organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(2-Bromo­phen­yl)-3-(4-bromo­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 9 June 2010; accepted 14 June 2010; online 18 June 2010)

The title compound, C15H10Br2O, is a chalcone with 2-bromo­phenyl and 4-bromo­phenyl rings bonded to opposite sides of a propenone group. The dihedral angle between mean planes of the benzene rings is 71.3 (1)°. The angle between the mean plane of the prop-2-ene-1-one group and the mean planes of the 2-bromo­phenyl and 4-bromo­phenyl rings are 64.2 (9) and 71.3 (1)°, respectively. A weak inter­molecular C—H⋯O inter­action and two weak C—Br⋯π inter­actions are observed, which contribute to the stability of the crystal packing.

Related literature

For the radical quenching properties of included phenol groups, see: Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]). For the biological activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]). For related structures, see: Ng et al. (2006[Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1421-o1423.]); Teh et al. (2006[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2399-o2400.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.])

[Scheme 1]

Experimental

Crystal data
  • C15H10Br2O

  • Mr = 366.05

  • Monoclinic, P 21 /c

  • a = 5.6988 (5) Å

  • b = 9.5462 (9) Å

  • c = 23.8532 (15) Å

  • β = 91.021 (8)°

  • V = 1297.46 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 7.79 mm−1

  • T = 110 K

  • 0.62 × 0.47 × 0.26 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.078, Tmax = 0.315

  • 4592 measured reflections

  • 2532 independent reflections

  • 2454 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.152

  • S = 1.32

  • 2532 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.95 2.46 3.368 (7) 159
Symmetry code: (i) -x+2, -y, -z+1.

Table 2
C—Br⋯π inter­actions (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

  Br1⋯Cg2 Br1–Perp C2—Br1⋯Cg2
C2—Br1⋯Cg2i 3.522 (2) 3.488 154.82 (17)
C13—-Br2⋯Cg1ii 3.827 (2) 3.377 165.44 (17)
Symmetry codes: (i) 2-x, 1-y, 1-z; (ii) [1+x, {1\over 2}-y, {1\over 2}+z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones, or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenol groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar, 1981). Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). The crystal structures of closely related chalcones, viz., 1,3-bis(4-bromophenyl)prop-2-en-1-one (Ng et al., 2006) and 3-(3-bromophenyl)-1-(4-bromophenyl)prop-2-en-1-one (Teh et al., 2006) have been reported. Hence in continuation with the synthesis and crystal structure determination and also owing to the importance of these flavanoid analogs, this bromo chalcone, C15H10Br2O, is synthesized and its crystal structure is reported.

The title compound, C15H10Br2O, is a chalcone with 2-bromophenyl and 4-bromophenyl rings bonded to opposite sides of a propenone group (Fig. 2). The dihedral angle between mean planes of the benzene rings in the ortho-bromo and para-bromo substituted rings is 71.3 (1)°. The angle between the mean plane of the prop-2-ene-1-one group (C1/C7/O1/C8) and the mean planes of the benzene rings in the 2-bromophenyl (C1–C6) and 4-bromophenyl rings (C10–C15) are 64.2 (9)° and 71.3 (1)°, respectively. Bond distances and angles are in normal ranges (Allen et al., 1987). While no classical hydrogen bonds are present, a weak intermolecular C12—H12A···O1 interaction (Table 1) and two weak π-ring intermolecular interactions (Table 2) are observed which contribute to the stability of crystal packing.

Related literature top

For the radical quenching properties of included phenol groups, see: Dhar (1981). For the biological activity of chalcones, see: Dimmock et al. (1999). For related structures, see: Ng et al. (2006); Teh et al. (2006). For bond-length data, see: Allen et al. (1987)

Experimental top

A 50% KOH solution was added to a mixture of 2-bromo acetophenone (0.01 mol, 1.99 g) and 4-bromo benzaldehyde (0.01 mol, 1.85 g) in 25 ml of ethanol (Fig. 1). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from ethyl acetate by slow evaporation method and yield of the compound was 68% (m.p.373–375 K). Analytical data: Found (Calculated): C %: 49.19 (49.22%); H%: 2.73 (2.75%).

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances = 0.95Å and with Uiso(H) = 1.17–1.22 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction Scheme for the title compound.
[Figure 2] Fig. 2. Molecular structure of the title compound, C15H10Br2O, showing the atom labeling scheme and 50% probability displacement ellipsoids.
(2E)-1-(2-Bromophenyl)-3-(4-bromophenyl)prop-2-en-1-one top
Crystal data top
C15H10Br2OF(000) = 712
Mr = 366.05Dx = 1.874 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3417 reflections
a = 5.6988 (5) Åθ = 4.6–74.1°
b = 9.5462 (9) ŵ = 7.79 mm1
c = 23.8532 (15) ÅT = 110 K
β = 91.021 (8)°Prism, colorless
V = 1297.46 (18) Å30.62 × 0.47 × 0.26 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2532 independent reflections
Radiation source: Enhance (Cu) X-ray Source2454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.5081 pixels mm-1θmax = 74.1°, θmin = 5.0°
ω scansh = 66
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
k = 611
Tmin = 0.078, Tmax = 0.315l = 2925
4592 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0631P)2 + 9.323P]
where P = (Fo2 + 2Fc2)/3
S = 1.32(Δ/σ)max < 0.001
2532 reflectionsΔρmax = 1.27 e Å3
164 parametersΔρmin = 1.00 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (4)
Crystal data top
C15H10Br2OV = 1297.46 (18) Å3
Mr = 366.05Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.6988 (5) ŵ = 7.79 mm1
b = 9.5462 (9) ÅT = 110 K
c = 23.8532 (15) Å0.62 × 0.47 × 0.26 mm
β = 91.021 (8)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2532 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
2454 reflections with I > 2σ(I)
Tmin = 0.078, Tmax = 0.315Rint = 0.027
4592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.32Δρmax = 1.27 e Å3
2532 reflectionsΔρmin = 1.00 e Å3
164 parameters
Special details top

Experimental. IR data (KBr) ν cm-1: 3048 cm-1 (C—H str) 1671 cm-1 (C=O), 1685 cm-1 (C=C).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.27853 (11)0.55820 (6)0.36129 (3)0.0217 (3)
Br20.14170 (10)0.10866 (6)0.65074 (2)0.0182 (2)
O11.2468 (7)0.2116 (5)0.37198 (18)0.0211 (9)
C10.9316 (10)0.3480 (6)0.3361 (2)0.0144 (11)
C21.0220 (10)0.4768 (6)0.3200 (2)0.0157 (11)
C30.9269 (12)0.5525 (7)0.2759 (3)0.0223 (13)
H3A0.99120.64060.26580.027*
C40.7337 (12)0.4969 (7)0.2462 (2)0.0239 (14)
H4A0.66700.54680.21540.029*
C50.6406 (11)0.3698 (7)0.2619 (3)0.0219 (13)
H5A0.51030.33200.24160.026*
C60.7359 (10)0.2973 (6)0.3069 (2)0.0180 (12)
H6A0.66690.21140.31800.022*
C71.0493 (10)0.2574 (6)0.3798 (2)0.0149 (11)
C80.9223 (11)0.2193 (6)0.4304 (2)0.0181 (12)
H8A0.98880.14850.45370.022*
C90.7192 (10)0.2767 (6)0.4462 (2)0.0162 (11)
H9A0.65270.34660.42250.019*
C100.5903 (10)0.2408 (6)0.4972 (2)0.0162 (11)
C110.6596 (11)0.1294 (7)0.5320 (3)0.0201 (12)
H11A0.79860.07900.52380.024*
C120.5304 (11)0.0913 (6)0.5780 (3)0.0190 (12)
H12A0.57880.01550.60130.023*
C130.3279 (10)0.1664 (6)0.5895 (2)0.0151 (11)
C140.2554 (10)0.2787 (6)0.5566 (2)0.0180 (12)
H14A0.11780.32990.56540.022*
C150.3891 (10)0.3146 (6)0.5105 (2)0.0173 (12)
H15A0.34150.39140.48770.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0195 (4)0.0157 (4)0.0300 (4)0.0029 (2)0.0034 (3)0.0038 (2)
Br20.0190 (4)0.0196 (4)0.0161 (3)0.0020 (2)0.0042 (2)0.0011 (2)
O10.015 (2)0.021 (2)0.027 (2)0.0034 (17)0.0043 (16)0.0015 (18)
C10.015 (3)0.016 (3)0.012 (2)0.004 (2)0.007 (2)0.001 (2)
C20.013 (3)0.017 (3)0.017 (3)0.001 (2)0.005 (2)0.003 (2)
C30.028 (3)0.020 (3)0.019 (3)0.006 (2)0.012 (2)0.002 (2)
C40.027 (3)0.030 (4)0.015 (3)0.014 (3)0.004 (2)0.003 (2)
C50.018 (3)0.029 (3)0.019 (3)0.007 (2)0.001 (2)0.005 (2)
C60.013 (3)0.019 (3)0.022 (3)0.001 (2)0.004 (2)0.001 (2)
C70.015 (3)0.009 (2)0.020 (3)0.001 (2)0.001 (2)0.004 (2)
C80.023 (3)0.014 (3)0.017 (3)0.002 (2)0.000 (2)0.000 (2)
C90.017 (3)0.013 (3)0.018 (3)0.001 (2)0.002 (2)0.000 (2)
C100.018 (3)0.014 (3)0.017 (3)0.002 (2)0.001 (2)0.001 (2)
C110.020 (3)0.018 (3)0.022 (3)0.005 (2)0.001 (2)0.002 (2)
C120.022 (3)0.016 (3)0.019 (3)0.003 (2)0.000 (2)0.003 (2)
C130.018 (3)0.016 (3)0.011 (2)0.003 (2)0.002 (2)0.001 (2)
C140.014 (3)0.020 (3)0.020 (3)0.003 (2)0.002 (2)0.001 (2)
C150.017 (3)0.016 (3)0.020 (3)0.000 (2)0.001 (2)0.003 (2)
Geometric parameters (Å, º) top
Br1—C21.913 (6)C8—C91.341 (9)
Br2—C131.903 (6)C8—H8A0.9500
O1—C71.225 (7)C9—C101.471 (8)
C1—C21.389 (8)C9—H9A0.9500
C1—C61.391 (8)C10—C151.388 (8)
C1—C71.504 (8)C10—C111.402 (8)
C2—C31.380 (9)C11—C121.381 (9)
C3—C41.403 (10)C11—H11A0.9500
C3—H3A0.9500C12—C131.390 (9)
C4—C51.378 (10)C12—H12A0.9500
C4—H4A0.9500C13—C141.386 (8)
C5—C61.380 (9)C14—C151.392 (8)
C5—H5A0.9500C14—H14A0.9500
C6—H6A0.9500C15—H15A0.9500
C7—C81.463 (8)
C2—C1—C6117.9 (5)C7—C8—H8A117.5
C2—C1—C7122.5 (5)C8—C9—C10125.7 (5)
C6—C1—C7119.4 (5)C8—C9—H9A117.1
C3—C2—C1122.1 (6)C10—C9—H9A117.1
C3—C2—Br1117.8 (5)C15—C10—C11118.3 (5)
C1—C2—Br1120.1 (4)C15—C10—C9119.9 (5)
C2—C3—C4118.7 (6)C11—C10—C9121.8 (5)
C2—C3—H3A120.6C12—C11—C10121.5 (6)
C4—C3—H3A120.6C12—C11—H11A119.3
C5—C4—C3119.9 (6)C10—C11—H11A119.3
C5—C4—H4A120.0C11—C12—C13118.4 (5)
C3—C4—H4A120.0C11—C12—H12A120.8
C4—C5—C6120.3 (6)C13—C12—H12A120.8
C4—C5—H5A119.9C14—C13—C12121.9 (5)
C6—C5—H5A119.9C14—C13—Br2119.6 (4)
C5—C6—C1121.1 (6)C12—C13—Br2118.5 (4)
C5—C6—H6A119.5C13—C14—C15118.4 (5)
C1—C6—H6A119.5C13—C14—H14A120.8
O1—C7—C8120.4 (5)C15—C14—H14A120.8
O1—C7—C1120.0 (5)C10—C15—C14121.5 (5)
C8—C7—C1119.6 (5)C10—C15—H15A119.3
C9—C8—C7124.9 (5)C14—C15—H15A119.3
C9—C8—H8A117.5
C6—C1—C2—C31.4 (8)O1—C7—C8—C9171.3 (6)
C7—C1—C2—C3173.0 (5)C1—C7—C8—C911.4 (9)
C6—C1—C2—Br1176.2 (4)C7—C8—C9—C10179.3 (5)
C7—C1—C2—Br19.4 (7)C8—C9—C10—C15175.9 (6)
C1—C2—C3—C40.3 (9)C8—C9—C10—C116.7 (9)
Br1—C2—C3—C4177.9 (4)C15—C10—C11—C121.2 (9)
C2—C3—C4—C50.8 (9)C9—C10—C11—C12176.3 (6)
C3—C4—C5—C60.4 (9)C10—C11—C12—C130.2 (9)
C4—C5—C6—C12.1 (9)C11—C12—C13—C140.9 (9)
C2—C1—C6—C52.6 (8)C11—C12—C13—Br2177.1 (5)
C7—C1—C6—C5172.0 (5)C12—C13—C14—C151.0 (9)
C2—C1—C7—O162.2 (7)Br2—C13—C14—C15177.1 (4)
C6—C1—C7—O1112.2 (6)C11—C10—C15—C141.1 (9)
C2—C1—C7—C8120.6 (6)C9—C10—C15—C14176.4 (5)
C6—C1—C7—C865.1 (7)C13—C14—C15—C100.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.952.463.368 (7)159
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H10Br2O
Mr366.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)5.6988 (5), 9.5462 (9), 23.8532 (15)
β (°) 91.021 (8)
V3)1297.46 (18)
Z4
Radiation typeCu Kα
µ (mm1)7.79
Crystal size (mm)0.62 × 0.47 × 0.26
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.078, 0.315
No. of measured, independent and
observed [I > 2σ(I)] reflections
4592, 2532, 2454
Rint0.027
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.152, 1.32
No. of reflections2532
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.27, 1.00

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.952.463.368 (7)158.9
Symmetry code: (i) x+2, y, z+1.
C—Br···π interactions (Å, °) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
Br1···Cg2Br1–PerpC2—Br1···Cg2
C2—Br1···Cg2i3.522 (2)3.488154.82 (17)
C13—-Br2···Cg1ii3.827 (2)3.377165.44 (17)
Symmetry codes: (i) 2-x, 1-y, 1-z; (ii) 1+x, 1/2-y, 1/2+z.
 

Acknowledgements

KV thanks the UGC for the sanction of a Junior Research Fellowship and for an SAP chemical grant. HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationNg, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1421–o1423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2399–o2400.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds