organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1770-o1771

1-Benzyl-3-[(tri­methyl­sil­yl)meth­yl]benzimidazolium chloride monohydrate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, dDepartment of Chemistry, Faculty of Arts and Sciences, Adıyaman University, 02040 Adıyaman, Turkey, and eDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 14 June 2010; accepted 21 June 2010; online 26 June 2010)

The title compound, C18H23N2Si+·Cl·H2O, was synthesized from 1-[(trimethyl­sil­yl)meth­yl]benzimidazole and benzyl chloride in dimethyl­formamide. The benzimidazole ring system is approximately planar, with a maximum deviation of 0.022 (2) Å, and makes an angle of 74.80 (12)° with the phenyl ring. The crystal packing is stabilized by O—H⋯Cl, C—H⋯Cl, C—H⋯O and C—H⋯π inter­actions between symmetry-related mol­ecules together with ππ stacking inter­actions between the imidazolium and benzene rings [centroid–centroid distance = 3.5690 (15) Å] and between the benzene rings [centroid–centroid distance = 3.7223 (14) Å].

Related literature

For general background to benzimidazole compounds and for the biological activity of related structures, see: Galal et al. (2009[Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. M. A. & El-Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500-1508.]); Huang et al. (2006[Huang, S. T., Hsei, I. J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106-6119.]); Küçükbay & Durmaz (1997[Küçükbay, H. & Durmaz, B. (1997). Arzneim. Forsch. Drug Res. 47, 667-670.]); Küçükbay et al. (1995[Küçükbay, H., Çetinkaya, E. & Durmaz, R. (1995). Arzneim. Forsch. Drug Res. 45, 1331-1334.], 2003[Küçükbay, H., Durmaz, R., Okuyucu, N. & Günal, S. (2003). Fol. Microbiol. 48, 679-681.], 2004[Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch./Drug Res. 54, 64-68.], 2010[Küçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2010). Asian J. Chem. 22, 2816-2824.]); Lukevics et al. (2001[Lukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507-515.]); Singh & Lown (2000[Singh, A. K. & Lown, J. W. (2000). Anticancer Drug Des. 15, 265-275.]); Tavman et al. (2005[Tavman, A., Birteksöz, S. & Ötük, G. (2005). Folia Mirobiol., 50, 467-472.]); Turner & Denny (1996[Turner, P. R. & Denny, W. A. (1996). Mutat. Res. 355, 141-169.]); Williams et al. (2002[Williams, D. A., Lemke, T. L. & Foye, O. (2002). Foye's Principles of Medicinal Chemistry, 5th ed. Philadelphia, USA: Lippincott Williams and Wilkins.]); Yılmaz & Küçükbay (2009[Yılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149-6155.]); Çetinkaya et al. (1996[Çetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim. Forsch. Drug Res. 46, 1154-1158.]). For similar structures, see: Akkurt et al. (2008[Akkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, o809.], 2010[Akkurt, M., Yalçın, Ş. P., Şireci, N., Küçükbay, H. & Tahir, M. N. (2010). Acta Cryst. E66, m253-m254.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23N2Si+·Cl·H2O

  • Mr = 348.94

  • Triclinic, [P \overline 1]

  • a = 9.3592 (7) Å

  • b = 10.9500 (9) Å

  • c = 11.0522 (8) Å

  • α = 117.594 (6)°

  • β = 103.295 (6)°

  • γ = 92.094 (6)°

  • V = 963.39 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.57 × 0.50 × 0.36 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.859, Tmax = 0.909

  • 12149 measured reflections

  • 3987 independent reflections

  • 3241 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.07

  • 3987 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1 0.86 2.45 3.257 (2) 157
O1—H1B⋯Cl1i 0.85 2.45 3.250 (3) 158
C7—H7⋯O1 0.93 2.51 3.170 (3) 128
C8—H8A⋯Cl1 0.97 2.81 3.703 (2) 153
C3—H3⋯Cg3ii 0.93 2.69 3.526 (2) 151
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Although there are different antibacterial and antifungal drugs used in the treatment of bacterial and fungal infections, some of them have undesirable side effects. In addition, some of them become less effective due to the development of resistance to these drugs (Williams et al., 2002). Therefore, many clinically effective antibacterial and antifungal drugs have become less effective due to the development of resistance to these drugs. Since, benzimidazole compounds have been found to have a broad range of pharmacological activity, many research groups as well as our group have been interested in these type of heterocyclic compounds (Singh et al., 2000; Huang et al. 2006; Turner & Denny, 1996; Lukevics et al., 2001; Galal et al. 2009; Çetinkaya et al., 1996; Küçükbay et al., 1995, 1997, 2003, 2004, 2010; Yılmaz & Küçükbay, 2009; Tavman et al., 2005). In recent years, considerable attention has been given to the synthesis of alkylsilyl substituted benzimidazole derivatives because of their properties in cancer therapy. For example, 1-(3-trimethylsilylpropyl)benzimidazole inhibits carcinoma S-180 tumour growth in dose 1 mg.kg-1 by 62% (on ICR mice) (Lukevics et al., 2001). These properties of silylsubstituted benzimidazole compounds, triggered us to synthesis novel trimethylsilyl substituted benzimidazole compounds. The objectives of this study were to synthesize and elucidate the crystal structure of the title compound, 1-benzyl-3-trimethylsilylmethylbenzimidazolium chloride monohydrate, (I).

In the title molecule, (Fig. 1), the benzimidazole ring system (N1/N2/C1–C7) is approximately planar, with maximum deviations of -0.022 (2) Å for C6, -0.018 (2) for C1 and 0.015 (2) for C7. The benzimidazole (N1/N2/C1–C7) and phenyl (C9–C14) systems make an angle of 74.80 (12)°. The values of the geometric parameters in (I) are comparable with those observed for other similar compounds (Akkurt et al., 2008, 2010). The average value of the Si—C bond length is 1.854 (4) Å. The angles around the Si atoms with a distorted tetrahedral geometry rang from 105.86 (16)° to 111.81 (16)°.

The crystal packing of (I) is stabilized by O—H···Cl, C—H···Cl and C—H···π interactions between symmetry-related molecules (Fig. 2 and Table 1), together with π-π stacking interactions between imidazolium and benzene (Table 2).

Related literature top

For general background to benzimidazole compounds and for the biological activity of related structures, see: Galal et al. (2009); Huang et al. (2006); Küçükbay & Durmaz (1997); Küçükbay et al. (1995, 2003, 2004, 2010); Lukevics et al. (2001); Singh & Lown (2000); Tavman et al. (2005); Turner & Denny (1996); Williams et al. (2002); Yılmaz & Küçükbay (2009); Çetinkaya et al. (1996). For similar structures, see: Akkurt et al. (2008, 2010).

Experimental top

A mixture of 1-trimethylsilylmethylbenzimidazole (1.02 g, 5 mmol) and benzyl chloride (0.60 cm3, 5 mmol) in dimethylformamide (5 ml) was refluxed for 3 h. The mixture was then cooled and the volatiles were removed in vacuo. The residue was crystallized from a dimethylformamide/ethanol (1:1). White crystals of the title compound (1.36 g, 82%) were obtained, m.p. 425–426 K; ν(CN) = 1553 cm-1. Anal. Found: C 61.64, H 7.19, N 7.93%. Calculated for C18H25ClN2OSi: C 61.96, H 7.22, N 8.03%. 1H NMR (δ, DMSO-d6): 10.21 (s, 1H, NCHN), 8.11 - 7.59 (m, 4H, C6H4), 7.56–7.33 (m, 5H, C6H5), 5.86 (s, 2H, CH2 benzyl), 4.30 (s, 2H, CH2Si) and 0.14 [s, 9H, (CH3)3Si]. 13C NMR (δ, DMSO-d6): 141.6 (NCHN), 134.6, 132.1, 130.8, 129.1, 128.8 and 128.3 (C6H4), 126.8, 126.5, 114.3 and 113.9 (C6H5), 49.8 (CH2 benzyl), 38.1(CH2Si) and -2.5 [(CH3)3Si].

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.83 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O).In the last cycles of refinement, they were treated as riding on the O atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title molecule in the asymmetric unit, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and H bonds are shown as dashed lines.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding interactions of (I) down the b axis. All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate top
Crystal data top
C18H23N2Si+·Cl·H2OZ = 2
Mr = 348.94F(000) = 372
Triclinic, P1Dx = 1.203 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3592 (7) ÅCell parameters from 28124 reflections
b = 10.9500 (9) Åθ = 2.1–28.0°
c = 11.0522 (8) ŵ = 0.27 mm1
α = 117.594 (6)°T = 296 K
β = 103.295 (6)°Prism, colourless
γ = 92.094 (6)°0.57 × 0.50 × 0.36 mm
V = 963.39 (15) Å3
Data collection top
Stoe IPDS 2
diffractometer
3987 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3241 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.029
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.1°
ω scansh = 1111
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1312
Tmin = 0.859, Tmax = 0.909l = 1313
12149 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.2683P]
where P = (Fo2 + 2Fc2)/3
3987 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C18H23N2Si+·Cl·H2Oγ = 92.094 (6)°
Mr = 348.94V = 963.39 (15) Å3
Triclinic, P1Z = 2
a = 9.3592 (7) ÅMo Kα radiation
b = 10.9500 (9) ŵ = 0.27 mm1
c = 11.0522 (8) ÅT = 296 K
α = 117.594 (6)°0.57 × 0.50 × 0.36 mm
β = 103.295 (6)°
Data collection top
Stoe IPDS 2
diffractometer
3987 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3241 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.909Rint = 0.029
12149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
3987 reflectionsΔρmin = 0.32 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.53328 (7)0.20172 (7)0.79168 (6)0.05705 (19)
N10.72385 (17)0.36741 (17)0.52896 (17)0.0466 (4)
N20.59349 (17)0.36730 (17)0.66907 (17)0.0466 (4)
C10.4923 (2)0.33506 (19)0.54087 (19)0.0428 (4)
C20.3377 (2)0.3101 (2)0.4971 (2)0.0521 (5)
H20.28160.31040.55660.063*
C30.2721 (2)0.2847 (2)0.3611 (2)0.0587 (5)
H30.16880.26670.32760.070*
C40.3560 (2)0.2853 (3)0.2717 (2)0.0592 (5)
H40.30710.26820.18060.071*
C50.5084 (2)0.3104 (2)0.3150 (2)0.0532 (5)
H50.56410.31110.25550.064*
C60.57570 (19)0.33479 (19)0.4512 (2)0.0432 (4)
C70.7293 (2)0.3855 (2)0.6574 (2)0.0505 (5)
H70.81650.40790.72930.061*
C80.8534 (2)0.3833 (2)0.4794 (2)0.0547 (5)
H8A0.94130.42730.56020.066*
H8B0.83710.44420.43770.066*
C90.8803 (2)0.2461 (2)0.3720 (2)0.0510 (5)
C100.8520 (3)0.2111 (3)0.2308 (3)0.0717 (7)
H100.81710.27410.20140.086*
C110.8748 (3)0.0831 (4)0.1329 (3)0.0935 (10)
H110.85460.06000.03770.112*
C120.9272 (3)0.0100 (3)0.1753 (4)0.0947 (10)
H120.94040.09700.10890.114*
C130.9600 (3)0.0255 (3)0.3158 (4)0.0909 (10)
H130.99800.03670.34510.109*
C140.9372 (3)0.1527 (3)0.4141 (3)0.0700 (7)
H140.96020.17600.50950.084*
C150.5549 (3)0.3754 (2)0.7947 (2)0.0549 (5)
H15A0.46250.41220.80030.066*
H15B0.63200.44060.87960.066*
C160.3837 (3)0.0757 (3)0.6328 (3)0.0812 (8)
H16A0.40630.06620.54870.122*
H16B0.29070.10900.63770.122*
H16C0.37670.01350.62970.122*
C170.4849 (4)0.2374 (4)0.9569 (3)0.1001 (10)
H17A0.47440.15240.96190.150*
H17B0.39280.27320.95690.150*
H17C0.56240.30501.03760.150*
C180.7121 (3)0.1391 (3)0.7877 (3)0.0899 (9)
H18A0.70280.04780.77960.135*
H18B0.78690.20230.87370.135*
H18C0.74030.13440.70760.135*
O10.9113 (3)0.6314 (2)0.9603 (2)0.1024 (7)
H1A0.99100.60000.94200.154*
H1B0.90900.63501.03800.154*
Cl11.14370 (9)0.44812 (10)0.80296 (8)0.0961 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0616 (4)0.0668 (4)0.0477 (3)0.0106 (3)0.0191 (3)0.0301 (3)
N10.0349 (8)0.0565 (9)0.0533 (9)0.0048 (7)0.0145 (7)0.0295 (8)
N20.0448 (9)0.0524 (9)0.0460 (8)0.0074 (7)0.0162 (7)0.0251 (7)
C10.0401 (9)0.0458 (9)0.0466 (9)0.0086 (7)0.0162 (8)0.0238 (8)
C20.0404 (10)0.0611 (12)0.0632 (12)0.0110 (9)0.0240 (9)0.0324 (10)
C30.0358 (10)0.0717 (14)0.0673 (13)0.0081 (9)0.0120 (9)0.0339 (11)
C40.0471 (12)0.0770 (14)0.0527 (11)0.0088 (10)0.0087 (9)0.0333 (11)
C50.0486 (11)0.0686 (13)0.0516 (11)0.0106 (9)0.0193 (9)0.0340 (10)
C60.0343 (9)0.0484 (10)0.0507 (10)0.0068 (7)0.0145 (8)0.0260 (8)
C70.0418 (10)0.0554 (11)0.0511 (11)0.0031 (8)0.0079 (8)0.0260 (9)
C80.0360 (10)0.0667 (13)0.0736 (13)0.0050 (9)0.0216 (9)0.0412 (11)
C90.0311 (9)0.0671 (12)0.0673 (12)0.0090 (8)0.0197 (9)0.0400 (10)
C100.0529 (13)0.1023 (19)0.0737 (15)0.0312 (13)0.0236 (12)0.0498 (15)
C110.0647 (17)0.126 (3)0.0702 (17)0.0308 (17)0.0212 (14)0.0299 (17)
C120.0684 (18)0.0793 (19)0.120 (3)0.0195 (15)0.0432 (18)0.0266 (18)
C130.087 (2)0.088 (2)0.146 (3)0.0402 (16)0.069 (2)0.077 (2)
C140.0671 (15)0.0864 (17)0.0943 (18)0.0279 (13)0.0444 (14)0.0631 (15)
C150.0599 (12)0.0622 (12)0.0420 (10)0.0129 (10)0.0203 (9)0.0217 (9)
C160.0781 (18)0.0771 (17)0.0790 (17)0.0077 (13)0.0151 (14)0.0347 (14)
C170.142 (3)0.111 (2)0.0703 (17)0.022 (2)0.0513 (19)0.0526 (17)
C180.0818 (19)0.093 (2)0.088 (2)0.0247 (16)0.0135 (16)0.0423 (17)
O10.1114 (17)0.0974 (15)0.0822 (13)0.0288 (13)0.0144 (12)0.0355 (12)
Cl10.0818 (5)0.1278 (7)0.0780 (5)0.0348 (4)0.0259 (4)0.0465 (4)
Geometric parameters (Å, º) top
Si1—C181.834 (3)C9—C101.378 (3)
Si1—C171.850 (3)C9—C141.383 (3)
Si1—C161.852 (3)C10—C111.380 (4)
Si1—C151.890 (2)C10—H100.9300
N1—C71.328 (3)C11—C121.368 (5)
N1—C61.386 (2)C11—H110.9300
N1—C81.476 (2)C12—C131.367 (5)
N2—C71.324 (2)C12—H120.9300
N2—C11.387 (2)C13—C141.376 (4)
N2—C151.478 (2)C13—H130.9300
C1—C21.389 (3)C14—H140.9300
C1—C61.394 (2)C15—H15A0.9700
C2—C31.374 (3)C15—H15B0.9700
C2—H20.9300C16—H16A0.9600
C3—C41.398 (3)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C4—C51.369 (3)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.384 (3)C17—H17C0.9600
C5—H50.9300C18—H18A0.9600
C7—H70.9300C18—H18B0.9600
C8—C91.497 (3)C18—H18C0.9600
C8—H8A0.9700O1—H1A0.8598
C8—H8B0.9700O1—H1B0.8466
C18—Si1—C17111.82 (16)C14—C9—C8120.0 (2)
C18—Si1—C16110.58 (15)C9—C10—C11120.5 (3)
C17—Si1—C16110.93 (16)C9—C10—H10119.8
C18—Si1—C15107.44 (14)C11—C10—H10119.8
C17—Si1—C15105.86 (13)C12—C11—C10120.2 (3)
C16—Si1—C15110.04 (12)C12—C11—H11119.9
C7—N1—C6108.20 (15)C10—C11—H11119.9
C7—N1—C8125.70 (17)C13—C12—C11119.7 (3)
C6—N1—C8126.08 (16)C13—C12—H12120.1
C7—N2—C1108.16 (15)C11—C12—H12120.1
C7—N2—C15126.39 (17)C12—C13—C14120.4 (3)
C1—N2—C15125.43 (16)C12—C13—H13119.8
N2—C1—C2131.97 (17)C14—C13—H13119.8
N2—C1—C6106.56 (16)C13—C14—C9120.4 (3)
C2—C1—C6121.45 (18)C13—C14—H14119.8
C3—C2—C1116.40 (18)C9—C14—H14119.8
C3—C2—H2121.8N2—C15—Si1113.64 (13)
C1—C2—H2121.8N2—C15—H15A108.8
C2—C3—C4122.03 (19)Si1—C15—H15A108.8
C2—C3—H3119.0N2—C15—H15B108.8
C4—C3—H3119.0Si1—C15—H15B108.8
C5—C4—C3121.6 (2)H15A—C15—H15B107.7
C5—C4—H4119.2Si1—C16—H16A109.5
C3—C4—H4119.2Si1—C16—H16B109.5
C4—C5—C6116.92 (18)H16A—C16—H16B109.5
C4—C5—H5121.5Si1—C16—H16C109.5
C6—C5—H5121.5H16A—C16—H16C109.5
C5—C6—N1131.92 (17)H16B—C16—H16C109.5
C5—C6—C1121.62 (17)Si1—C17—H17A109.5
N1—C6—C1106.41 (16)Si1—C17—H17B109.5
N2—C7—N1110.68 (17)H17A—C17—H17B109.5
N2—C7—H7124.7Si1—C17—H17C109.5
N1—C7—H7124.7H17A—C17—H17C109.5
N1—C8—C9112.22 (16)H17B—C17—H17C109.5
N1—C8—H8A109.2Si1—C18—H18A109.5
C9—C8—H8A109.2Si1—C18—H18B109.5
N1—C8—H8B109.2H18A—C18—H18B109.5
C9—C8—H8B109.2Si1—C18—H18C109.5
H8A—C8—H8B107.9H18A—C18—H18C109.5
C10—C9—C14118.7 (2)H18B—C18—H18C109.5
C10—C9—C8121.3 (2)H1A—O1—H1B107.0
C7—N2—C1—C2178.0 (2)C15—N2—C7—N1178.44 (17)
C15—N2—C1—C23.6 (3)C6—N1—C7—N20.3 (2)
C7—N2—C1—C60.1 (2)C8—N1—C7—N2178.18 (18)
C15—N2—C1—C6178.27 (17)C7—N1—C8—C9109.6 (2)
N2—C1—C2—C3178.1 (2)C6—N1—C8—C972.2 (2)
C6—C1—C2—C30.2 (3)N1—C8—C9—C10108.7 (2)
C1—C2—C3—C40.6 (3)N1—C8—C9—C1472.5 (2)
C2—C3—C4—C50.4 (4)C14—C9—C10—C112.3 (4)
C3—C4—C5—C60.2 (3)C8—C9—C10—C11178.8 (2)
C4—C5—C6—N1177.7 (2)C9—C10—C11—C120.5 (4)
C4—C5—C6—C10.6 (3)C10—C11—C12—C131.5 (5)
C7—N1—C6—C5177.7 (2)C11—C12—C13—C141.7 (5)
C8—N1—C6—C50.7 (3)C12—C13—C14—C90.2 (4)
C7—N1—C6—C10.3 (2)C10—C9—C14—C132.2 (3)
C8—N1—C6—C1178.13 (17)C8—C9—C14—C13179.0 (2)
N2—C1—C6—C5177.97 (18)C7—N2—C15—Si191.7 (2)
C2—C1—C6—C50.4 (3)C1—N2—C15—Si186.4 (2)
N2—C1—C6—N10.2 (2)C18—Si1—C15—N260.61 (19)
C2—C1—C6—N1178.10 (18)C17—Si1—C15—N2179.77 (18)
C1—N2—C7—N10.1 (2)C16—Si1—C15—N259.84 (19)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.862.453.257 (2)157
O1—H1B···Cl1i0.852.453.250 (3)158
C7—H7···O10.932.513.170 (3)128
C8—H8A···Cl10.972.813.703 (2)153
C3—H3···Cg3ii0.932.693.526 (2)151
Symmetry codes: (i) x+2, y+1, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H23N2Si+·Cl·H2O
Mr348.94
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.3592 (7), 10.9500 (9), 11.0522 (8)
α, β, γ (°)117.594 (6), 103.295 (6), 92.094 (6)
V3)963.39 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.57 × 0.50 × 0.36
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.859, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
12149, 3987, 3241
Rint0.029
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.07
No. of reflections3987
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.862.453.257 (2)157.4
O1—H1B···Cl1i0.852.453.250 (3)157.7
C7—H7···O10.932.513.170 (3)128.1
C8—H8A···Cl10.972.813.703 (2)153.2
C3—H3···Cg3ii0.932.693.526 (2)151.0
Symmetry codes: (i) x+2, y+1, z+2; (ii) x1, y, z.
ππ stacking in the title compound (Å, °). top
Cg1 is the centroid of the N1, C6, C1, N2, C7 ring and Cg2 is the centroid of C1 to C6 ring. Offset is the angle between the centroid-to-centroid and plane-to-plane vectors.
Centroid–centroidplane–planeoffset
Cg1···Cg2i3.5690 (15)3.430 (1)16.0
Cg2···Cg2i3.7223 (14)3.446 (1)22.2
Symmetry code: (i) 1-x, 1-y, 1-z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). HK & NŞ also thank the İnönü University Research Fund (BAPB-2008–60) for financial support of this study.

References

First citationAkkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, o809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Şireci, N., Küçükbay, H. & Tahir, M. N. (2010). Acta Cryst. E66, m253–m254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationÇetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim. Forsch. Drug Res. 46, 1154–1158.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. M. A. & El-Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500–1508.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, S. T., Hsei, I. J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106–6119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKüçükbay, H., Çetinkaya, E. & Durmaz, R. (1995). Arzneim. Forsch. Drug Res. 45, 1331–1334.  CAS Google Scholar
First citationKüçükbay, H. & Durmaz, B. (1997). Arzneim. Forsch. Drug Res. 47, 667–670.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Okuyucu, N. & Günal, S. (2003). Fol. Microbiol. 48, 679–681.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch./Drug Res. 54, 64–68.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2010). Asian J. Chem. 22, 2816–2824.  Google Scholar
First citationLukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507–515.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A. K. & Lown, J. W. (2000). Anticancer Drug Des. 15, 265–275.  Web of Science PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTavman, A., Birteksöz, S. & Ötük, G. (2005). Folia Mirobiol., 50, 467–472.  Web of Science CrossRef CAS Google Scholar
First citationTurner, P. R. & Denny, W. A. (1996). Mutat. Res. 355, 141–169.  CrossRef PubMed Web of Science Google Scholar
First citationWilliams, D. A., Lemke, T. L. & Foye, O. (2002). Foye's Principles of Medicinal Chemistry, 5th ed. Philadelphia, USA: Lippincott Williams and Wilkins.  Google Scholar
First citationYılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149–6155.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1770-o1771
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds