organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1671-o1672

N-(3-Nitro­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 8 June 2010; accepted 10 June 2010; online 16 June 2010)

In the title compound, C10H8N2O5, the mol­ecule is slightly distorted from planarity. The mol­ecular structure is stabilized by two intra­molecular hydrogen bonds. The first is a short O—H⋯O hydrogen bond (H⋯O distance = 1.57 Å) within the maleamic acid unit and the second is a C—H⋯O hydrogen bond (H⋯O distance = 2.24 Å) which connects the amide group with the benzene ring. The nitro group is twisted by 6.2 (2)° out of the plane of the benzene ring. The crystal structure manifests a variety of hydrogen bonding. The packing is dominated by a strong inter­molecular N—H⋯O inter­action which links the mol­ecules into chains running along the b axis. The chains within a plane are further assembled by three additional types of inter­molecular C—H⋯O hydrogen bonds to form a sheet parallel to the ([\overline{1}]01) plane.

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda, Tokarčík, Kožíšek et al. (2010[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o51.]); Gowda et al. (2010a[Gowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010a). Acta Cryst. E66, o1554.],b[Gowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010b). Acta Cryst. E66, o1643.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296-o1297.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2O5

  • Mr = 236.18

  • Monoclinic, P 21 /c

  • a = 7.9965 (2) Å

  • b = 14.0253 (3) Å

  • c = 9.1026 (2) Å

  • β = 100.147 (3)°

  • V = 1004.92 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 295 K

  • 0.57 × 0.33 × 0.28 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.926, Tmax = 0.971

  • 17136 measured reflections

  • 1793 independent reflections

  • 1544 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.08

  • 1793 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.93 1.57 2.4978 (13) 176
C6—H6⋯O1 0.93 2.24 2.8302 (15) 121
N1—H1N⋯O3i 0.86 2.05 2.8929 (14) 167
C10—H10⋯O3i 0.93 2.51 3.2781 (17) 140
C3—H3⋯O5ii 0.93 2.57 3.2959 (17) 135
C9—H9⋯O4iii 0.93 2.51 3.1793 (17) 129
C8—H8⋯O2iii 0.93 2.57 3.4877 (17) 170
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z+1; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present study, as a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically significant amides (Gowda et al., 2010a,b,c; Prasad et al., 2002), the crystal structure of N-(3-nitrophenyl)maleamic acid (I) has been determined (Fig. 1). The conformation of the N—H in the amide segment is anti to the C=O bond and is also anti to the meta-nitro group in the phenyl ring.

In the maleamic acid moiety, the amide C=O bond is anti to the adjacent C—H bond, while the carboxyl C=O bond is syn to the adjacent C—H bond. The observed rare anti conformation of the C=O and O—H bonds of the acid group is similar to that obsrved in N-(2-methylphenyl)-maleamic acid (Gowda et al., 2010b), N-(3-chlorophenyl)-maleamic acid (Gowda et al., 2010c) and N-(3,5-dichlorophenyl)- maleamic acid (Gowda et al., 2010a).

The molecule in (I) is slightly distorted from planarity as indicated by the dihedral angle of 4.5 (1)° between the least squares planes of the maleamic acid unit (r.m.s. deviation of 0.050 Å) and the phenyl ring. The molecular structure (Fig. 1) is stabilized by two intramolecular hydrogen bonds (Table 1). The first is a short O–H···O hydrogen bond ((H···O distance of 1.57 Å) within the maleamic acid unit; the second one is a C–H···O hydrogen bond (H···O distance of 2.24 Å) which connects the amide group with the phenyl ring. The nitro group - known to be a strong electron- withdrawing substituent - opens up the ipso C–C–C angle and narrows the two adjacent intracyclic angles. This fact is evident from the intracyclic bond angles C6–C7–C8, C5–C6–C7 and C7–C8–C9 of 123.99 (12)°, 117.49 (12)° and 117.64 (12)° respectively. The nitro group is twisted 6.2 (2)° out of the plane of the phenyl ring.

The crystal structure (Fig. 2) manifests a variety of hydrogen bonding. The packing is dominated by a strong intermolecular N–H···O interaction (H···O distance of 2.05 Å) which links the molecules into the chains running along the b axis. The chains within a plane are further assembled by additional three types of intermolecular C–H···O hydrogen bonds to form a sheet parallel to the (-1 0 1) plane (Bernstein et al., 1995).

Related literature top

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda, Tokarčík, Kožíšek et al. (2010); Gowda et al. (2010a,b); Prasad et al. (2002). For modes of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 3-nitroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3-nitroaniline. The resultant solid N-(3-nitrophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra.

Prism like light brown single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

All H atoms were visible in difference maps. The positions of carboxyl and amide H atoms were tested in preliminary refinement using a soft restraints on the O–H and N–H distances. Finally, all H atoms were positioned with idealized geometry using a riding model with the distances C–H = 0.93 Å, N–H = 0.86 Å and O–H = 0.93 Å. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Two short intramolecular bonds are indicated by dashed lines. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of (I) viewed down the a axis and showing a two-dimensional network of molecules linked by several types of intermolecular N–H···O and C–H···O hydrogen bonds (dashed lines). Symmetry codes (i): -x + 1, y - 1/2, -z + 3/2; (ii): x + 1, y, z + 1; (iii): -x, y - 1/2, -z + 1/2.
N-(3-Nitrophenyl)maleamic acid top
Crystal data top
C10H8N2O5F(000) = 488
Mr = 236.18Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10218 reflections
a = 7.9965 (2) Åθ = 2.3–29.4°
b = 14.0253 (3) ŵ = 0.13 mm1
c = 9.1026 (2) ÅT = 295 K
β = 100.147 (3)°Prism, light brown
V = 1004.92 (4) Å30.57 × 0.33 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1793 independent reflections
Graphite monochromator1544 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.023
ω scansθmax = 25.1°, θmin = 2.6°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 99
Tmin = 0.926, Tmax = 0.971k = 1616
17136 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.1002P]
where P = (Fo2 + 2Fc2)/3
1793 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H8N2O5V = 1004.92 (4) Å3
Mr = 236.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9965 (2) ŵ = 0.13 mm1
b = 14.0253 (3) ÅT = 295 K
c = 9.1026 (2) Å0.57 × 0.33 × 0.28 mm
β = 100.147 (3)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1793 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
1544 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.971Rint = 0.023
17136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
1793 reflectionsΔρmin = 0.19 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30465 (16)0.37499 (8)0.57539 (15)0.0361 (3)
C20.44044 (17)0.38197 (9)0.70806 (15)0.0406 (3)
H20.47550.32450.75430.049*
C30.51952 (16)0.45956 (10)0.77048 (15)0.0418 (3)
H30.59910.44710.85590.05*
C40.50454 (17)0.56183 (10)0.72945 (15)0.0421 (3)
C50.13141 (15)0.25342 (9)0.41799 (14)0.0342 (3)
C60.02666 (15)0.31456 (9)0.32224 (14)0.0365 (3)
H60.03780.38040.33120.044*
C70.09413 (16)0.27380 (9)0.21369 (13)0.0357 (3)
C80.11652 (17)0.17731 (9)0.19464 (16)0.0422 (3)
H80.19950.15280.11960.051*
C90.01165 (19)0.11799 (9)0.29057 (17)0.0476 (4)
H90.02360.05220.28060.057*
C100.11119 (17)0.15542 (9)0.40145 (15)0.0417 (3)
H100.1810.11460.46560.05*
N10.25906 (14)0.28534 (7)0.53544 (12)0.0389 (3)
H1N0.31510.24130.58850.047*
N20.20553 (14)0.33698 (8)0.11149 (12)0.0442 (3)
O10.23643 (13)0.44532 (6)0.50694 (11)0.0487 (3)
O20.38964 (13)0.59058 (7)0.61814 (12)0.0547 (3)
H2A0.32920.53830.57390.082*
O30.60038 (15)0.61868 (8)0.80038 (13)0.0649 (3)
O40.17942 (14)0.42253 (7)0.11665 (12)0.0596 (3)
O50.32118 (15)0.30062 (8)0.02350 (14)0.0752 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0377 (7)0.0306 (7)0.0363 (7)0.0005 (5)0.0039 (6)0.0012 (5)
C20.0439 (7)0.0332 (7)0.0393 (7)0.0036 (5)0.0078 (6)0.0031 (5)
C30.0418 (7)0.0415 (8)0.0355 (7)0.0014 (5)0.0115 (6)0.0003 (6)
C40.0467 (8)0.0376 (7)0.0381 (7)0.0022 (6)0.0034 (6)0.0044 (6)
C50.0359 (7)0.0313 (7)0.0326 (7)0.0003 (5)0.0018 (5)0.0013 (5)
C60.0406 (7)0.0278 (6)0.0373 (7)0.0016 (5)0.0035 (6)0.0011 (5)
C70.0372 (7)0.0336 (7)0.0334 (7)0.0013 (5)0.0014 (5)0.0014 (5)
C80.0431 (7)0.0354 (7)0.0429 (7)0.0039 (5)0.0069 (6)0.0052 (5)
C90.0559 (9)0.0260 (7)0.0547 (9)0.0017 (6)0.0071 (7)0.0031 (6)
C100.0452 (7)0.0310 (7)0.0441 (7)0.0027 (5)0.0050 (6)0.0023 (6)
N10.0424 (6)0.0290 (5)0.0388 (6)0.0021 (4)0.0106 (5)0.0024 (4)
N20.0475 (7)0.0373 (7)0.0413 (6)0.0004 (5)0.0100 (5)0.0006 (5)
O10.0556 (6)0.0307 (5)0.0493 (6)0.0003 (4)0.0201 (5)0.0031 (4)
O20.0659 (7)0.0326 (6)0.0549 (6)0.0029 (4)0.0190 (5)0.0035 (4)
O30.0759 (8)0.0444 (6)0.0630 (7)0.0147 (5)0.0195 (6)0.0104 (5)
O40.0713 (7)0.0326 (6)0.0637 (7)0.0011 (5)0.0194 (5)0.0051 (5)
O50.0769 (8)0.0490 (7)0.0778 (8)0.0031 (6)0.0463 (7)0.0003 (6)
Geometric parameters (Å, º) top
C1—O11.2406 (15)C6—H60.93
C1—N11.3414 (16)C7—C81.3721 (18)
C1—C21.4782 (19)C7—N21.4670 (16)
C2—C31.3343 (19)C8—C91.378 (2)
C2—H20.93C8—H80.93
C3—C41.4817 (19)C9—C101.3820 (19)
C3—H30.93C9—H90.93
C4—O31.2106 (17)C10—H100.93
C4—O21.3059 (17)N1—H1N0.86
C5—C101.3890 (18)N2—O41.2174 (15)
C5—C61.3925 (17)N2—O51.2231 (15)
C5—N11.4145 (16)O2—H2A0.93
C6—C71.3784 (17)
O1—C1—N1122.32 (12)C8—C7—N2117.68 (11)
O1—C1—C2123.53 (11)C6—C7—N2118.33 (11)
N1—C1—C2114.14 (10)C7—C8—C9117.64 (12)
C3—C2—C1128.80 (12)C7—C8—H8121.2
C3—C2—H2115.6C9—C8—H8121.2
C1—C2—H2115.6C8—C9—C10120.55 (12)
C2—C3—C4132.14 (13)C8—C9—H9119.7
C2—C3—H3113.9C10—C9—H9119.7
C4—C3—H3113.9C9—C10—C5120.61 (12)
O3—C4—O2120.21 (13)C9—C10—H10119.7
O3—C4—C3119.18 (13)C5—C10—H10119.7
O2—C4—C3120.60 (12)C1—N1—C5128.83 (11)
C10—C5—C6119.72 (12)C1—N1—H1N115.6
C10—C5—N1116.73 (11)C5—N1—H1N115.6
C6—C5—N1123.54 (11)O4—N2—O5122.75 (11)
C7—C6—C5117.49 (12)O4—N2—C7119.35 (10)
C7—C6—H6121.3O5—N2—C7117.90 (11)
C5—C6—H6121.3C4—O2—H2A109.5
C8—C7—C6123.99 (12)
O1—C1—C2—C34.7 (2)C8—C9—C10—C50.1 (2)
N1—C1—C2—C3176.01 (13)C6—C5—C10—C90.2 (2)
C1—C2—C3—C41.9 (3)N1—C5—C10—C9179.35 (12)
C2—C3—C4—O3175.18 (15)O1—C1—N1—C51.3 (2)
C2—C3—C4—O24.8 (2)C2—C1—N1—C5177.97 (11)
C10—C5—C6—C70.04 (18)C10—C5—N1—C1179.91 (12)
N1—C5—C6—C7179.15 (11)C6—C5—N1—C11.0 (2)
C5—C6—C7—C80.15 (19)C8—C7—N2—O4173.53 (12)
C5—C6—C7—N2179.87 (11)C6—C7—N2—O46.21 (18)
C6—C7—C8—C90.2 (2)C8—C7—N2—O56.09 (18)
N2—C7—C8—C9179.91 (12)C6—C7—N2—O5174.17 (12)
C7—C8—C9—C100.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.931.572.4978 (13)176
C6—H6···O10.932.242.8302 (15)121
N1—H1N···O3i0.862.052.8929 (14)167
C10—H10···O3i0.932.513.2781 (17)140
C3—H3···O5ii0.932.573.2959 (17)135
C9—H9···O4iii0.932.513.1793 (17)129
C8—H8···O2iii0.932.573.4877 (17)170
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2O5
Mr236.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.9965 (2), 14.0253 (3), 9.1026 (2)
β (°) 100.147 (3)
V3)1004.92 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.57 × 0.33 × 0.28
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.926, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
17136, 1793, 1544
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.08
No. of reflections1793
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.931.572.4978 (13)176
C6—H6···O10.932.242.8302 (15)121
N1—H1N···O3i0.862.052.8929 (14)167
C10—H10···O3i0.932.513.2781 (17)140
C3—H3···O5ii0.932.573.2959 (17)135
C9—H9···O4iii0.932.513.1793 (17)129
C8—H8···O2iii0.932.573.4877 (17)170
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y1/2, z+1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o51.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010a). Acta Cryst. E66, o1554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010b). Acta Cryst. E66, o1643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1671-o1672
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds