organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-1-(prop-2-en-1-yl)quinoxalin-2(1H)-one

aLaboratoire Nationale de Contrôle des Médicaments, Direction du Médicament et de la Pharmacie, BP 6206, 10000 Rabat, Morocco, bLaboratoire de Biochimie, Environnement et Agroalimentaire (URAC 36), Faculté des Sciences et Techniques Mohammedia, Université Hassan II Mohammedia-Casablana, BP 146, 20800 Mohammedia, Morocco, cLaboratoires de Diffraction des Rayons X, Division UATRS, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco, and dLaboratoire de Chimie Organique Hétérocyclique, Université Mohammed, V-Agdal, BP 1014, Rabat, Morocco
*Correspondence e-mail: lazar_said@yahoo.fr

(Received 11 June 2010; accepted 18 June 2010; online 23 June 2010)

In the mol­ecule of the title compound, C12H12N2O, the quinoxaline ring is planar with an r.m.s. deviation of 0.007 (15) Å. The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2)°. The crystal packing is stabilized by offset ππ stacking between the quinoxaline rings [centroid–centroid distance = 3.8832 (9) Å].

Related literature

For biological activity of quinoxaline derivatives, see: Kleim et al. (1995[Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253-2257.]). For their anti­tumor, and anti­tuberculous properties, see: Abasolo et al. (1987[Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. J. (1987). Heterocycl. Chem. 24, 1771-1775.]); Rodrigo et al. (2002[Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137-143.]). For the anti­­fungal, herbicidal, anti­dyslipidemic and anti-oxidative activities of quinoxaline derivatives, see: Jampilek et al. (2005[Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591-599.]); Sashidhara et al. (2009[Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813-1818.]); Watkins et al. (2009[Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580-585.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O

  • Mr = 200.24

  • Monoclinic, P 21 /c

  • a = 5.0722 (5) Å

  • b = 13.4707 (13) Å

  • c = 15.0507 (13) Å

  • β = 95.082 (5)°

  • V = 1024.31 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.31 × 0.13 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 11850 measured reflections

  • 2546 independent reflections

  • 1726 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.151

  • S = 1.08

  • 2546 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Quinoxaline derivatives are a very important class of nitrogen-containing compounds and have been widely used in dyes, pharmaceuticals and electrical/photochemical materials. Quinoxaline ring moiety constitute part of the chemical structures of various antibiotics such as Echinomycin, Levomycin and Actinoleutin that are known to inhibit growth of gram positive bacteria and are active against various transplantable tumors.

Quinoxaline derivatives were found to exhibit antimicrobial [Kleim et al. 1995], antitumor [Abasolo et al. 1987], and antituberculous activity [Rodrigo et al.2002]. They, also, exhibit interesting antifungal, herbicidal, Antidyslipidemic and antioxidative activities of quinoxaline derivatives, see: (Jampilek et al. 2005, Sashidhara et al. 2009, Watkins et al. 2009).

The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2) (Fig. 1). Bond lengths and angles in title molecule are normal (Allen et al., 1987). The crystal packing is stabilized by offset π-π stacking between the quinoxalin rings.

Related literature top

For biological activity of quinoxaline derivatives, see: Kleim et al. (1995). For their antitumor, and antituberculous properties, see: Abasolo et al. (1987); Rodrigo et al. (2002). For the antifungal, herbicidal, antidyslipidemic and anti-oxidative activities of quinoxaline derivatives, see: Jampilek et al. (2005); Sashidhara et al. (2009); Watkins et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 3-methylquinoxali-2(1H)-one (1 g) in 20 ml of dimethylformamide was added allylchloride (0.85 ml),K2CO3 (0.95 g) and catalytic amont of tetrabutylammonium bromide.The mixture was stirred at room temperature for 24 h.Then the solvent was remdove under reduce pressure,the residue was cristallized in ethanol to afford the product.

Refinement top

Although found in a difference map, H atoms were introduced in calculated positions and treated as riding with C—H = 0.96 Å for methyl groups, C—H = 0.93 Å for aromatic and C—H = 0.97 Å for methine with U iso (H) = 1.2Ueq (aromatic, methine ) or U iso (H) = 1.5Ueq (methyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Packing view of the crystal structure of the title compound.
3-Methyl-1-(prop-2-en-1-yl)quinoxalin-2(1H)-one top
Crystal data top
C12H12N2OF(000) = 424
Mr = 200.24Dx = 1.298 Mg m3
Monoclinic, P21/cMelting point: 1486 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.0722 (5) ÅCell parameters from 2764 reflections
b = 13.4707 (13) Åθ = 2.4–27.4°
c = 15.0507 (13) ŵ = 0.09 mm1
β = 95.082 (5)°T = 296 K
V = 1024.31 (17) Å3Block, colourless
Z = 40.32 × 0.31 × 0.13 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1726 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 28.3°, θmin = 2.7°
ϕ and ω scansh = 66
11850 measured reflectionsk = 017
2546 independent reflectionsl = 020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.0888P]
where P = (Fo2 + 2Fc2)/3
2546 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H12N2OV = 1024.31 (17) Å3
Mr = 200.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0722 (5) ŵ = 0.09 mm1
b = 13.4707 (13) ÅT = 296 K
c = 15.0507 (13) Å0.32 × 0.31 × 0.13 mm
β = 95.082 (5)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1726 reflections with I > 2σ(I)
11850 measured reflectionsRint = 0.049
2546 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
2546 reflectionsΔρmin = 0.17 e Å3
137 parameters
Special details top

Experimental. The data collection nominally covered a sphere of reciprocal space, by a combination of seven sets of exposures; each set had a different ϕ angle for the crystal and each exposure covered 0.5° in ω and 30 s in time. The crystal-to-detector distance was 37.5 mm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimatedusing the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL datawill be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3390 (2)0.34712 (9)0.06022 (9)0.0657 (4)
N10.0193 (2)0.29591 (9)0.16502 (8)0.0408 (3)
N20.1311 (2)0.49458 (9)0.18738 (8)0.0445 (3)
C10.2649 (3)0.41959 (11)0.23590 (9)0.0408 (3)
C20.4769 (3)0.44552 (13)0.29645 (10)0.0514 (4)
H20.52530.51190.30300.062*
C30.6150 (3)0.37488 (15)0.34638 (11)0.0589 (5)
H30.75600.39310.38680.071*
C40.5434 (3)0.27599 (15)0.33625 (11)0.0579 (5)
H40.63640.22780.37040.069*
C50.3375 (3)0.24845 (13)0.27651 (11)0.0503 (4)
H50.29320.18170.26980.060*
C60.1937 (3)0.31975 (11)0.22568 (9)0.0395 (3)
C70.1541 (3)0.36731 (11)0.11482 (10)0.0441 (4)
C80.0643 (3)0.47053 (11)0.13088 (9)0.0424 (4)
C90.2158 (3)0.54800 (12)0.07845 (11)0.0543 (4)
H9A0.38780.55480.09970.081*
H9B0.23430.52930.01670.081*
H9C0.12330.61010.08500.081*
C100.1160 (3)0.19385 (11)0.15522 (11)0.0483 (4)
H10A0.30320.19560.13550.058*
H10B0.09750.16210.21330.058*
C110.0207 (3)0.13211 (13)0.09201 (12)0.0578 (5)
H110.02430.06520.08960.069*
C120.1942 (4)0.16040 (15)0.04015 (13)0.0669 (5)
H12A0.24670.22650.03980.080*
H12B0.26720.11470.00300.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0682 (8)0.0524 (8)0.0700 (8)0.0060 (6)0.0296 (7)0.0027 (6)
N10.0443 (6)0.0358 (7)0.0413 (6)0.0016 (5)0.0024 (5)0.0006 (5)
N20.0518 (7)0.0402 (7)0.0407 (6)0.0005 (5)0.0013 (5)0.0018 (5)
C10.0435 (7)0.0433 (9)0.0353 (7)0.0004 (6)0.0020 (6)0.0008 (6)
C20.0527 (9)0.0550 (10)0.0452 (8)0.0061 (7)0.0038 (7)0.0033 (7)
C30.0527 (9)0.0755 (13)0.0458 (9)0.0016 (8)0.0107 (7)0.0006 (8)
C40.0592 (10)0.0648 (12)0.0474 (9)0.0098 (8)0.0080 (7)0.0103 (8)
C50.0568 (9)0.0471 (9)0.0460 (8)0.0046 (7)0.0014 (7)0.0053 (7)
C60.0416 (7)0.0415 (9)0.0352 (7)0.0006 (6)0.0026 (6)0.0005 (6)
C70.0464 (8)0.0423 (9)0.0420 (8)0.0003 (6)0.0045 (6)0.0002 (6)
C80.0487 (8)0.0398 (8)0.0380 (7)0.0027 (6)0.0003 (6)0.0005 (6)
C90.0653 (10)0.0439 (9)0.0518 (9)0.0069 (7)0.0059 (8)0.0015 (7)
C100.0488 (8)0.0387 (9)0.0560 (9)0.0052 (6)0.0032 (7)0.0022 (7)
C110.0625 (10)0.0455 (10)0.0633 (10)0.0042 (8)0.0060 (9)0.0077 (8)
C120.0696 (11)0.0701 (13)0.0602 (11)0.0030 (9)0.0008 (9)0.0162 (9)
Geometric parameters (Å, º) top
O1—C71.2215 (18)C5—C61.393 (2)
N1—C71.3683 (19)C5—H50.9300
N1—C61.3889 (18)C7—C81.476 (2)
N1—C101.4629 (19)C8—C91.482 (2)
N2—C81.2887 (18)C9—H9A0.9600
N2—C11.3881 (19)C9—H9B0.9600
C1—C21.391 (2)C9—H9C0.9600
C1—C61.397 (2)C10—C111.481 (2)
C2—C31.367 (2)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.386 (3)C11—C121.285 (3)
C3—H30.9300C11—H110.9300
C4—C51.368 (2)C12—H12A0.9300
C4—H40.9300C12—H12B0.9300
C7—N1—C6121.48 (13)O1—C7—C8121.81 (14)
C7—N1—C10117.26 (12)N1—C7—C8116.08 (13)
C6—N1—C10121.20 (12)N2—C8—C7123.57 (13)
C8—N2—C1118.41 (13)N2—C8—C9120.44 (14)
N2—C1—C2118.39 (14)C7—C8—C9115.99 (13)
N2—C1—C6122.20 (13)C8—C9—H9A109.5
C2—C1—C6119.41 (14)C8—C9—H9B109.5
C3—C2—C1120.95 (16)H9A—C9—H9B109.5
C3—C2—H2119.5C8—C9—H9C109.5
C1—C2—H2119.5H9A—C9—H9C109.5
C2—C3—C4119.49 (15)H9B—C9—H9C109.5
C2—C3—H3120.3N1—C10—C11114.87 (13)
C4—C3—H3120.3N1—C10—H10A108.6
C5—C4—C3120.70 (16)C11—C10—H10A108.6
C5—C4—H4119.7N1—C10—H10B108.6
C3—C4—H4119.7C11—C10—H10B108.6
C4—C5—C6120.41 (16)H10A—C10—H10B107.5
C4—C5—H5119.8C12—C11—C10127.48 (17)
C6—C5—H5119.8C12—C11—H11116.3
N1—C6—C5122.71 (14)C10—C11—H11116.3
N1—C6—C1118.25 (13)C11—C12—H12A120.0
C5—C6—C1119.04 (14)C11—C12—H12B120.0
O1—C7—N1122.11 (14)H12A—C12—H12B120.0
C12—C11—C10—N16.7 (3)

Experimental details

Crystal data
Chemical formulaC12H12N2O
Mr200.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.0722 (5), 13.4707 (13), 15.0507 (13)
β (°) 95.082 (5)
V3)1024.31 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.31 × 0.13
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11850, 2546, 1726
Rint0.049
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 1.08
No. of reflections2546
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Offset ππ stacking between the quinoxaline rings. top
Cg1 is the centroid of ring N1,C6,C1,N2,C8,C7 and Cg2 the centroid of ring C1–C6.
Centroid-to-centroid(Å)plane-to-plane(Å)offset(°)
Cg1–Cg2i3.8832 (9)3.50925.4
Symmetry code: (i) -1+x, y, z.
 

Acknowledgements

The authors thank the CNRST of Morocco for making this work possible.

References

First citationAbasolo, M. I., Gaozza, C. H. & Fernandez, B. M. J. (1987). Heterocycl. Chem. 24, 1771–1775.  CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591–599.  CrossRef PubMed CAS Google Scholar
First citationKleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253–2257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137–143.  CAS Google Scholar
First citationSashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813–1818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580–585.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds