organic compounds
(2-Decanamidoethyl)dimethylamine N-oxide
aFaculty of Chemistry, Wrocław University, ul. Joliot-Curie 14, 50-383 Wrocław, Poland
*Correspondence e-mail: lewinska@eto.wchuwr.pl
In the title compound, C14H30N2O2, the almost planar nonyl chains are fully extended: the N—C—C—N torsion angle of −161.95 (8)° indicates an anti conformation. The features N—H⋯O hydrogen bonds and C—H⋯O interactions.
Related literature
For the bond lengths and angles of nonyl chains, see: Low et al. (1999); Kato & Ikemori (2003); Ulrich et al. (1990). For related structures containing the amide group, see: Belicchi-Ferrari et al. (2007); Jeffrey & Maluszynska (1989). For N—O bond lengths, see: Katrusiak et al. (1987); Kemmitt et al. (2002); Maia et al. (1984); Boese et al. (1999); Palatinus & Damay (2009). For a related structure, see: Sauer et al. (2003). For the synthesis, see: Piłakowska-Pietras et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995); Rospenk et al. (1989).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810022270/ds2034sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810022270/ds2034Isup2.hkl
A title compound was synthesized according to method given by Piłakowska-Pietras et al. (2008) The
was carefully purificated several times. Suitable single crystalwere obtained by slow evaporation of thecompoundsolutionin a chloroform–hexane mixture and kept cold at -5¯C. The crystals of 2-(decanoylamino)ethyldimethylamine-N-oxides appeared unexpectedly taking into account well known problems with the surfactants crystallization.All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.98–0.99 Å. The Uiso values were constrained to be -1.5Uequ (methyl H atoms) and -1.2Uequ (other H atoms). The rotating model group was considered for the methyl group. In the case of N1, the hydrogen atom was located from a difference Fourier map and refined isotropically.
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Table 1. Selected geometric parameters (Å, °). | |
Fig. 2. Table 2. Hydrogen bond parameters (Å, °). |
C14H30N2O2 | Z = 2 |
Mr = 258.40 | F(000) = 288 |
Triclinic, P1 | Dx = 1.127 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.378 (2) Å | Cell parameters from 9030 reflections |
b = 8.113 (4) Å | θ = 3–36° |
c = 17.801 (5) Å | µ = 0.08 mm−1 |
α = 79.55 (4)° | T = 100 K |
β = 86.38 (3)° | Block, colorless |
γ = 86.36 (4)° | 0.23 × 0.19 × 0.08 mm |
V = 761.2 (5) Å3 |
Oxford Diffraction Xcalibur Sapphire2 (large Be window) diffractometer | 2746 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
Graphite monochromator | θmax = 26.5°, θmin = 3.0° |
ω scans | h = −6→6 |
10305 measured reflections | k = −8→10 |
3149 independent reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0535P)2 + 0.1328P] where P = (Fo2 + 2Fc2)/3 |
3149 reflections | (Δ/σ)max = 0.001 |
169 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C14H30N2O2 | γ = 86.36 (4)° |
Mr = 258.40 | V = 761.2 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.378 (2) Å | Mo Kα radiation |
b = 8.113 (4) Å | µ = 0.08 mm−1 |
c = 17.801 (5) Å | T = 100 K |
α = 79.55 (4)° | 0.23 × 0.19 × 0.08 mm |
β = 86.38 (3)° |
Oxford Diffraction Xcalibur Sapphire2 (large Be window) diffractometer | 2746 reflections with I > 2σ(I) |
10305 measured reflections | Rint = 0.018 |
3149 independent reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.33 e Å−3 |
3149 reflections | Δρmin = −0.16 e Å−3 |
169 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.14655 (12) | 0.29531 (8) | 0.63607 (4) | 0.01841 (17) | |
O2 | 0.61547 (12) | 0.19768 (8) | 0.42458 (4) | 0.01908 (17) | |
N1 | −0.00050 (14) | 0.15787 (9) | 0.61997 (4) | 0.01399 (18) | |
N2 | 0.31670 (14) | 0.39834 (10) | 0.44253 (4) | 0.01548 (18) | |
C1 | 0.11161 (17) | 0.19110 (11) | 0.53929 (5) | 0.0149 (2) | |
H1A | −0.0245 | 0.2133 | 0.5033 | 0.018* | |
H1B | 0.2102 | 0.0895 | 0.5291 | 0.018* | |
C2 | 0.27914 (17) | 0.33925 (11) | 0.52434 (5) | 0.01533 (19) | |
H2A | 0.2015 | 0.4313 | 0.5490 | 0.018* | |
H2B | 0.4422 | 0.3047 | 0.5468 | 0.018* | |
C3 | 0.48478 (16) | 0.32380 (11) | 0.39906 (5) | 0.01460 (19) | |
C4 | 0.49927 (17) | 0.40400 (12) | 0.31534 (5) | 0.0169 (2) | |
H4A | 0.4090 | 0.5154 | 0.3094 | 0.020* | |
H4B | 0.4129 | 0.3340 | 0.2861 | 0.020* | |
C5 | 0.76504 (17) | 0.42604 (12) | 0.28085 (5) | 0.0175 (2) | |
H5A | 0.8587 | 0.4857 | 0.3128 | 0.021* | |
H5B | 0.8504 | 0.3144 | 0.2805 | 0.021* | |
C6 | 0.76453 (18) | 0.52507 (12) | 0.19949 (5) | 0.0187 (2) | |
H6A | 0.6695 | 0.6335 | 0.2000 | 0.022* | |
H6B | 0.6765 | 0.4620 | 0.1675 | 0.022* | |
C7 | 1.02383 (18) | 0.55974 (13) | 0.16275 (6) | 0.0210 (2) | |
H7A | 1.1189 | 0.4515 | 0.1617 | 0.025* | |
H7B | 1.1125 | 0.6227 | 0.1946 | 0.025* | |
C8 | 1.01841 (18) | 0.65973 (13) | 0.08150 (5) | 0.0217 (2) | |
H8A | 0.9321 | 0.5957 | 0.0496 | 0.026* | |
H8B | 0.9202 | 0.7668 | 0.0825 | 0.026* | |
C9 | 1.27600 (19) | 0.69820 (13) | 0.04450 (6) | 0.0218 (2) | |
H9A | 1.3607 | 0.7643 | 0.0759 | 0.026* | |
H9B | 1.3753 | 0.5911 | 0.0446 | 0.026* | |
C10 | 1.27329 (19) | 0.79467 (13) | −0.03721 (6) | 0.0218 (2) | |
H10A | 1.1736 | 0.9017 | −0.0377 | 0.026* | |
H10B | 1.1907 | 0.7284 | −0.0690 | 0.026* | |
C11 | 1.5337 (2) | 0.83259 (13) | −0.07251 (6) | 0.0246 (2) | |
H11A | 1.6154 | 0.8998 | −0.0409 | 0.030* | |
H11B | 1.6338 | 0.7256 | −0.0714 | 0.030* | |
C12 | 1.5335 (2) | 0.92734 (15) | −0.15446 (6) | 0.0327 (3) | |
H12A | 1.7055 | 0.9478 | −0.1738 | 0.049* | |
H12B | 1.4383 | 1.0348 | −0.1559 | 0.049* | |
H12C | 1.4566 | 0.8605 | −0.1865 | 0.049* | |
C13 | 0.19656 (17) | 0.11555 (12) | 0.67652 (5) | 0.0181 (2) | |
H13A | 0.1186 | 0.0964 | 0.7284 | 0.027* | |
H13B | 0.3077 | 0.2087 | 0.6709 | 0.027* | |
H13C | 0.2931 | 0.0138 | 0.6675 | 0.027* | |
C14 | −0.15989 (17) | 0.01185 (11) | 0.62702 (5) | 0.0180 (2) | |
H14A | −0.2401 | −0.0103 | 0.6786 | 0.027* | |
H14B | −0.0565 | −0.0872 | 0.6179 | 0.027* | |
H14C | −0.2881 | 0.0369 | 0.5892 | 0.027* | |
H2 | 0.246 (2) | 0.4950 (17) | 0.4221 (7) | 0.027 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0201 (3) | 0.0152 (3) | 0.0181 (3) | 0.0071 (3) | 0.0033 (3) | −0.0022 (3) |
O2 | 0.0176 (3) | 0.0169 (3) | 0.0207 (4) | 0.0037 (3) | 0.0009 (3) | −0.0003 (3) |
N1 | 0.0136 (4) | 0.0137 (4) | 0.0135 (4) | 0.0021 (3) | 0.0010 (3) | −0.0008 (3) |
N2 | 0.0151 (4) | 0.0140 (4) | 0.0154 (4) | 0.0010 (3) | 0.0015 (3) | 0.0013 (3) |
C1 | 0.0156 (4) | 0.0163 (4) | 0.0119 (4) | −0.0004 (3) | 0.0012 (3) | −0.0013 (3) |
C2 | 0.0149 (4) | 0.0163 (4) | 0.0139 (4) | −0.0006 (3) | 0.0010 (3) | −0.0007 (3) |
C3 | 0.0124 (4) | 0.0136 (4) | 0.0174 (4) | −0.0024 (3) | 0.0002 (3) | −0.0017 (3) |
C4 | 0.0153 (4) | 0.0182 (5) | 0.0160 (5) | 0.0009 (3) | 0.0010 (3) | −0.0015 (3) |
C5 | 0.0158 (4) | 0.0186 (5) | 0.0163 (5) | 0.0011 (3) | 0.0026 (3) | −0.0002 (4) |
C6 | 0.0180 (5) | 0.0206 (5) | 0.0159 (5) | −0.0002 (4) | 0.0019 (4) | −0.0005 (4) |
C7 | 0.0189 (5) | 0.0248 (5) | 0.0170 (5) | −0.0003 (4) | 0.0024 (4) | 0.0012 (4) |
C8 | 0.0209 (5) | 0.0260 (5) | 0.0161 (5) | −0.0018 (4) | 0.0018 (4) | 0.0013 (4) |
C9 | 0.0217 (5) | 0.0244 (5) | 0.0171 (5) | −0.0020 (4) | 0.0021 (4) | 0.0012 (4) |
C10 | 0.0239 (5) | 0.0236 (5) | 0.0165 (5) | −0.0029 (4) | 0.0015 (4) | 0.0001 (4) |
C11 | 0.0267 (5) | 0.0266 (5) | 0.0183 (5) | −0.0032 (4) | 0.0038 (4) | 0.0007 (4) |
C12 | 0.0408 (7) | 0.0354 (6) | 0.0193 (5) | −0.0086 (5) | 0.0057 (5) | 0.0016 (4) |
C13 | 0.0177 (4) | 0.0208 (5) | 0.0145 (4) | 0.0018 (4) | −0.0030 (3) | 0.0001 (4) |
C14 | 0.0157 (4) | 0.0168 (5) | 0.0201 (5) | −0.0021 (3) | 0.0027 (4) | −0.0008 (4) |
O1—N1 | 1.385 (2) | C5—H5A | 0.9900 |
O2—C3 | 1.237 (2) | C5—H5B | 0.9900 |
N1—C1 | 1.506 (2) | C6—H6A | 0.9900 |
N1—C13 | 1.489 (2) | C6—H6B | 0.9900 |
N1—C14 | 1.489 (2) | C7—H7A | 0.9900 |
N2—C2 | 1.454 (2) | C7—H7B | 0.9900 |
N2—C3 | 1.340 (2) | C8—H8A | 0.9900 |
N2—H2 | 0.87 (2) | C8—H8B | 0.9900 |
C1—C2 | 1.523 (2) | C9—H9A | 0.9900 |
C3—C4 | 1.514 (2) | C9—H9B | 0.9900 |
C4—C5 | 1.528 (2) | C10—H10A | 0.9900 |
C5—C6 | 1.523 (2) | C10—H10B | 0.9900 |
C6—C7 | 1.524 (2) | C11—H11A | 0.9900 |
C7—C8 | 1.525 (2) | C11—H11B | 0.9900 |
C8—C9 | 1.522 (2) | C12—H12A | 0.9800 |
C9—C10 | 1.522 (2) | C12—H12B | 0.9800 |
C10—C11 | 1.524 (2) | C12—H12C | 0.9800 |
C11—C12 | 1.520 (2) | C13—H13A | 0.9800 |
C1—H1A | 0.9900 | C13—H13B | 0.9800 |
C1—H1B | 0.9900 | C13—H13C | 0.9800 |
C2—H2A | 0.9900 | C14—H14A | 0.9800 |
C2—H2B | 0.9900 | C14—H14B | 0.9800 |
C4—H4A | 0.9900 | C14—H14C | 0.9800 |
C4—H4B | 0.9900 | ||
O1—N1—C1 | 111.04 (7) | C7—C6—H6B | 109.00 |
O1—N1—C13 | 109.25 (7) | H6A—C6—H6B | 108.00 |
O1—N1—C14 | 108.99 (7) | C6—C7—H7A | 109.00 |
C1—N1—C13 | 111.29 (7) | C6—C7—H7B | 109.00 |
C1—N1—C14 | 107.63 (7) | C8—C7—H7A | 109.00 |
C13—N1—C14 | 108.58 (8) | C8—C7—H7B | 109.00 |
C2—N2—C3 | 122.22 (8) | H7A—C7—H7B | 108.00 |
C3—N2—H2 | 117.9 (8) | C7—C8—H8A | 109.00 |
C2—N2—H2 | 119.1 (8) | C7—C8—H8B | 109.00 |
N1—C1—C2 | 112.89 (8) | C9—C8—H8A | 109.00 |
N2—C2—C1 | 110.07 (8) | C9—C8—H8B | 109.00 |
O2—C3—N2 | 123.01 (9) | H8A—C8—H8B | 108.00 |
O2—C3—C4 | 122.25 (9) | C8—C9—H9A | 109.00 |
N2—C3—C4 | 114.73 (8) | C8—C9—H9B | 109.00 |
C3—C4—C5 | 114.08 (8) | C10—C9—H9A | 109.00 |
C4—C5—C6 | 110.99 (8) | C10—C9—H9B | 109.00 |
C5—C6—C7 | 113.98 (8) | H9A—C9—H9B | 108.00 |
C6—C7—C8 | 112.97 (8) | C9—C10—H10A | 109.00 |
C7—C8—C9 | 113.64 (8) | C9—C10—H10B | 109.00 |
C8—C9—C10 | 114.14 (9) | C11—C10—H10A | 109.00 |
C9—C10—C11 | 112.91 (8) | C11—C10—H10B | 109.00 |
C10—C11—C12 | 113.41 (9) | H10A—C10—H10B | 108.00 |
N1—C1—H1A | 109.00 | C10—C11—H11A | 109.00 |
N1—C1—H1B | 109.00 | C10—C11—H11B | 109.00 |
C2—C1—H1A | 109.00 | C12—C11—H11A | 109.00 |
C2—C1—H1B | 109.00 | C12—C11—H11B | 109.00 |
H1A—C1—H1B | 108.00 | H11A—C11—H11B | 108.00 |
N2—C2—H2A | 110.00 | C11—C12—H12A | 109.00 |
N2—C2—H2B | 110.00 | C11—C12—H12B | 109.00 |
C1—C2—H2A | 110.00 | C11—C12—H12C | 109.00 |
C1—C2—H2B | 110.00 | H12A—C12—H12B | 110.00 |
H2A—C2—H2B | 108.00 | H12A—C12—H12C | 109.00 |
C3—C4—H4A | 109.00 | H12B—C12—H12C | 109.00 |
C3—C4—H4B | 109.00 | N1—C13—H13A | 109.00 |
C5—C4—H4A | 109.00 | N1—C13—H13B | 109.00 |
C5—C4—H4B | 109.00 | N1—C13—H13C | 110.00 |
H4A—C4—H4B | 108.00 | H13A—C13—H13B | 109.00 |
C4—C5—H5A | 109.00 | H13A—C13—H13C | 109.00 |
C4—C5—H5B | 109.00 | H13B—C13—H13C | 109.00 |
C6—C5—H5A | 109.00 | N1—C14—H14A | 109.00 |
C6—C5—H5B | 109.00 | N1—C14—H14B | 109.00 |
H5A—C5—H5B | 108.00 | N1—C14—H14C | 109.00 |
C5—C6—H6A | 109.00 | H14A—C14—H14B | 110.00 |
C5—C6—H6B | 109.00 | H14A—C14—H14C | 109.00 |
C7—C6—H6A | 109.00 | H14B—C14—H14C | 109.00 |
O1—N1—C1—C2 | 60.52 (9) | N2—C3—C4—C5 | 135.19 (9) |
C13—N1—C1—C2 | −61.41 (9) | C3—C4—C5—C6 | −173.49 (8) |
C14—N1—C1—C2 | 179.74 (8) | C4—C5—C6—C7 | 177.04 (8) |
C3—N2—C2—C1 | −81.38 (10) | C5—C6—C7—C8 | −179.74 (9) |
C2—N2—C3—O2 | 1.92 (13) | C6—C7—C8—C9 | 178.94 (9) |
C2—N2—C3—C4 | −179.36 (8) | C7—C8—C9—C10 | 178.76 (9) |
N1—C1—C2—N2 | −161.95 (8) | C8—C9—C10—C11 | 179.52 (9) |
O2—C3—C4—C5 | −46.08 (12) | C9—C10—C11—C12 | 179.38 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.87 (2) | 1.89 (2) | 2.753 (2) | 168.9 (2) |
C1—H1A···O2ii | 0.99 | 2.48 | 3.453 (2) | 166 |
C1—H1B···O2iii | 0.99 | 2.47 | 3.363 (2) | 150 |
C4—H4A···O1i | 0.99 | 2.32 | 3.204 (2) | 148 |
C13—H13C···O2iii | 0.98 | 2.58 | 3.438 (2) | 146 |
C14—H14B···O2iii | 0.98 | 2.60 | 3.449 (2) | 145 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H30N2O2 |
Mr | 258.40 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 5.378 (2), 8.113 (4), 17.801 (5) |
α, β, γ (°) | 79.55 (4), 86.38 (3), 86.36 (4) |
V (Å3) | 761.2 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.23 × 0.19 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire2 (large Be window) diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10305, 3149, 2746 |
Rint | 0.018 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.094, 1.06 |
No. of reflections | 3149 |
No. of parameters | 169 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.16 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXTL (Sheldrick, 2008).
O1—N1 | 1.385 (2) | N1—C14 | 1.489 (2) |
O2—C3 | 1.237 (2) | N2—C2 | 1.454 (2) |
N1—C1 | 1.506 (2) | N2—C3 | 1.340 (2) |
N1—C13 | 1.489 (2) | ||
O1—N1—C1 | 111.04 (7) | C2—N2—C3 | 122.22 (8) |
O1—N1—C13 | 109.25 (7) | N1—C1—C2 | 112.89 (8) |
O1—N1—C14 | 108.99 (7) | N2—C2—C1 | 110.07 (8) |
C1—N1—C13 | 111.29 (7) | O2—C3—N2 | 123.01 (9) |
C1—N1—C14 | 107.63 (7) | O2—C3—C4 | 122.25 (9) |
C13—N1—C14 | 108.58 (8) | N2—C3—C4 | 114.73 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.87 (2) | 1.89 (2) | 2.753 (2) | 168.9 (2) |
C1—H1A···O2ii | 0.9900 | 2.4800 | 3.453 (2) | 166.00 |
C1—H1B···O2iii | 0.9900 | 2.4700 | 3.363 (2) | 150.00 |
C4—H4A···O1i | 0.9900 | 2.3200 | 3.204 (2) | 148.00 |
C13—H13C···O2iii | 0.9800 | 2.5800 | 3.438 (2) | 146.00 |
C14—H14B···O2iii | 0.9800 | 2.6000 | 3.449 (2) | 145.00 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y, −z+1. |
Acknowledgements
This work was supported by the University of Wrocław. I am grateful to Dr Lucjan Jerzykiewicz, Department of Chemistry, University of Wrocław for valuable discussion of the results and Professor Kazimiera A. Wilk, Department of Chemistry, Wrocław University of Technology, for providing the surfactant.
References
Belicchi-Ferrari, M., Bisceglie, F., Pelosi, G., Pinelli, S. & Tarasconi, P. (2007). Polyhedron, 26, 5150–5161. Web of Science CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boese, R., Blaeser, D. & Weiss, H.-C. (1999). Angew. Chem. Int. Ed. 38, 988–992. CrossRef CAS Google Scholar
Jeffrey, G. A. & Maluszynska, H. (1989). Acta Cryst. B45, 447–452. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kato, M. & Ikemori, M. (2003). Acta Cryst. C59, m25–m26. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Katrusiak, A., Ratajczak-Sitarz, M. & Kałuski, Z. (1987). Acta Cryst. C43, 2386–2389. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kemmitt, T., Gainsford, G. J., Steel, P. J. & Wikaira, J. (2002). Acta Cryst. E58, o851–o852. Web of Science CSD CrossRef IUCr Journals Google Scholar
Low, J. N., Cook, A., Imrie, C. T. & Wardell, J. L. (1999). Acta Cryst. C55, IUC9900123,1999 Google Scholar
Maia, E. R., Peguy, A. & Perez, S. (1984). Can. J. Chem. 62, 6–10. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Palatinus, L. & Damay, F. (2009). Acta Cryst. B65, 784–786. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Piłakowska-Pietras, A., Baran, D., Krasowska, A. & Piasecki, A. (2008). J. Surfact. Deterg. 11 187–194 Google Scholar
Rospenk, M., Koll, A., Glowiak, T. & Sobczyk, L. (1989). J. Mol. Struct. 195, 33–38. CSD CrossRef CAS Web of Science Google Scholar
Sauer, J. D., Elnagar, H. Y. & Fronczek, F. R. (2003). Acta Cryst. C59, o62–o64. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ulrich, G., Klaska, K. H., Jarchow, O. H., Schmalle, H. W., König, W. A., Heitsch, H., Rathmann, R., Hausen, B. M. & Schulz, K.-H. (1990). Acta Cryst. C46, 1715–1718. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Surfactants are amphiphilic molecules composed by at least two parts, one of them is polar or hydrophilic and the other one nonpolar or hydrophobic. A special group of surface active amine oxides are amidoamine oxides based on fatty monocarboxylic acids and diamines, particularly N,N-dimethylethylenediamine and N,N-dimethyl-1,3-propanediamine. These surfactants are typically employed in hair and body care, cleaning and shampoo formulations as foaming agents, wetting agents, thickeners and conditioners They are low or nontoxic to humans and higherorganisms but at the same time exhibit an antimicrobial activity.
The crystal and molecular structure of typical N-oxide derivatives were previously determined for 17-oxosparteine N(l)-oxide hydrochloride (A. Katrusiak, et al.) and 4-methylpyridine-N-oxide (L.Palatinus et al.). The crystal and molecular structure recognized for N-oxide surfactant, N,N-dimethyl-n-tetradecylamine oxide (Fronczek et al. ), in some degree is similar to the structure of our compound. In general, N-oxide derivatives and especially N-oxide surfactants are known as very difficult for crystallization, so the crystal structure solution for 2-(decanoylamino)ethyldimethylamine-N-oxide presented in this report is a very rare case.
The title compound consists of a hydrophobic alkyl chain and a lipophilic moiety represented by amide and N-oxide groups bridged by ethyl group (Figure 1). The planar nine carbon side adopt fully extended conformations and is twisted 45.6 (1)° from the plane of adjacent amide moiety. The torsion angle N1—C1—C2—N2 of -161.95 (8)° shows that this part takes an antiperiplanar conformation. The bond lengths and angles of nonyl chain Low et al. (1999) and amide group Belicchi-Ferrari et al. (2007) are within the normal ranges and comparable to the previously reported structures. The N—O bond length of is slightly shorter than the corresponding distances in tertiary acyclic amine oxides Boese et al. (1999).
The crystal structures is composed of the alternated hydrophilic and hydrophobic layers (Figure 1). The components in the hydrophilic parts are linked to each other via N—H···O bonds of R2,2(10) ring motifs Ulrich et al. (1990) and the weak C—H···O interactions (Table 2), whereas in the hydrophobic regions they interact through van der Waals contacts.