organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­phenyl­sulfon­yl)-2,5,7-tri­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 14 June 2010; accepted 19 June 2010; online 26 June 2010)

In the title compound, C17H15FO3S, the 4-fluoro­phenyl ring makes a dihedral angle of 72.67 (5)° with the benzofuran plane. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the crystal structures of related 2,5-dimethyl-3-phenyl­sulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o794.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o850.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15FO3S

  • Mr = 318.35

  • Triclinic, [P \overline 1]

  • a = 8.2851 (2) Å

  • b = 9.3762 (2) Å

  • c = 11.2241 (3) Å

  • α = 70.441 (1)°

  • β = 71.177 (1)°

  • γ = 69.407 (1)°

  • V = 748.07 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.957

  • 13476 measured reflections

  • 3449 independent reflections

  • 3097 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.04

  • 3449 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.98 2.56 3.363 (2) 139
C13—H13⋯O2ii 0.95 2.45 3.365 (2) 160
C17—H17⋯O3iii 0.95 2.50 3.198 (2) 130
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compounds containing a benzofuran moiety show potent pharmacological properties such as antifungal (Aslam et al.., 2006), antitumor and antiviral (Galal et al.., 2009), antimicrobial (Khan et al.., 2005) activities. These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al.. 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2,5-dimethyl-3-phenylsulfonyl-1-benzofuran analogues (Choi et al.., 2008a, b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring makes a dihedral angle of 72.67 (5)° with the benzofuran plane. The crystal packing (Fig. 2) is stabilized by three intermolecular C—H···O hydrogen bonds; the first one between the methyl H atom and the oxygen of the OSO unit, with a C10—H10B···O2i, the second one between the 4-fluorophenyl H atom and the oxygen of the OSO unit, with a C13—H13···O2ii, and the third one between the 4-fluorophenyl H atom and the oxygen of the OSO unit, with a C17—H17···O3iii, respectively (Table 1).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related 2,5-dimethyl-3-phenylsulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a,b).

Experimental top

77% 3-Chloroperoxybenzoic acid (538 mg, 2.4 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)-2,5,7-trimethy-1-benzofuran (343 mg, 1.2 mmol) in dichloromethane (50 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (silica gel, hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 79%, m.p. 414-415 K; Rf = 0.41 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in diisopropyl ether at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, Uiso(H) = 1.2 Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) - x + 1, - y + 2, - z + 1; (iii) - x + 1, - y + 2, - z.]
3-(4-Fluorophenylsulfonyl)-2,5,7-trimethyl-1-benzofuran top
Crystal data top
C17H15FO3SZ = 2
Mr = 318.35F(000) = 332
Triclinic, P1Dx = 1.413 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.2851 (2) ÅCell parameters from 7810 reflections
b = 9.3762 (2) Åθ = 2.4–27.5°
c = 11.2241 (3) ŵ = 0.24 mm1
α = 70.441 (1)°T = 173 K
β = 71.177 (1)°Block, colourless
γ = 69.407 (1)°0.23 × 0.21 × 0.19 mm
V = 748.07 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3449 independent reflections
Radiation source: rotating anode3097 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 2.0°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.948, Tmax = 0.957l = 1414
13476 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.105H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.3586P]
where P = (Fo2 + 2Fc2)/3
3449 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C17H15FO3Sγ = 69.407 (1)°
Mr = 318.35V = 748.07 (3) Å3
Triclinic, P1Z = 2
a = 8.2851 (2) ÅMo Kα radiation
b = 9.3762 (2) ŵ = 0.24 mm1
c = 11.2241 (3) ÅT = 173 K
α = 70.441 (1)°0.23 × 0.21 × 0.19 mm
β = 71.177 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3449 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3097 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.957Rint = 0.026
13476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3449 reflectionsΔρmin = 0.38 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.48710 (5)0.89687 (4)0.29416 (3)0.02449 (12)
F0.98555 (17)1.27225 (14)0.00227 (13)0.0583 (3)
O10.75715 (15)0.45344 (12)0.32852 (11)0.0300 (2)
O20.39991 (14)0.94794 (13)0.41216 (10)0.0304 (2)
O30.38323 (15)0.91207 (14)0.20728 (11)0.0328 (3)
C10.60789 (19)0.70192 (17)0.33737 (14)0.0254 (3)
C20.67369 (19)0.62533 (16)0.45489 (14)0.0242 (3)
C30.6664 (2)0.66868 (17)0.56438 (14)0.0271 (3)
H30.60380.77180.57500.033*
C40.7533 (2)0.55674 (19)0.65748 (15)0.0299 (3)
C50.8449 (2)0.40466 (18)0.63998 (15)0.0315 (3)
H50.90440.33090.70460.038*
C60.8531 (2)0.35680 (17)0.53365 (15)0.0292 (3)
C70.76463 (19)0.47267 (17)0.44329 (14)0.0262 (3)
C80.6618 (2)0.59417 (18)0.26597 (15)0.0278 (3)
C90.7515 (3)0.5984 (2)0.77707 (17)0.0415 (4)
H9A0.70240.71230.76670.062*
H9B0.87280.56660.78830.062*
H9C0.67820.54340.85370.062*
C100.9501 (2)0.19388 (19)0.51553 (18)0.0373 (4)
H10A1.06030.19670.44850.056*
H10B0.87530.15510.48860.056*
H10C0.97790.12360.59770.056*
C110.6407 (3)0.5985 (2)0.13829 (17)0.0382 (4)
H11A0.75760.57740.07860.057*
H11B0.56790.70270.10220.057*
H11C0.58290.51830.14980.057*
C120.64455 (19)1.00421 (17)0.20516 (14)0.0251 (3)
C130.7224 (2)1.05360 (19)0.27106 (15)0.0309 (3)
H130.69591.02570.36340.037*
C140.8396 (2)1.1442 (2)0.20033 (18)0.0381 (4)
H140.89571.17870.24290.046*
C150.8722 (2)1.1827 (2)0.06712 (18)0.0386 (4)
C160.7969 (2)1.1347 (2)0.00004 (17)0.0400 (4)
H160.82331.16380.09240.048*
C170.6816 (2)1.0430 (2)0.07044 (15)0.0333 (3)
H170.62831.00680.02700.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.02610 (19)0.02512 (19)0.02153 (19)0.00398 (14)0.00822 (13)0.00554 (13)
F0.0579 (7)0.0490 (7)0.0633 (8)0.0316 (6)0.0054 (6)0.0012 (6)
O10.0343 (6)0.0252 (5)0.0327 (6)0.0066 (4)0.0092 (5)0.0100 (4)
O20.0309 (6)0.0314 (6)0.0254 (5)0.0035 (4)0.0054 (4)0.0092 (4)
O30.0340 (6)0.0364 (6)0.0301 (6)0.0077 (5)0.0148 (5)0.0058 (5)
C10.0276 (7)0.0249 (7)0.0237 (7)0.0065 (6)0.0074 (6)0.0056 (5)
C20.0247 (7)0.0234 (7)0.0237 (7)0.0078 (5)0.0057 (5)0.0034 (5)
C30.0296 (7)0.0255 (7)0.0252 (7)0.0068 (6)0.0066 (6)0.0055 (6)
C40.0329 (8)0.0324 (8)0.0235 (7)0.0116 (6)0.0075 (6)0.0022 (6)
C50.0325 (8)0.0285 (8)0.0289 (8)0.0109 (6)0.0100 (6)0.0040 (6)
C60.0277 (7)0.0221 (7)0.0346 (8)0.0089 (6)0.0072 (6)0.0011 (6)
C70.0269 (7)0.0246 (7)0.0278 (7)0.0097 (6)0.0052 (6)0.0057 (6)
C80.0292 (7)0.0273 (7)0.0286 (7)0.0079 (6)0.0078 (6)0.0080 (6)
C90.0522 (11)0.0445 (10)0.0285 (8)0.0108 (8)0.0172 (8)0.0051 (7)
C100.0373 (9)0.0231 (7)0.0476 (10)0.0058 (6)0.0124 (7)0.0041 (7)
C110.0475 (10)0.0396 (9)0.0335 (9)0.0092 (8)0.0130 (7)0.0157 (7)
C120.0280 (7)0.0223 (7)0.0228 (7)0.0032 (5)0.0076 (5)0.0050 (5)
C130.0356 (8)0.0306 (8)0.0267 (7)0.0066 (6)0.0091 (6)0.0084 (6)
C140.0407 (9)0.0346 (9)0.0448 (10)0.0121 (7)0.0116 (8)0.0137 (7)
C150.0380 (9)0.0279 (8)0.0437 (10)0.0123 (7)0.0055 (7)0.0015 (7)
C160.0442 (10)0.0428 (10)0.0263 (8)0.0140 (8)0.0071 (7)0.0010 (7)
C170.0381 (8)0.0368 (8)0.0248 (7)0.0100 (7)0.0109 (6)0.0042 (6)
Geometric parameters (Å, º) top
S—O21.4384 (11)C9—H9A0.9800
S—O31.4402 (11)C9—H9B0.9800
S—C11.7351 (15)C9—H9C0.9800
S—C121.7669 (15)C10—H10A0.9800
F—C151.3561 (19)C10—H10B0.9800
O1—C81.3647 (19)C10—H10C0.9800
O1—C71.3823 (18)C11—H11A0.9800
C1—C81.362 (2)C11—H11B0.9800
C1—C21.452 (2)C11—H11C0.9800
C2—C71.392 (2)C12—C171.387 (2)
C2—C31.396 (2)C12—C131.388 (2)
C3—C41.390 (2)C13—C141.387 (2)
C3—H30.9500C13—H130.9500
C4—C51.406 (2)C14—C151.373 (3)
C4—C91.513 (2)C14—H140.9500
C5—C61.384 (2)C15—C161.374 (3)
C5—H50.9500C16—C171.383 (2)
C6—C71.389 (2)C16—H160.9500
C6—C101.503 (2)C17—H170.9500
C8—C111.484 (2)
O2—S—O3119.38 (7)C4—C9—H9C109.5
O2—S—C1107.27 (7)H9A—C9—H9C109.5
O3—S—C1109.18 (7)H9B—C9—H9C109.5
O2—S—C12107.00 (7)C6—C10—H10A109.5
O3—S—C12107.22 (7)C6—C10—H10B109.5
C1—S—C12106.04 (7)H10A—C10—H10B109.5
C8—O1—C7107.03 (11)C6—C10—H10C109.5
C8—C1—C2107.63 (13)H10A—C10—H10C109.5
C8—C1—S126.31 (12)H10B—C10—H10C109.5
C2—C1—S126.04 (11)C8—C11—H11A109.5
C7—C2—C3119.44 (13)C8—C11—H11B109.5
C7—C2—C1104.30 (13)H11A—C11—H11B109.5
C3—C2—C1136.26 (14)C8—C11—H11C109.5
C4—C3—C2118.13 (14)H11A—C11—H11C109.5
C4—C3—H3120.9H11B—C11—H11C109.5
C2—C3—H3120.9C17—C12—C13121.50 (15)
C3—C4—C5120.01 (14)C17—C12—S118.94 (12)
C3—C4—C9120.21 (15)C13—C12—S119.50 (11)
C5—C4—C9119.77 (15)C14—C13—C12119.12 (15)
C6—C5—C4123.49 (14)C14—C13—H13120.4
C6—C5—H5118.3C12—C13—H13120.4
C4—C5—H5118.3C15—C14—C13118.22 (16)
C5—C6—C7114.38 (14)C15—C14—H14120.9
C5—C6—C10123.44 (15)C13—C14—H14120.9
C7—C6—C10122.18 (15)F—C15—C14118.37 (16)
O1—C7—C6124.84 (14)F—C15—C16118.03 (16)
O1—C7—C2110.61 (13)C14—C15—C16123.59 (16)
C6—C7—C2124.53 (14)C15—C16—C17118.18 (16)
C1—C8—O1110.43 (13)C15—C16—H16120.9
C1—C8—C11134.21 (15)C17—C16—H16120.9
O1—C8—C11115.35 (13)C16—C17—C12119.37 (15)
C4—C9—H9A109.5C16—C17—H17120.3
C4—C9—H9B109.5C12—C17—H17120.3
H9A—C9—H9B109.5
O2—S—C1—C8157.19 (13)C1—C2—C7—O10.13 (16)
O3—S—C1—C826.50 (16)C3—C2—C7—C60.8 (2)
C12—S—C1—C888.73 (15)C1—C2—C7—C6178.84 (14)
O2—S—C1—C224.51 (15)C2—C1—C8—O10.16 (17)
O3—S—C1—C2155.21 (12)S—C1—C8—O1178.72 (10)
C12—S—C1—C289.57 (13)C2—C1—C8—C11179.06 (17)
C8—C1—C2—C70.02 (16)S—C1—C8—C110.5 (3)
S—C1—C2—C7178.58 (11)C7—O1—C8—C10.25 (16)
C8—C1—C2—C3179.48 (16)C7—O1—C8—C11179.14 (13)
S—C1—C2—C30.9 (3)O2—S—C12—C17147.39 (12)
C7—C2—C3—C40.8 (2)O3—S—C12—C1718.20 (14)
C1—C2—C3—C4178.62 (15)C1—S—C12—C1798.35 (13)
C2—C3—C4—C50.1 (2)O2—S—C12—C1329.85 (14)
C2—C3—C4—C9179.17 (14)O3—S—C12—C13159.04 (12)
C3—C4—C5—C60.8 (2)C1—S—C12—C1384.41 (13)
C9—C4—C5—C6179.94 (15)C17—C12—C13—C140.2 (2)
C4—C5—C6—C70.9 (2)S—C12—C13—C14176.95 (12)
C4—C5—C6—C10179.56 (15)C12—C13—C14—C150.7 (2)
C8—O1—C7—C6178.73 (14)C13—C14—C15—F179.52 (15)
C8—O1—C7—C20.24 (16)C13—C14—C15—C160.9 (3)
C5—C6—C7—O1178.75 (13)F—C15—C16—C17179.80 (16)
C10—C6—C7—O10.8 (2)C14—C15—C16—C170.2 (3)
C5—C6—C7—C20.1 (2)C15—C16—C17—C120.7 (3)
C10—C6—C7—C2179.66 (14)C13—C12—C17—C160.9 (2)
C3—C2—C7—O1179.73 (12)S—C12—C17—C16176.28 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.982.563.363 (2)139
C13—H13···O2ii0.952.453.365 (2)160
C17—H17···O3iii0.952.503.198 (2)130
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC17H15FO3S
Mr318.35
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.2851 (2), 9.3762 (2), 11.2241 (3)
α, β, γ (°)70.441 (1), 71.177 (1), 69.407 (1)
V3)748.07 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.948, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
13476, 3449, 3097
Rint0.026
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.04
No. of reflections3449
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.982.563.363 (2)138.9
C13—H13···O2ii0.952.453.365 (2)160.3
C17—H17···O3iii0.952.503.198 (2)129.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+2, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds