organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1778-o1779

(1R,6R,13R,18R)-(Z,Z)-1,18-Bis[(4R)-2,2-di­methyl-1,3-dioxolan-4-yl]-3,16-di­methyl­ene-8,20-di­aza­di­spiro­[5.6.5.6]tetra­cosa-7,19-diene

aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: m.brimble@auckland.ac.nz

(Received 10 June 2010; accepted 21 June 2010; online 26 June 2010)

The crystal structure of the title compound, C34H54N2O4, has been solved in order to prove the relative and absolute chirality of the newly-formed stereocentres which were established using an asymmetric Diels–Alder reaction at an earlier stage in the synthesis. This unprecedented stable dialdimine contains a 14-membered ring and was obtained as the minor diastereoisomer in the Diels–Alder reaction. The absolute stereochemistry of the stereocentres of the acetal functionality was known to be R based on the use of a chiral (R)-tris­ubstituted dienophile derived from enanti­opure (S)-glyceraldehyde. The assignment of the configuration in the dienophile and the title di-aldimine differs from (S)-glyceraldehyde due to a change in the priority order of the substituents. The crystal structure establishes the presence of six stereocentres all attributed to be R. The 14-membered ring contains two aldimine bonds [C—N = 1.258 (2) and 1.259 (2) Å]. It adopts a similar conformation to that proposed for trans–trans-cyclo­tetra­deca-1,8-dienes.

Related literature

For related structures, see: Allmann (1974[Allmann, R. (1974). Cryst. Struct. Commun. 3, 83-86.]); Dale (1966[Dale, J. (1966). Angew. Chem. Int. Ed. 5, 1000-1021.]). For background to the spiro­lide family, see: Gill et al. (2003[Gill, S., Murphy, M., Clausen, J., Richard, D., Quilliam, M., MacKinnon, S., LaBlanc, P., Mueller, R. & Pulido, O. (2003). Neurotoxicology, 24, 593-604.]); Guéret & Brimble (2010[Guéret, S. M. & Brimble, M. A. (2010). Nat. Prod. Rep. In the press.]); Hu et al. (1995[Hu, T., Curtis, J. M., Oshima, Y., Quilliam, M. A., Walter, J. A., Watson-Wright, W. M. & Wright, J. L. C. (1995). J. Chem. Soc. Chem. Commun. pp. 2159-2161.], 2001[Hu, T. M., Burton, I. W., Cembella, A. D., Curtis, J. M., Quilliam, M. A., Walter, J. A. & Wright, J. L. C. (2001). J. Nat. Prod. 64, 308-312.]). For the applications of Danishefsky's diene, see: Asano et al. (2006[Asano, M., Inoue, M., Watanabe, K., Abe, H. & Katoh, T. (2006). J. Org. Chem. 71, 6942-6951.]); Danishefsky et al. (1990[Danishefsky, S., Kitahara, T. & Schuda, P. F. (1990). Org. Synth. Coll. 7, 312-315.]); Petrzilka & Grayson (1981[Petrzilka, M. & Grayson, J. I. (1981). Synthesis, pp. 753-786.]).

[Scheme 1]

Experimental

Crystal data
  • C34H54N2O4

  • Mr = 554.80

  • Triclinic, P 1

  • a = 6.8710 (1) Å

  • b = 10.1701 (2) Å

  • c = 11.7947 (2) Å

  • α = 79.143 (1)°

  • β = 88.043 (1)°

  • γ = 83.855 (1)°

  • V = 804.71 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 93 K

  • 0.36 × 0.19 × 0.1 mm

Data collection
  • Siemens SMART CCD diffractometer

  • 19146 measured reflections

  • 3824 independent reflections

  • 3555 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 0.92

  • 3824 reflections

  • 365 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT . Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT . Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The title spiro-di-aldimine was obtained as part of a synthetic program directed towards the synthesis of the spiroimine unit of the spirolides AD. This family of marine toxins were isolated from the digestive glands of contaminated mussels, scallops and toxic plankton from the East coast of Nova Scotia in Canada and are considered as fast-acting toxins (Hu et al., 1995; Hu et al., 2001; Gill et al., 2003; Guéret & Brimble, 2010). The work demonstrates a new method to access an enantiopure spiro-di-aldimine and an enantiopure bicyclic ketimine in good overall yield. The synthesis of the spiroimine is a synthetic challenge and to date the synthesis of the 7,6-spiroimine moiety of the spirolides has not been achieved. By reaction of a chiral (R)-trisubstituted dienophile derived from (S)-glyceraldehyde with Danishefsky's diene (Asano et al., 2006; Danishefsky et al., 1990; Petrzilka & Grayson, 1981), the resultant Diels-Alder adducts were afforded as a mixture of 3 diastereoisomers in a 5:2:1 ratio. The undesired minor diastereoisomer was used to develop the synthetic route to the desired spiroaldimine. The Diels-Alder adduct was converted to the spiroimine precursor in several steps. Reaction of this advanced azido-aldehyde intermediate with triphenylphosphine surprisingly afforded the stable title dimer instead of the expected 7,6-bicyclic aldimine. The stability of the title dimer is unexpected compared to the known instability of aldimines in general. Given that the stereochemistry at C26 and C32 is known to be R (based on using enantiopure (S)-glyceraldehyde as the starting material), the absolute configuration at C1, C6, C13 and C20 has therefore also been assigned as R. The assignment of configuration of the trisubstituted dienophile and the title di-aldimine differs from the starting (S)-glyceraldehyde due to a change in the priority order of substituents.

The molecular structure, Fig. 1, indicates that the acetal unit and the imine part adopt an axial position in both cyclohexane rings. The 14-membered ring contains two aldimine bonds(C14—N15 1.258 (2),C7—N8 1.259 (2)). It adopts a similar conformation to that proposed for trans-trans cyclotetradeca-1,8-dienes (Dale, 1966) except for an alternate conformation for C17, C18 and C19. A 14-membered tetra-azacyclotetradeca-1,8-diene which has R and S centres shows similar conformational characteristics (Allmann, 1974). The diazaspirocyclotetradecan-7,14-ene molecules assemble in the crystal in linear arrays. Each ring is offset with the six membered rings from a neighbouring molecule aligned over the ring centre, Fig. 2.

Related literature top

For related structures, see: Allmann (1974); Dale (1966). For background to the spirolide family, see: Gill et al. (2003); Guéret & Brimble (2010); Hu et al. (1995, 2001). For the applications of Danishefsky's diene, see: Asano et al. (2006); Danishefsky et al. (1990); Petrzilka & Grayson (1981).

Experimental top

To 2-(2",2"-dimethyl-1",3"-dioxolan-4"-yl)-4-methylene-1-(4'-azidobutyl)cyclohexane carbaldehyde (7.8 mg, 24 µmol) in toluene-d8 (0.6 ml) was added triphenylphosphine (6.3 mg, 24 µmol). The resulting mixture was stirred for 1 h at room temperature then warmed to 55 °C and stirred at this temperature for 17 h. After cooling to room temperature, the mixture was concentrated in vacuo. The crude imine was purified by column chromatography (20: 80 EtOAc–hexanes) to give the title compound (4.6 mg, 71%) as a white crystalline solid. Dilution in CH2Cl2/hexanes (1: 1, 2 ml) and slow evaporation of the solvent afforded white prisms.

M. P. 171.8–172.3 °C.

HRMS (ESI) calculated for C34H55N2O4 [M + H]+: 555.4156, found 555.4143.

IR (neat) νmax 3060, 2985, 2935, 1675, 1635, 1610, 1455, 1380, 1195, 1065, 895 cm-1.

1H NMR (400 MHz, CDCl3) δ 7.49 (2H, s, 7 and 14-CH=N), 4.60 (4 H, d,J = 28 Hz, 25 and 31-CH2=C), 4.10 (4 H, m, 26 and 32-CH and 27 and 33-CHaHb), 3.60 (2 H, m, 27 and 33-CHaHb), 3.47 (2 H, m, 9 and 16-CHaHb), 3.38 (2 H, m, 9 and 16-CHaHb), 2.23 (2 H, dd, J = 4 and 12 Hz, 2 and 21-CHaHb), 2.11 (6 H, t, J = 4 Hz, 1 and 20-CH and 4 and 23-CH2), 1.94 (2 H, dd, J = 8 and 12 Hz, 2 and 21-CHaHb), 1.71 (6 H, m, 5 and 24-CH2 and 12 and 19-CHaHb), 1.61 (4 H, m, 12 and 19-CHaHb and 10 and 17-CHaHb), 1.45 (2 H, td, J = 4 and 12 Hz, 10 and 17-CHaHb), 1.34 (6 H, s, 29 or 30-CH3 and 35 or 36-CH3), 1.34 (6 H, s, 29 or 30-CH3 and 35 or 36-CH3), 1.22 (2 H, m, 11 and 18-CHaHb), 1.09 (11 and 18-CHaHb).

13C NMR (100 MHz, CDCl3) δ 171.8 (7 and 14-CH=N), 146.7 (3 and 22-C), 108.4 (28 and 34-C), 108.1 (25 and 31-CH2), 76.1 (26 and 32-CHO), 68.6 (27 and 33-CH2O), 60.9 (9 and 16-CH2N), 45.5 (6 and 25-C), 44.6 (1 and 20-CH), 33.4 (12 and 19-CH2), 33.2 (5 and 24-CH2), 33.1 (2 and 21-CH2), 30.9 (4 and 23-CH2), 29.9 (10 and 17-CH2), 26.7 (29 or 30-CH3 and 35 or 36-CH3), 26,3 (29 or 30-CH3 and 35 or 36-CH3), 21.5 (11 and 18-CH2).

m/z (ESI-MS) 195 ([M]+, 100), 278 (40), 220 (12%).

[α]D20 -25.5 (c 1/5, CH2Cl2).

Refinement top

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined from the X-ray analyses and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Atoms were placed in calculated positions and a riding model (C–H = 0.93 or 0.97 Å), with Uiso(H) = 1.2 or 1.5 times Ueq(C) was used during refinement.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing diagram of the title compound, viewed along c axis. The hydrogen atoms have been omitted for clarity.
(1R,6R,13R,18R)-(Z,Z)- 1,18-Bis[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-3,16-dimethylene- 8,20-diazadispiro[5.6.5.6]tetracosa-7,19-diene top
Crystal data top
C34H54N2O4Z = 1
Mr = 554.80F(000) = 304
Triclinic, P1Dx = 1.145 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8710 (1) ÅCell parameters from 6455 reflections
b = 10.1701 (2) Åθ = 1.8–27.9°
c = 11.7947 (2) ŵ = 0.07 mm1
α = 79.143 (1)°T = 93 K
β = 88.043 (1)°Needle, colourless
γ = 83.855 (1)°0.36 × 0.19 × 0.1 mm
V = 804.71 (2) Å3
Data collection top
Siemens SMART CCD
diffractometer
3555 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 27.9°, θmin = 1.8°
ω scansh = 99
19146 measured reflectionsk = 1313
3824 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.1019P]
where P = (Fo2 + 2Fc2)/3
3824 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.18 e Å3
Crystal data top
C34H54N2O4γ = 83.855 (1)°
Mr = 554.80V = 804.71 (2) Å3
Triclinic, P1Z = 1
a = 6.8710 (1) ÅMo Kα radiation
b = 10.1701 (2) ŵ = 0.07 mm1
c = 11.7947 (2) ÅT = 93 K
α = 79.143 (1)°0.36 × 0.19 × 0.1 mm
β = 88.043 (1)°
Data collection top
Siemens SMART CCD
diffractometer
3555 reflections with I > 2σ(I)
19146 measured reflectionsRint = 0.042
3824 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.92Δρmax = 0.28 e Å3
3824 reflectionsΔρmin = 0.18 e Å3
365 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Three restraints for a floating origins were used.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.4859 (3)0.46661 (18)0.09602 (16)0.0179 (3)
H1A0.61140.46490.05580.021*
H1B0.51120.48820.17820.021*
C40.3776 (3)0.57809 (18)0.06285 (17)0.0213 (4)
H2A0.37810.56840.02060.026*
H2B0.44630.66500.09420.026*
C30.1690 (3)0.57332 (19)0.10718 (17)0.0220 (4)
C20.0573 (3)0.43578 (19)0.07628 (17)0.0203 (4)
H4A0.07310.43830.11030.024*
H4B0.04410.41220.00690.024*
C10.1606 (3)0.32679 (18)0.11917 (16)0.0157 (3)
H50.08870.23940.08890.019*
C60.3720 (3)0.32518 (17)0.06741 (15)0.0154 (3)
C190.4921 (3)0.22460 (17)0.11200 (15)0.0168 (3)
H7A0.50300.25150.19510.020*
H7B0.62330.23270.07930.020*
C180.4100 (3)0.07590 (18)0.08484 (16)0.0181 (4)
H8A0.42760.04190.00300.022*
H8B0.27050.06890.10190.022*
C170.5083 (3)0.01164 (19)0.15356 (16)0.0217 (4)
H9A0.43200.09880.14530.026*
H9B0.50530.02970.23460.026*
C160.7199 (3)0.03345 (19)0.11786 (16)0.0204 (4)
H10A0.77250.08620.16790.024*
H10B0.79850.05290.12670.024*
C140.8639 (3)0.05893 (18)0.06562 (16)0.0172 (3)
H110.94830.01440.03140.021*
C130.8986 (3)0.11417 (17)0.19270 (15)0.0158 (3)
C120.8646 (3)0.00132 (17)0.25696 (15)0.0166 (3)
H13A0.87600.03180.33930.020*
H13B0.96800.07390.23630.020*
C110.6682 (3)0.05878 (18)0.23246 (16)0.0185 (4)
H14A0.56360.01200.25640.022*
H14B0.65350.09000.15000.022*
C100.6486 (3)0.17543 (19)0.29504 (16)0.0211 (4)
H15A0.63860.14070.37730.025*
H15B0.76580.23830.28270.025*
C90.4705 (3)0.25019 (19)0.25415 (16)0.0200 (4)
H16A0.35270.18780.26490.024*
H16B0.45960.31910.29970.024*
C70.3587 (3)0.27786 (17)0.06275 (15)0.0168 (3)
H170.24970.22100.09220.020*
C241.1175 (3)0.13759 (19)0.20847 (16)0.0186 (4)
H24A1.19660.05520.17580.022*
H24B1.14850.15840.29030.022*
C231.1716 (3)0.2520 (2)0.15120 (18)0.0228 (4)
H19A1.15770.22680.06800.027*
H19B1.30700.26740.16920.027*
C221.0408 (3)0.37918 (19)0.19363 (17)0.0215 (4)
C210.8255 (3)0.36185 (18)0.17768 (16)0.0192 (4)
H21A0.75000.44560.21080.023*
H21B0.79450.34240.09580.023*
C200.7648 (3)0.24717 (17)0.23484 (15)0.0161 (3)
H220.63110.23130.20850.019*
C250.0869 (4)0.6775 (2)0.1672 (2)0.0326 (5)
H23A0.15910.76120.18480.039*
H23B0.04300.66670.19170.039*
C260.1524 (3)0.34631 (18)0.25092 (15)0.0177 (3)
H240.25610.41510.28410.021*
C270.0430 (3)0.3762 (2)0.30981 (17)0.0253 (4)
H25A0.15170.32690.26440.030*
H25B0.05780.47160.32250.030*
C280.0987 (3)0.2278 (2)0.39969 (16)0.0252 (4)
C290.0117 (5)0.0934 (3)0.4064 (2)0.0448 (7)
H27A0.06070.09390.48370.067*
H27B0.11930.07650.35400.067*
H27C0.07430.02400.38580.067*
C300.2597 (4)0.2692 (3)0.4873 (2)0.0409 (6)
H28A0.32960.35270.47580.061*
H28B0.20360.28030.56370.061*
H28C0.34820.20090.47800.061*
C311.1091 (3)0.4943 (2)0.2410 (2)0.0293 (4)
H29A1.24340.49910.24920.035*
H29B1.02280.57040.26600.035*
C320.7610 (3)0.28862 (18)0.36663 (16)0.0186 (4)
H300.89240.27090.39900.022*
C330.6765 (3)0.4318 (2)0.41643 (17)0.0232 (4)
H31A0.56550.46060.37080.028*
H31B0.77450.49450.42070.028*
C340.5546 (3)0.28908 (19)0.52033 (16)0.0232 (4)
C360.3332 (3)0.2966 (2)0.5167 (2)0.0309 (5)
H33A0.28330.34300.45640.046*
H33B0.29350.20720.50200.046*
H33C0.28250.34430.58950.046*
C350.6449 (4)0.2274 (2)0.61933 (19)0.0352 (5)
H34A0.60400.13910.61450.053*
H34B0.78500.22090.61520.053*
H34C0.60310.28290.69120.053*
N150.7312 (2)0.10360 (16)0.00257 (14)0.0188 (3)
N80.4889 (2)0.31236 (15)0.13220 (13)0.0183 (3)
O10.0310 (2)0.33110 (17)0.41672 (13)0.0323 (4)
O20.1763 (2)0.22053 (14)0.28513 (11)0.0225 (3)
O30.6256 (2)0.21281 (14)0.41259 (12)0.0250 (3)
O40.6178 (2)0.42036 (14)0.52929 (12)0.0261 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0147 (8)0.0156 (8)0.0226 (9)0.0016 (7)0.0016 (7)0.0012 (7)
C40.0204 (9)0.0150 (8)0.0286 (10)0.0041 (7)0.0015 (7)0.0036 (7)
C30.0213 (10)0.0216 (9)0.0257 (10)0.0065 (7)0.0005 (8)0.0081 (7)
C20.0145 (8)0.0245 (9)0.0235 (9)0.0059 (7)0.0016 (7)0.0066 (7)
C10.0120 (8)0.0160 (7)0.0190 (8)0.0015 (6)0.0016 (6)0.0026 (6)
C60.0138 (8)0.0144 (8)0.0181 (8)0.0028 (6)0.0007 (6)0.0023 (6)
C190.0152 (8)0.0162 (8)0.0191 (8)0.0026 (7)0.0017 (7)0.0029 (7)
C180.0173 (9)0.0176 (8)0.0189 (8)0.0023 (7)0.0006 (7)0.0022 (7)
C170.0286 (10)0.0175 (9)0.0202 (9)0.0065 (7)0.0057 (8)0.0050 (7)
C160.0259 (10)0.0197 (8)0.0172 (8)0.0076 (7)0.0013 (7)0.0048 (7)
C140.0165 (9)0.0162 (8)0.0196 (8)0.0024 (7)0.0028 (7)0.0044 (7)
C130.0152 (9)0.0155 (8)0.0177 (8)0.0030 (6)0.0009 (7)0.0049 (6)
C120.0167 (8)0.0153 (8)0.0179 (8)0.0023 (7)0.0021 (7)0.0036 (6)
C110.0191 (9)0.0166 (8)0.0206 (8)0.0039 (7)0.0023 (7)0.0046 (7)
C100.0237 (9)0.0220 (9)0.0198 (8)0.0078 (7)0.0043 (7)0.0075 (7)
C90.0239 (9)0.0202 (8)0.0182 (8)0.0075 (7)0.0004 (7)0.0064 (7)
C70.0163 (9)0.0141 (8)0.0199 (8)0.0021 (7)0.0027 (7)0.0020 (6)
C240.0131 (8)0.0202 (9)0.0230 (9)0.0020 (7)0.0022 (7)0.0052 (7)
C230.0162 (9)0.0232 (9)0.0301 (10)0.0050 (7)0.0022 (8)0.0068 (8)
C220.0226 (10)0.0216 (9)0.0226 (9)0.0061 (8)0.0028 (7)0.0087 (7)
C210.0209 (9)0.0147 (8)0.0223 (9)0.0023 (7)0.0024 (7)0.0046 (7)
C200.0145 (8)0.0156 (8)0.0180 (8)0.0030 (6)0.0024 (6)0.0022 (6)
C250.0293 (11)0.0237 (10)0.0451 (13)0.0077 (8)0.0085 (10)0.0061 (9)
C260.0191 (9)0.0159 (8)0.0176 (8)0.0039 (7)0.0003 (7)0.0008 (6)
C270.0243 (10)0.0339 (11)0.0185 (9)0.0090 (8)0.0015 (8)0.0040 (8)
C280.0303 (11)0.0298 (10)0.0159 (8)0.0079 (8)0.0021 (8)0.0032 (7)
C290.0646 (18)0.0409 (13)0.0276 (11)0.0057 (12)0.0111 (11)0.0115 (10)
C300.0420 (14)0.0545 (15)0.0261 (11)0.0148 (12)0.0092 (10)0.0001 (10)
C310.0250 (10)0.0236 (10)0.0409 (12)0.0096 (8)0.0057 (9)0.0073 (9)
C320.0189 (9)0.0162 (8)0.0205 (8)0.0044 (7)0.0006 (7)0.0015 (6)
C330.0249 (10)0.0201 (9)0.0234 (9)0.0025 (8)0.0019 (8)0.0008 (7)
C340.0277 (10)0.0212 (9)0.0186 (9)0.0031 (8)0.0005 (8)0.0025 (7)
C360.0266 (11)0.0340 (11)0.0306 (11)0.0048 (9)0.0026 (9)0.0005 (9)
C350.0470 (14)0.0316 (11)0.0243 (10)0.0027 (10)0.0038 (10)0.0028 (9)
N150.0205 (8)0.0176 (7)0.0186 (7)0.0051 (6)0.0020 (6)0.0026 (6)
N80.0202 (8)0.0151 (7)0.0209 (7)0.0064 (6)0.0011 (6)0.0044 (6)
O10.0334 (9)0.0466 (10)0.0200 (7)0.0171 (7)0.0064 (6)0.0085 (7)
O20.0295 (8)0.0223 (6)0.0174 (6)0.0072 (6)0.0051 (5)0.0067 (5)
O30.0331 (8)0.0200 (6)0.0213 (7)0.0086 (6)0.0082 (6)0.0024 (5)
O40.0322 (8)0.0218 (7)0.0220 (7)0.0065 (6)0.0028 (6)0.0039 (5)
Geometric parameters (Å, º) top
C5—C41.536 (3)C24—C231.535 (3)
C5—C61.546 (2)C24—H24A0.9700
C5—H1A0.9700C24—H24B0.9700
C5—H1B0.9700C23—C221.506 (3)
C4—C31.507 (3)C23—H19A0.9700
C4—H2A0.9700C23—H19B0.9700
C4—H2B0.9700C22—C311.326 (3)
C3—C251.327 (3)C22—C211.509 (3)
C3—C21.509 (3)C21—C201.552 (2)
C2—C11.547 (2)C21—H21A0.9700
C2—H4A0.9700C21—H21B0.9700
C2—H4B0.9700C20—C321.532 (3)
C1—C261.529 (2)C20—H220.9800
C1—C61.557 (2)C25—H23A0.9300
C1—H50.9800C25—H23B0.9300
C6—C71.523 (2)C26—O21.439 (2)
C6—C191.554 (2)C26—C271.523 (3)
C19—C181.535 (2)C26—H240.9800
C19—H7A0.9700C27—O11.428 (2)
C19—H7B0.9700C27—H25A0.9700
C18—C171.531 (3)C27—H25B0.9700
C18—H8A0.9700C28—O21.427 (2)
C18—H8B0.9700C28—O11.430 (3)
C17—C161.527 (3)C28—C291.505 (3)
C17—H9A0.9700C28—C301.511 (3)
C17—H9B0.9700C29—H27A0.9600
C16—N151.468 (2)C29—H27B0.9600
C16—H10A0.9700C29—H27C0.9600
C16—H10B0.9700C30—H28A0.9600
C14—N151.258 (2)C30—H28B0.9600
C14—C131.518 (2)C30—H28C0.9600
C14—H110.9300C31—H29A0.9300
C13—C241.547 (3)C31—H29B0.9300
C13—C121.554 (2)C32—O31.449 (2)
C13—C201.560 (2)C32—C331.524 (3)
C12—C111.525 (3)C32—H300.9800
C12—H13A0.9700C33—O41.433 (2)
C12—H13B0.9700C33—H31A0.9700
C11—C101.530 (2)C33—H31B0.9700
C11—H14A0.9700C34—O41.432 (2)
C11—H14B0.9700C34—O31.430 (2)
C10—C91.526 (3)C34—C361.514 (3)
C10—H15A0.9700C34—C351.512 (3)
C10—H15B0.9700C36—H33A0.9600
C9—N81.462 (2)C36—H33B0.9600
C9—H16A0.9700C36—H33C0.9600
C9—H16B0.9700C35—H34A0.9600
C7—N81.259 (2)C35—H34B0.9600
C7—H170.9300C35—H34C0.9600
C4—C5—C6113.61 (15)C23—C24—H24B109.0
C4—C5—H1A108.8C13—C24—H24B109.0
C6—C5—H1A108.8H24A—C24—H24B107.8
C4—C5—H1B108.8C22—C23—C24110.26 (16)
C6—C5—H1B108.8C22—C23—H19A109.6
H1A—C5—H1B107.7C24—C23—H19A109.6
C3—C4—C5112.00 (16)C22—C23—H19B109.6
C3—C4—H2A109.2C24—C23—H19B109.6
C5—C4—H2A109.2H19A—C23—H19B108.1
C3—C4—H2B109.2C31—C22—C23122.99 (19)
C5—C4—H2B109.2C31—C22—C21123.65 (19)
H2A—C4—H2B107.9C23—C22—C21113.35 (16)
C25—C3—C4124.92 (19)C22—C21—C20112.61 (15)
C25—C3—C2121.83 (19)C22—C21—H21A109.1
C4—C3—C2113.25 (16)C20—C21—H21A109.1
C3—C2—C1111.92 (15)C22—C21—H21B109.1
C3—C2—H4A109.2C20—C21—H21B109.1
C1—C2—H4A109.2H21A—C21—H21B107.8
C3—C2—H4B109.2C32—C20—C21111.26 (15)
C1—C2—H4B109.2C32—C20—C13113.04 (14)
H4A—C2—H4B107.9C21—C20—C13110.28 (14)
C26—C1—C2110.97 (15)C32—C20—H22107.3
C26—C1—C6113.77 (14)C21—C20—H22107.3
C2—C1—C6109.36 (14)C13—C20—H22107.3
C26—C1—H5107.5C3—C25—H23A120.0
C2—C1—H5107.5C3—C25—H23B120.0
C6—C1—H5107.5H23A—C25—H23B120.0
C7—C6—C5110.47 (14)O2—C26—C27100.21 (15)
C7—C6—C19105.98 (14)O2—C26—C1109.10 (14)
C5—C6—C19108.03 (14)C27—C26—C1117.03 (15)
C7—C6—C1108.50 (14)O2—C26—H24110.0
C5—C6—C1110.72 (14)C27—C26—H24110.0
C19—C6—C1113.04 (14)C1—C26—H24110.0
C18—C19—C6116.21 (14)O1—C27—C26102.98 (16)
C18—C19—H7A108.2O1—C27—H25A111.2
C6—C19—H7A108.2C26—C27—H25A111.2
C18—C19—H7B108.2O1—C27—H25B111.2
C6—C19—H7B108.2C26—C27—H25B111.2
H7A—C19—H7B107.4H25A—C27—H25B109.1
C17—C18—C19112.92 (15)O2—C28—O1106.40 (15)
C17—C18—H8A109.0O2—C28—C29107.56 (17)
C19—C18—H8A109.0O1—C28—C29110.7 (2)
C17—C18—H8B109.0O2—C28—C30110.74 (19)
C19—C18—H8B109.0O1—C28—C30107.89 (18)
H8A—C18—H8B107.8C29—C28—C30113.4 (2)
C16—C17—C18114.97 (15)C28—C29—H27A109.5
C16—C17—H9A108.5C28—C29—H27B109.5
C18—C17—H9A108.5H27A—C29—H27B109.5
C16—C17—H9B108.5C28—C29—H27C109.5
C18—C17—H9B108.5H27A—C29—H27C109.5
H9A—C17—H9B107.5H27B—C29—H27C109.5
N15—C16—C17110.75 (16)C28—C30—H28A109.5
N15—C16—H10A109.5C28—C30—H28B109.5
C17—C16—H10A109.5H28A—C30—H28B109.5
N15—C16—H10B109.5C28—C30—H28C109.5
C17—C16—H10B109.5H28A—C30—H28C109.5
H10A—C16—H10B108.1H28B—C30—H28C109.5
N15—C14—C13125.76 (16)C22—C31—H29A120.0
N15—C14—H11117.1C22—C31—H29B120.0
C13—C14—H11117.1H29A—C31—H29B120.0
C14—C13—C24107.37 (14)O3—C32—C33100.30 (15)
C14—C13—C12105.58 (14)O3—C32—C20109.32 (15)
C24—C13—C12107.31 (14)C33—C32—C20117.28 (15)
C14—C13—C20111.65 (14)O3—C32—H30109.8
C24—C13—C20110.94 (14)C33—C32—H30109.8
C12—C13—C20113.61 (14)C20—C32—H30109.8
C11—C12—C13115.48 (15)O4—C33—C32102.53 (15)
C11—C12—H13A108.4O4—C33—H31A111.3
C13—C12—H13A108.4C32—C33—H31A111.3
C11—C12—H13B108.4O4—C33—H31B111.3
C13—C12—H13B108.4C32—C33—H31B111.3
H13A—C12—H13B107.5H31A—C33—H31B109.2
C12—C11—C10112.45 (15)O4—C34—O3106.23 (15)
C12—C11—H14A109.1O4—C34—C36110.57 (17)
C10—C11—H14A109.1O3—C34—C36108.03 (16)
C12—C11—H14B109.1O4—C34—C35108.48 (17)
C10—C11—H14B109.1O3—C34—C35110.33 (17)
H14A—C11—H14B107.8C36—C34—C35112.99 (19)
C9—C10—C11112.78 (16)C34—C36—H33A109.5
C9—C10—H15A109.0C34—C36—H33B109.5
C11—C10—H15A109.0H33A—C36—H33B109.5
C9—C10—H15B109.0C34—C36—H33C109.5
C11—C10—H15B109.0H33A—C36—H33C109.5
H15A—C10—H15B107.8H33B—C36—H33C109.5
N8—C9—C10110.21 (15)C34—C35—H34A109.5
N8—C9—H16A109.6C34—C35—H34B109.5
C10—C9—H16A109.6H34A—C35—H34B109.5
N8—C9—H16B109.6C34—C35—H34C109.5
C10—C9—H16B109.6H34A—C35—H34C109.5
H16A—C9—H16B108.1H34B—C35—H34C109.5
N8—C7—C6122.82 (16)C14—N15—C16117.19 (16)
N8—C7—H17118.6C7—N8—C9118.06 (16)
C6—C7—H17118.6C27—O1—C28107.81 (15)
C23—C24—C13113.04 (15)C28—O2—C26107.24 (14)
C23—C24—H24A109.0C34—O3—C32108.65 (14)
C13—C24—H24A109.0C34—O4—C33107.11 (14)

Experimental details

Crystal data
Chemical formulaC34H54N2O4
Mr554.80
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)6.8710 (1), 10.1701 (2), 11.7947 (2)
α, β, γ (°)79.143 (1), 88.043 (1), 83.855 (1)
V3)804.71 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.36 × 0.19 × 0.1
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19146, 3824, 3555
Rint0.042
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 0.92
No. of reflections3824
No. of parameters365
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

 

Acknowledgements

We thank Tania Groutso for help with the data collection.

References

First citationAllmann, R. (1974). Cryst. Struct. Commun. 3, 83–86.  CAS Google Scholar
First citationAsano, M., Inoue, M., Watanabe, K., Abe, H. & Katoh, T. (2006). J. Org. Chem. 71, 6942–6951.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDale, J. (1966). Angew. Chem. Int. Ed. 5, 1000–1021.  CrossRef CAS Google Scholar
First citationDanishefsky, S., Kitahara, T. & Schuda, P. F. (1990). Org. Synth. Coll. 7, 312–315.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGill, S., Murphy, M., Clausen, J., Richard, D., Quilliam, M., MacKinnon, S., LaBlanc, P., Mueller, R. & Pulido, O. (2003). Neurotoxicology, 24, 593–604.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuéret, S. M. & Brimble, M. A. (2010). Nat. Prod. Rep. In the press.  Google Scholar
First citationHu, T. M., Burton, I. W., Cembella, A. D., Curtis, J. M., Quilliam, M. A., Walter, J. A. & Wright, J. L. C. (2001). J. Nat. Prod. 64, 308–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, T., Curtis, J. M., Oshima, Y., Quilliam, M. A., Walter, J. A., Watson-Wright, W. M. & Wright, J. L. C. (1995). J. Chem. Soc. Chem. Commun. pp. 2159–2161.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetrzilka, M. & Grayson, J. I. (1981). Synthesis, pp. 753–786.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT . Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1778-o1779
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds