro-1H-carbazol-1-yl­idene)propane­di­nitrile

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 4 June 2010; accepted 13 June 2010; online 18 June 2010)

In the title mol­ecule, C15H11N3, the dihedral angle between the benzene ring and the fused pyrrole ring is 1.07 (5)°. The cyclo­hexene ring adopts an envelope conformation: the dicyano­methyl­ene group at position 1 has a coplanar orientation. An intra­molecular N—H⋯N hydrogen bond generates an S(7) ring motif. Inter­molecular N—H⋯N hydrogen bonds form an R22(14) ring in the crystal. A C—H⋯π inter­action involving the benzene ring is also found in the structure.

Related literature

For naturally occurring carbazole alkaloids see: Scott et al. (2006[Scott, T. L., Yu, X., Gorugantula, S. P., Carrero-Martinez, G. & Söderberg, B. C. G. (2006). Tetrahedron, 62, 10835-10842.]). For the biological activity of carbazole alkaloids see: Ramsewak et al.(1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]); Tachibana et al. (2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]); Nakahara et al. (2002[Nakahara, K., Trakoontivakorn, G., Alzoreky, N. S., Ono, H., Onishi-Kameyama, M. & Yoshida, M. (2002). J. Agric. Food Chem. 50, 4796-4802.]). For the crystal structures of substituted carbazole derivatives see: Gunaseelan et al. (2007a[Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007a). Acta Cryst. E63, o2413-o2414.],b[Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, o2729-o2730.], 2009[Gunaseelan, A. T., Prabakaran, K., Prasad, K. J. R., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o1946-o1947.]); Thiruvalluvar et al. (2007[Thiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). Acta Cryst. E63, o3524.]); Sridharan et al. (2008[Sridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o763-o764.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11N3

  • Mr = 233.27

  • Monoclinic, P 21 /n

  • a = 8.4794 (3) Å

  • b = 10.5542 (4) Å

  • c = 13.0575 (5) Å

  • β = 97.366 (3)°

  • V = 1158.92 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 110 K

  • 0.53 × 0.38 × 0.31 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.939, Tmax = 1.000

  • 8311 measured reflections

  • 3822 independent reflections

  • 2854 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 0.98

  • 3822 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4B,C5–C8,C8A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯N13 0.913 (14) 2.508 (14) 3.2626 (12) 140.3 (11)
N9—H9⋯N13i 0.913 (14) 2.553 (14) 3.2267 (12) 131.1 (11)
C2—H2ACg1ii 0.99 2.79 3.6244 (10) 142
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrahydrocarbazolones have been used extensively as advanced intermediates in synthetic efforts toward a number of naturally occurring carbazole alkaloids (Scott et al., 2006). Carbazole alkaloids possess various biological activities such as anti-tumor, anti-oxidative, anti-mutagenic, and anti-inflammatory activities (Ramsewak et al., 1999; Tachibana et al., 2001; Nakahara et al., 2002). Since it is known that carbazole alkaloids possess anti-tumor activity, the identification of alkaloids that are cytotoxic against tumor cells could lead to the development of a chemopreventive agent for tumor treatment.

Gunaseelan et al. (2007a,b), Gunaseelan et al. (2009), Thiruvalluvar et al. (2007) and Sridharan et al. (2008) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar. In the title molecule (Scheme I, Fig. 1), C15H11N3, the carbazole unit is not planar. The dihedral angle between the benzene ring and the fused pyrrole ring is 1.07 (5)°. The r.m.s. deviation of a mean plane fitted through all non hydrogen atoms excluding C3 of the carbazole unit is 0.0263 Å; C3 deviates from this plane by 0.576 (1) Å. The cyclohexene ring adopts an envelope conformation. The puckering parameters (Cremer & Pople, 1975) are q2=0.3482 (10) Å, q3=-0.2564 (10) Å, Q=0.4324 (10) Å, θ=126.37 (13)° and ϕ=293.46 (16)°. The dicyanomethylene group at position 1 has a coplanar orientation. An intramolecular hydrogen contact N9—H9···N13 generates a ring of graph-set motif S(7) (Bernstein et al., 1995)(Table 1, Fig. 1). Intermolecular N9—H9···N13 hydrogen bonds form a R22(14)(Bernstein et al., 1995) ring in the crystal structure (Table 1, Fig. 2). A C2—H2A···π interaction involving the benzene (C4B,C5—C8,C8A) ring is also found in the structure(Table 1).

Related literature top

For naturally occurring carbazole alkaloids see: Scott et al. (2006). For the biological activity of carbazole alkaloids see: Ramsewak et al.(1999); Tachibana et al. (2001); Nakahara et al. (2002). For the crystal structures of substituted carbazole derivatives see: Gunaseelan et al. (2007a,b, 2009); Thiruvalluvar et al. (2007); Sridharan et al. (2008). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 2,3,4,9-tetrahydro-1H-carbazol-1-one (0.199 g, 0.001 mol), malononitrile (0.066 g, 0.001 mol), ammonium acetate (0.092 g, 0.0012 mol) and few drops of acetic acid in 5 ml of toluene was refluxed at 383 K for 6 h. On cooling, the precipitate that formed was filtered off, washed with petroleum ether and dried. The crude product thus obtained was purified by column chromatography over silica gel using petroleum ether: ethyl acetate (99:1, v/v) to yield the titled product (0.173 g, 74%). This was recrystallized from ethyl acetate.

Refinement top

The H atom bonded to N9 was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A part of the crystal structure of (I), viewed along c axis, showing the formation of a R22(14) ring.
2-(2,3,4,9-Tetrahydro-1H-carbazol-1-ylidene)propanedinitrile top
Crystal data top
C15H11N3F(000) = 488
Mr = 233.27Dx = 1.337 Mg m3
Monoclinic, P21/nMelting point: 470 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.4794 (3) ÅCell parameters from 4130 reflections
b = 10.5542 (4) Åθ = 4.7–32.6°
c = 13.0575 (5) ŵ = 0.08 mm1
β = 97.366 (3)°T = 110 K
V = 1158.92 (8) Å3Prism, pale-yellow
Z = 40.53 × 0.38 × 0.31 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3822 independent reflections
Radiation source: Enhance (Mo) X-ray Source2854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 32.6°, θmin = 4.7°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.939, Tmax = 1.000l = 1916
8311 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0736P)2]
where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H11N3V = 1158.92 (8) Å3
Mr = 233.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4794 (3) ŵ = 0.08 mm1
b = 10.5542 (4) ÅT = 110 K
c = 13.0575 (5) Å0.53 × 0.38 × 0.31 mm
β = 97.366 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2854 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 1.000Rint = 0.021
8311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.40 e Å3
3822 reflectionsΔρmin = 0.24 e Å3
167 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N90.20402 (9)0.52842 (7)0.07142 (6)0.0170 (2)
N120.27359 (12)0.01410 (9)0.03875 (8)0.0333 (3)
N130.42310 (11)0.40137 (9)0.08917 (7)0.0351 (3)
C10.14687 (10)0.29269 (9)0.07178 (6)0.0152 (2)
C20.05668 (11)0.19571 (9)0.12634 (7)0.0194 (2)
C30.09527 (10)0.24541 (10)0.16360 (7)0.0219 (3)
C40.06619 (11)0.36476 (10)0.22890 (7)0.0212 (3)
C4A0.03186 (10)0.45589 (9)0.17735 (6)0.0166 (2)
C4B0.04943 (10)0.58875 (9)0.19177 (7)0.0179 (2)
C50.01638 (11)0.67652 (10)0.25578 (8)0.0238 (3)
C60.02314 (12)0.80254 (10)0.24880 (8)0.0275 (3)
C70.12868 (12)0.84267 (10)0.18004 (8)0.0264 (3)
C80.19716 (11)0.75911 (9)0.11745 (7)0.0221 (2)
C8A0.15696 (10)0.63122 (9)0.12427 (7)0.0173 (2)
C9A0.12894 (10)0.42084 (8)0.10364 (6)0.0151 (2)
C110.24383 (10)0.25207 (9)0.00157 (7)0.0178 (2)
C120.25910 (11)0.12004 (10)0.02084 (7)0.0222 (3)
C130.34255 (11)0.33496 (10)0.04916 (7)0.0226 (2)
H2A0.127680.162850.186580.0232*
H2B0.028720.123770.078800.0232*
H3A0.174570.264020.103010.0262*
H3B0.140070.178880.204850.0262*
H4A0.169180.404350.238350.0255*
H4B0.010560.342460.297870.0255*
H50.086400.649360.302660.0286*
H60.021150.863130.290740.0330*
H70.153430.930250.176730.0317*
H80.268480.787270.071760.0265*
H90.2890 (16)0.5317 (13)0.0351 (11)0.043 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N90.0188 (3)0.0158 (4)0.0172 (3)0.0019 (3)0.0052 (3)0.0004 (3)
N120.0414 (5)0.0225 (4)0.0389 (5)0.0017 (4)0.0158 (4)0.0055 (4)
N130.0396 (5)0.0323 (5)0.0383 (5)0.0131 (4)0.0240 (4)0.0134 (4)
C10.0148 (4)0.0166 (4)0.0140 (4)0.0015 (3)0.0007 (3)0.0009 (3)
C20.0228 (4)0.0177 (4)0.0181 (4)0.0047 (3)0.0046 (3)0.0012 (4)
C30.0198 (4)0.0262 (5)0.0205 (4)0.0062 (4)0.0057 (3)0.0006 (4)
C40.0185 (4)0.0271 (5)0.0194 (4)0.0021 (4)0.0074 (3)0.0002 (4)
C4A0.0144 (4)0.0204 (4)0.0149 (4)0.0006 (3)0.0018 (3)0.0004 (3)
C4B0.0149 (4)0.0208 (4)0.0176 (4)0.0022 (3)0.0002 (3)0.0015 (4)
C50.0179 (4)0.0290 (5)0.0240 (4)0.0059 (4)0.0007 (3)0.0076 (4)
C60.0250 (5)0.0263 (5)0.0293 (5)0.0096 (4)0.0040 (4)0.0107 (4)
C70.0292 (5)0.0179 (4)0.0290 (5)0.0037 (4)0.0081 (4)0.0037 (4)
C80.0255 (4)0.0175 (4)0.0218 (4)0.0003 (4)0.0028 (3)0.0007 (4)
C8A0.0181 (4)0.0169 (4)0.0160 (4)0.0014 (3)0.0013 (3)0.0009 (3)
C9A0.0153 (4)0.0157 (4)0.0143 (4)0.0015 (3)0.0023 (3)0.0013 (3)
C110.0189 (4)0.0166 (4)0.0183 (4)0.0025 (3)0.0044 (3)0.0026 (3)
C120.0238 (4)0.0220 (5)0.0219 (4)0.0014 (4)0.0067 (3)0.0026 (4)
C130.0236 (4)0.0221 (4)0.0238 (4)0.0037 (4)0.0097 (4)0.0081 (4)
Geometric parameters (Å, º) top
N9—C8A1.3723 (12)C6—C71.4115 (15)
N9—C9A1.3929 (11)C7—C81.3801 (14)
N12—C121.1521 (14)C8—C8A1.3978 (13)
N13—C131.1499 (14)C11—C121.4331 (14)
N9—H90.913 (14)C11—C131.4307 (13)
C1—C21.5099 (13)C2—H2A0.9900
C1—C111.3760 (12)C2—H2B0.9900
C1—C9A1.4289 (13)C3—H3A0.9900
C2—C31.5273 (13)C3—H3B0.9900
C3—C41.5234 (14)C4—H4A0.9900
C4—C4A1.4876 (13)C4—H4B0.9900
C4A—C9A1.3943 (12)C5—H50.9500
C4A—C4B1.4201 (13)C6—H60.9500
C4B—C51.4099 (14)C7—H70.9500
C4B—C8A1.4196 (13)C8—H80.9500
C5—C61.3775 (15)
N9···N133.2626 (12)C8A···H2Avii2.9000
N9···C132.9158 (13)C9A···H3A3.0600
N9···N13i3.2267 (12)C11···H93.001 (14)
N9···C9Aii3.4392 (11)C12···H2A3.0900
N12···C3iii3.4371 (14)C12···H2B2.4800
N13···N93.2626 (12)C13···H92.420 (14)
N13···N9i3.2267 (12)H2A···C123.0900
N13···N13i3.2679 (13)H2A···H7iv2.4700
N12···H2Biii2.9400H2A···C4Bvi3.0800
N12···H8iv2.8000H2A···C8vi2.9700
N13···H92.508 (14)H2A···C8Avi2.9000
N13···H9i2.553 (14)H2B···C122.4800
N13···H3Bv2.8100H2B···H7iv2.5600
C1···C6vi3.4129 (13)H2B···N12iii2.9400
C1···C7vi3.5806 (13)H3A···C9A3.0600
C1···C8Aii3.4849 (12)H3A···C8ii2.8700
C3···N12iii3.4371 (14)H3A···H8ii2.3800
C4A···C7vi3.4360 (13)H3B···C5viii3.0200
C6···C9Avii3.5380 (13)H3B···H5viii2.3300
C6···C1vii3.4129 (13)H3B···N13x2.8100
C7···C9Avii3.3756 (13)H4B···C8vi2.8800
C7···C1vii3.5806 (13)H4B···H8vi2.5600
C7···C4Avii3.4360 (13)H5···C3ix2.9700
C8A···C1ii3.4849 (12)H5···H3Bix2.3300
C9A···N9ii3.4392 (11)H7···C2xi2.9700
C9A···C6vi3.5380 (13)H7···H2Axi2.4700
C9A···C7vi3.3756 (13)H7···H2Bxi2.5600
C13···N92.9158 (13)H7···C4Avii3.0900
C2···H7iv2.9700H8···N12xi2.8000
C3···H5viii2.9700H8···H4Bvii2.5600
C4A···H7vi3.0900H8···H3Aii2.3800
C4B···H2Avii3.0800H9···N132.508 (14)
C5···H3Bix3.0200H9···C113.001 (14)
C8···H3Aii2.8700H9···C132.420 (14)
C8···H2Avii2.9700H9···N13i2.553 (14)
C8···H4Bvii2.8800
C8A—N9—C9A108.60 (7)C12—C11—C13115.24 (8)
C9A—N9—H9127.6 (9)N12—C12—C11179.07 (10)
C8A—N9—H9122.1 (9)N13—C13—C11179.33 (10)
C2—C1—C11119.03 (8)C1—C2—H2A109.00
C2—C1—C9A115.16 (7)C1—C2—H2B109.00
C9A—C1—C11125.72 (8)C3—C2—H2A109.00
C1—C2—C3114.61 (8)C3—C2—H2B109.00
C2—C3—C4112.31 (8)H2A—C2—H2B108.00
C3—C4—C4A109.95 (7)C2—C3—H3A109.00
C4—C4A—C9A123.68 (8)C2—C3—H3B109.00
C4B—C4A—C9A107.00 (8)C4—C3—H3A109.00
C4—C4A—C4B129.32 (8)C4—C3—H3B109.00
C5—C4B—C8A119.68 (9)H3A—C3—H3B108.00
C4A—C4B—C5133.21 (8)C3—C4—H4A110.00
C4A—C4B—C8A107.11 (8)C3—C4—H4B110.00
C4B—C5—C6118.49 (9)C4A—C4—H4A110.00
C5—C6—C7120.75 (10)C4A—C4—H4B110.00
C6—C7—C8122.29 (10)H4A—C4—H4B108.00
C7—C8—C8A117.05 (9)C4B—C5—H5121.00
N9—C8A—C4B108.30 (8)C6—C5—H5121.00
N9—C8A—C8129.97 (8)C5—C6—H6120.00
C4B—C8A—C8121.72 (8)C7—C6—H6120.00
N9—C9A—C1127.87 (8)C6—C7—H7119.00
C1—C9A—C4A123.12 (8)C8—C7—H7119.00
N9—C9A—C4A108.99 (8)C7—C8—H8121.00
C1—C11—C13123.57 (9)C8A—C8—H8121.00
C1—C11—C12121.09 (8)
C9A—N9—C8A—C4B0.03 (12)C4—C4A—C4B—C8A179.76 (8)
C9A—N9—C8A—C8178.67 (9)C9A—C4A—C4B—C5179.41 (10)
C8A—N9—C9A—C1177.78 (8)C9A—C4A—C4B—C8A0.72 (10)
C8A—N9—C9A—C4A0.48 (10)C4—C4A—C9A—N9179.85 (8)
C9A—C1—C2—C328.90 (11)C4—C4A—C9A—C11.49 (13)
C11—C1—C2—C3154.52 (8)C4B—C4A—C9A—N90.75 (9)
C2—C1—C9A—N9176.14 (8)C4B—C4A—C9A—C1177.62 (8)
C2—C1—C9A—C4A1.90 (12)C4A—C4B—C5—C6178.23 (10)
C11—C1—C9A—N90.17 (14)C8A—C4B—C5—C61.62 (14)
C11—C1—C9A—C4A178.21 (8)C4A—C4B—C8A—N90.44 (10)
C2—C1—C11—C120.52 (13)C4A—C4B—C8A—C8178.34 (8)
C2—C1—C11—C13175.65 (8)C5—C4B—C8A—N9179.67 (8)
C9A—C1—C11—C12176.71 (8)C5—C4B—C8A—C81.55 (14)
C9A—C1—C11—C130.54 (14)C4B—C5—C6—C70.78 (15)
C1—C2—C3—C452.67 (10)C5—C6—C7—C80.22 (16)
C2—C3—C4—C4A46.84 (10)C6—C7—C8—C8A0.34 (15)
C3—C4—C4A—C4B159.52 (9)C7—C8—C8A—N9179.04 (9)
C3—C4—C4A—C9A21.59 (12)C7—C8—C8A—C4B0.55 (14)
C4—C4A—C4B—C50.37 (17)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y, z; (iv) x, y1, z; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y1/2, z+1/2; (ix) x1/2, y+1/2, z+1/2; (x) x1/2, y+1/2, z+1/2; (xi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4B,C5–C8,C8A ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···N130.913 (14)2.508 (14)3.2626 (12)140.3 (11)
N9—H9···N13i0.913 (14)2.553 (14)3.2267 (12)131.1 (11)
C2—H2A···Cg1vi0.992.793.6244 (10)142
Symmetry codes: (i) x+1, y+1, z; (vi) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H11N3
Mr233.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)8.4794 (3), 10.5542 (4), 13.0575 (5)
β (°) 97.366 (3)
V3)1158.92 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.53 × 0.38 × 0.31
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.939, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8311, 3822, 2854
Rint0.021
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 0.98
No. of reflections3822
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4B,C5–C8,C8A ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···N130.913 (14)2.508 (14)3.2626 (12)140.3 (11)
N9—H9···N13i0.913 (14)2.553 (14)3.2267 (12)131.1 (11)
C2—H2A···Cg1ii0.992.793.6244 (10)142
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunaseelan, A. T., Prabakaran, K., Prasad, K. J. R., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o1946–o1947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007a). Acta Cryst. E63, o2413–o2414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakahara, K., Trakoontivakorn, G., Alzoreky, N. S., Ono, H., Onishi-Kameyama, M. & Yoshida, M. (2002). J. Agric. Food Chem. 50, 4796–4802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScott, T. L., Yu, X., Gorugantula, S. P., Carrero-Martinez, G. & Söderberg, B. C. G. (2006). Tetrahedron, 62, 10835–10842.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o763–o764.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). Acta Cryst. E63, o3524.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds