metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m788-m789

catena-Poly[[[(2-phenyl­acetato-κO)zinc(II)]bis­­[μ-4,4′-(disulfanedi­yl)di­pyridine-κ2N:N′]] monohydrate]

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 5 January 2010; accepted 4 June 2010; online 16 June 2010)

In the title compound, {[Zn(C8H7O2)2(C10H8N2S2)2]·H2O}n, the ZnII atom is coordinated by four N atoms from four 4,4′-(disulfanedi­yl)dipyridine (bpds) ligands and two O atoms from two 2-phenyl­acetate anions in a distorted octa­hedral coordination geometry. The two bpds ligands of the same axial chirality bridge ZnII atoms, generating repeated rhomboidal chains, which are linked by O—H⋯O hydrogen bonds into a ladder structure.

Related literature

For coordination chemistry based on pyridyl donor ligands, see: Biradha et al. (2006[Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169-4179.]); Liu et al. (2008[Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327-2334.]); Hernández-Ahuactzi et al. (2008[Hernández-Ahuactzi, I. F., Höpfl, H., Barba, V., Román-Bravo, P., Zamudio-Rivera, L. S. & Beltrán, H. I. (2008). Eur. J. Inorg. Chem. pp. 2746-2755.]); Ma, Wang, Wang et al. (2009[Ma, L. F., Wang, L. Y., Wang, Y. Y., Du, M. & Wang, J. G. (2009). CrystEngComm, 11, 109-117.]). For bpds compounds, see: Horikoshi & Mochida (2006[Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595-2609.]); Carballo et al. (2008[Carballo, R., Covelo, B., Fernández-Fermida, N., García-Martinez, E., Lago, A. B. & Vázquez-Löpez, E. M. (2008). Cryst. Growth Des. 8, 995-1004.]); Ma, Wang, Hu et al. (2009[Ma, L. F., Wang, L. Y., Hu, J. L., Wang, Y. Y., Batten, S. R. & Wang, J. G. (2009). CrystEngComm, 11, 777-783.]); Horikoshi & Mikuriya (2005[Horikoshi, R. & Mikuriya, M. (2005). Cryst. Growth Des. pp. 223-230.]). For compounds containing phenyl­acetic acid, see: Johnston et al. (2008[Johnston, L. L., Brown, K. A., Martin, D. P. & LaDuca, R. L. (2008). J. Mol. Struct. 882, 80-87.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H7O2)2(C10H8N2S2)2]·H2O

  • Mr = 794.27

  • Triclinic, [P \overline 1]

  • a = 9.851 (2) Å

  • b = 11.130 (2) Å

  • c = 18.319 (4) Å

  • α = 90.38 (3)°

  • β = 98.88 (3)°

  • γ = 115.89 (3)°

  • V = 1779.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 295 K

  • 0.51 × 0.41 × 0.36 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.623, Tmax = 0.701

  • 16701 measured reflections

  • 7859 independent reflections

  • 6036 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.07

  • 7859 reflections

  • 451 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5c⋯O4i 0.81 2.20 2.970 (3) 158
O5—H5d⋯O4 0.80 2.15 2.945 (3) 169
Symmetry code: (i) -x+1, -y, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, a variety of pyridyl-donor ligands have been widely employ to construct coordination polymers with intriguing topologies and unexpected properties (Biradha et al., 2006; Liu et al., 2008; Hernández-Ahuactzi et al., 2008; Ma, Wang, Hu et al., 2009). 4,4'-dipyridyl disulfide (bpds) is a bipyridyl-type ligand with a twisted structuret. Addtionally, bpds ligand has axial chirality. A number of coordination polymers containing bpds ligand have been reported (Horikoshi et al., 2006; Carballo et al., 2008; Ma, Wang, Wang et al., 2009). Phenylacetic acid is one of the most common carboxylate ligands and can adopt different coordination modes (Johnston et al., 2008). However, the coordination polymers based on mixed bpds and phenylacetate anion have not been reported to date. In this paper, we report the title Znic polymeric compound, [{Zn(bpds)2(C6H5CH2COO)2}.H2O]n with a 1D repeated rhomboidal chain structure. The unsymmetrical unit of the title compound consisits of one Zn2+ cation, two bpds molecules of the same chirality, two phenylacetate anions and one lattice water molecule (Fig.1).The M- and P- bpds molecules act as bis-monodentate bridging ligands with the C—S—S—C torsion angle being 97.10 (1)° and 93.40 (1)°, respectively, and the corresponding py ring planes form dihedral angles of 89.06 (6)° and 79.42 (6)°. Both crystallographically distinct phenylacetate anions monodentately coordinate to the metal atoms.The Zn atom has a distorted octahedral environment, being surrounded by two nitrogen atoms from two M-bpds and two nitrogen atoms from two P-bpds in the equatorial plane, and by two oxygen atoms from two crystallographically distinct phenylacetate anions occupying the axial positions. The corresponding bond distances range from 2.111 (2)Å to 2.202 (2) Å, and the bond angles in the region 84.12 (7)—175.94 (7)° deviate from the values of 90° and 180° for an ideal octahedron (table 1). Along the [110] direction, the two bpds ligands of the same chirality bridge Zn atoms to form 1D repeated rhomboidal chains(Fig. 2), which is similar with the structures of the reported zinc coordination polymers based on bpds ligand (Horikoshi et al., 2005). The Zn···Zn separation through bpds ligands is 11.187 Å. The lattice water form hydrogen bonds to the uncoordinated carboxylate oxygen atoms of two different phenylacetate anions. In this way, the adjacent chains are linked by water molecules to give a ladder structure.

Related literature top

For coordination chemistry based on pyridyl donor ligands, see: Biradha et al. (2006); Liu et al. (2008); Hernández-Ahuactzi et al. (2008); Ma, Wang, Hu OK? et al. (2009). For bpds compounds, see: Horikoshi et al. (2006); Carballo et al. (2008); Ma, Wang, Wang OK? et al. (2009; Horikoshi et al. (2005). For compounds containing phenylacetic acid, see: Johnston et al. (2008).

Experimental top

0.0750 g (0.25 mmol) Zn(NO3)2.6H2O and 0.0345 g (0.25 mmol) phenylacetic acid were succesively dissolved in a stirred aqueous ethanolic solution consisting of 5 ml EtOH and 10 ml H2O, to which 0.5 ml 1.0 M NaOH was added. The formed white suspension was stirred at 80°C for 30 min and then added was an ethanolic solution of 0.0570 g (0.25 mmol) 4,4'-dipyridyldisulfide in 5 ml EtOH. The final mixture was further stirred at 75°C for 1 h and filtered off. The colorless filtrate (pH=6.02) was left standing at room temperature for one week affording colorless block-like crystals (yield: 4 mg).

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular of the title compound, Displacement ellipsoids are drawn at the 45% probability level.
[Figure 2] Fig. 2. 1D repeated rhomboidal chains in the title compound.
[Figure 3] Fig. 3. The ladder structure of the title compound.
catena-Poly[[[(2-phenylacetato-κO)zinc(II)]bis[µ-4,4'- (disulfanediyl)dipyridine-κ2N:N']] monohydrate] top
Crystal data top
[Zn(C8H7O2)2(C10H8N2S2)2]·H2OZ = 2
Mr = 794.27F(000) = 820
Triclinic, P1Dx = 1.483 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.851 (2) ÅCell parameters from 16701 reflections
b = 11.130 (2) Åθ = 3.1–27.5°
c = 18.319 (4) ŵ = 0.97 mm1
α = 90.38 (3)°T = 295 K
β = 98.88 (3)°Block, colorless
γ = 115.89 (3)°0.51 × 0.41 × 0.36 mm
V = 1779.0 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7859 independent reflections
Radiation source: fine-focus sealed tube6036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1114
Tmin = 0.623, Tmax = 0.701l = 2323
16701 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.3693P]
where P = (Fo2 + 2Fc2)/3
7859 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn(C8H7O2)2(C10H8N2S2)2]·H2Oγ = 115.89 (3)°
Mr = 794.27V = 1779.0 (6) Å3
Triclinic, P1Z = 2
a = 9.851 (2) ÅMo Kα radiation
b = 11.130 (2) ŵ = 0.97 mm1
c = 18.319 (4) ÅT = 295 K
α = 90.38 (3)°0.51 × 0.41 × 0.36 mm
β = 98.88 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7859 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6036 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.701Rint = 0.038
16701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
7859 reflectionsΔρmin = 0.34 e Å3
451 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.42078 (3)0.23364 (2)0.254511 (13)0.03328 (8)
N10.21801 (19)0.10323 (18)0.17515 (9)0.0351 (4)
C10.1234 (2)0.1508 (2)0.14209 (11)0.0353 (5)
H1A0.15260.24220.14920.042*
C20.0162 (2)0.0710 (2)0.09761 (12)0.0355 (5)
H2A0.07900.10810.07550.043*
C30.0604 (2)0.0650 (2)0.08669 (11)0.0336 (5)
C40.0375 (3)0.1155 (2)0.12028 (14)0.0457 (6)
H4A0.01150.20640.11410.055*
C50.1747 (3)0.0276 (2)0.16317 (14)0.0463 (6)
H5A0.24070.06170.18500.056*
S10.24164 (6)0.16230 (6)0.03032 (3)0.03988 (14)
S20.24204 (6)0.34128 (6)0.00746 (3)0.04027 (14)
C60.3406 (2)0.4474 (2)0.07251 (11)0.0344 (5)
C70.3961 (3)0.4103 (2)0.12877 (13)0.0476 (6)
H7A0.38240.32260.13570.057*
C80.4725 (3)0.5053 (2)0.17481 (13)0.0466 (6)
H8A0.51160.47950.21180.056*
N20.4932 (2)0.63104 (18)0.16917 (9)0.0339 (4)
C90.4425 (2)0.6675 (2)0.11302 (12)0.0377 (5)
H9A0.45950.75630.10690.045*
C100.3665 (2)0.5801 (2)0.06409 (12)0.0377 (5)
H10A0.33300.60940.02600.045*
N30.61670 (19)0.37405 (18)0.33457 (10)0.0355 (4)
C110.5949 (2)0.4081 (2)0.40060 (12)0.0358 (5)
H11A0.49770.36400.41280.043*
C120.7090 (2)0.5050 (2)0.45119 (12)0.0359 (5)
H12A0.68890.52620.49620.043*
C130.8547 (2)0.5704 (2)0.43370 (11)0.0335 (5)
C140.8780 (2)0.5378 (2)0.36502 (12)0.0398 (5)
H14A0.97350.58180.35090.048*
C150.7571 (2)0.4390 (2)0.31818 (12)0.0415 (5)
H15A0.77400.41630.27260.050*
S30.99682 (6)0.69153 (6)0.50235 (3)0.04202 (15)
S41.20007 (6)0.72797 (6)0.47202 (3)0.04384 (15)
C161.2462 (2)0.8675 (2)0.41869 (11)0.0339 (5)
C171.1450 (2)0.9135 (2)0.38416 (12)0.0379 (5)
H17A1.04200.87140.38830.046*
C181.2001 (2)1.0225 (2)0.34368 (13)0.0402 (5)
H18A1.13171.05400.32140.048*
N41.34608 (19)1.08651 (18)0.33422 (10)0.0357 (4)
C191.4430 (2)1.0421 (2)0.36901 (12)0.0393 (5)
H19A1.54571.08690.36440.047*
C201.3994 (2)0.9344 (2)0.41103 (12)0.0381 (5)
H20A1.47070.90660.43390.046*
O10.29666 (17)0.33877 (16)0.27800 (8)0.0414 (4)
O20.2410 (2)0.3097 (2)0.39220 (9)0.0544 (5)
C210.2319 (3)0.3518 (2)0.33031 (13)0.0389 (5)
C220.1335 (4)0.4250 (4)0.31603 (16)0.0678 (9)
H22A0.02950.36300.32040.081*
H22B0.16920.49660.35510.081*
C230.1282 (3)0.4843 (3)0.24333 (15)0.0494 (6)
C240.2307 (3)0.6123 (3)0.23429 (19)0.0666 (8)
H24A0.30120.66560.27500.080*
C250.2315 (5)0.6642 (4)0.1657 (2)0.0866 (11)
H25A0.30320.75090.16050.104*
C260.1280 (6)0.5887 (6)0.1063 (2)0.0942 (13)
H26A0.12940.62300.06010.113*
C270.0224 (5)0.4634 (5)0.1139 (2)0.0892 (12)
H27A0.05000.41210.07320.107*
C280.0224 (4)0.4120 (3)0.18197 (19)0.0687 (8)
H28A0.05130.32590.18660.082*
O30.57013 (19)0.14005 (17)0.23618 (8)0.0453 (4)
O40.5095 (3)0.0218 (2)0.12864 (11)0.0731 (6)
C290.5861 (3)0.0632 (2)0.19184 (13)0.0426 (5)
C300.7158 (4)0.0237 (3)0.21550 (17)0.0652 (8)
H30A0.71190.03770.17650.078*
H30B0.81230.10350.21880.078*
C310.7172 (3)0.0404 (3)0.28744 (15)0.0469 (6)
C320.6281 (3)0.1760 (3)0.28977 (17)0.0618 (7)
H32A0.56540.22670.24660.074*
C330.6295 (4)0.2379 (3)0.35429 (19)0.0706 (8)
H33A0.56800.32940.35430.085*
C340.7211 (4)0.1654 (3)0.41871 (18)0.0663 (8)
H34A0.72260.20700.46250.080*
C350.8096 (4)0.0319 (3)0.41752 (18)0.0669 (8)
H35A0.87170.01820.46100.080*
C360.8088 (3)0.0305 (3)0.35277 (17)0.0605 (7)
H36A0.87100.12190.35320.073*
O50.3132 (3)0.1386 (2)0.00858 (12)0.0856 (7)
H5C0.37200.08850.03340.128*
H5D0.36760.10440.03050.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.03625 (14)0.03132 (15)0.02738 (13)0.01058 (10)0.00539 (10)0.00328 (10)
N10.0369 (9)0.0334 (10)0.0314 (9)0.0130 (8)0.0037 (7)0.0012 (8)
C10.0399 (11)0.0305 (12)0.0318 (11)0.0115 (9)0.0082 (9)0.0051 (9)
C20.0368 (11)0.0356 (13)0.0333 (11)0.0150 (9)0.0071 (9)0.0074 (9)
C30.0330 (10)0.0357 (12)0.0280 (10)0.0101 (9)0.0095 (8)0.0065 (9)
C40.0469 (13)0.0306 (13)0.0532 (15)0.0148 (10)0.0018 (11)0.0016 (11)
C50.0451 (13)0.0415 (15)0.0502 (15)0.0213 (11)0.0035 (11)0.0019 (11)
S10.0346 (3)0.0371 (3)0.0383 (3)0.0079 (2)0.0035 (2)0.0064 (2)
S20.0414 (3)0.0367 (3)0.0326 (3)0.0064 (2)0.0119 (2)0.0028 (2)
C60.0305 (10)0.0361 (12)0.0299 (11)0.0087 (8)0.0052 (8)0.0044 (9)
C70.0703 (16)0.0278 (12)0.0451 (14)0.0171 (11)0.0255 (12)0.0053 (10)
C80.0664 (16)0.0365 (14)0.0415 (13)0.0211 (11)0.0271 (12)0.0061 (11)
N20.0400 (9)0.0293 (10)0.0302 (9)0.0128 (7)0.0085 (7)0.0043 (7)
C90.0453 (12)0.0363 (13)0.0319 (11)0.0186 (10)0.0064 (9)0.0033 (9)
C100.0437 (12)0.0403 (13)0.0323 (11)0.0198 (10)0.0117 (9)0.0034 (10)
N30.0365 (9)0.0358 (11)0.0327 (10)0.0151 (8)0.0049 (7)0.0008 (8)
C110.0371 (11)0.0359 (12)0.0329 (11)0.0138 (9)0.0086 (9)0.0051 (9)
C120.0457 (12)0.0333 (12)0.0289 (11)0.0169 (9)0.0088 (9)0.0050 (9)
C130.0400 (11)0.0277 (11)0.0313 (11)0.0148 (9)0.0026 (9)0.0064 (9)
C140.0337 (11)0.0425 (14)0.0389 (12)0.0129 (9)0.0066 (9)0.0007 (10)
C150.0382 (12)0.0495 (15)0.0356 (12)0.0177 (10)0.0084 (9)0.0034 (10)
S30.0443 (3)0.0374 (3)0.0313 (3)0.0071 (2)0.0037 (2)0.0024 (2)
S40.0408 (3)0.0383 (3)0.0477 (3)0.0154 (2)0.0009 (2)0.0144 (3)
C160.0394 (11)0.0294 (12)0.0305 (11)0.0140 (9)0.0036 (9)0.0038 (9)
C170.0320 (11)0.0377 (13)0.0421 (13)0.0129 (9)0.0085 (9)0.0107 (10)
C180.0376 (11)0.0454 (14)0.0421 (13)0.0218 (10)0.0088 (10)0.0140 (11)
N40.0365 (9)0.0342 (10)0.0350 (10)0.0136 (8)0.0084 (8)0.0078 (8)
C190.0312 (10)0.0495 (15)0.0341 (12)0.0149 (10)0.0062 (9)0.0055 (10)
C200.0348 (11)0.0452 (14)0.0362 (12)0.0203 (10)0.0035 (9)0.0070 (10)
O10.0494 (9)0.0504 (10)0.0324 (8)0.0286 (8)0.0101 (7)0.0016 (7)
O20.0647 (11)0.0735 (13)0.0402 (10)0.0405 (10)0.0204 (8)0.0146 (9)
C210.0413 (12)0.0386 (13)0.0377 (12)0.0171 (10)0.0113 (10)0.0019 (10)
C220.092 (2)0.087 (2)0.0610 (18)0.0650 (19)0.0367 (17)0.0286 (16)
C230.0567 (15)0.0557 (17)0.0517 (15)0.0366 (13)0.0176 (12)0.0113 (13)
C240.0659 (18)0.060 (2)0.073 (2)0.0278 (15)0.0109 (15)0.0058 (16)
C250.103 (3)0.067 (2)0.111 (3)0.048 (2)0.043 (3)0.041 (2)
C260.134 (4)0.133 (4)0.068 (2)0.102 (3)0.028 (3)0.033 (3)
C270.093 (3)0.123 (4)0.065 (2)0.068 (3)0.0098 (19)0.012 (2)
C280.0663 (18)0.060 (2)0.081 (2)0.0295 (15)0.0121 (16)0.0011 (17)
O30.0613 (10)0.0496 (10)0.0361 (9)0.0325 (8)0.0156 (8)0.0069 (8)
O40.0900 (15)0.0695 (15)0.0499 (12)0.0298 (11)0.0025 (10)0.0152 (10)
C290.0546 (14)0.0338 (13)0.0398 (13)0.0164 (10)0.0189 (11)0.0083 (10)
C300.080 (2)0.072 (2)0.0706 (19)0.0493 (17)0.0411 (16)0.0242 (16)
C310.0523 (14)0.0432 (15)0.0565 (15)0.0286 (11)0.0183 (12)0.0071 (12)
C320.0708 (18)0.0469 (17)0.0577 (18)0.0215 (14)0.0027 (14)0.0036 (14)
C330.086 (2)0.0390 (17)0.078 (2)0.0230 (14)0.0032 (17)0.0111 (15)
C340.081 (2)0.075 (2)0.0628 (19)0.0527 (18)0.0094 (16)0.0146 (17)
C350.0722 (19)0.070 (2)0.0612 (19)0.0390 (17)0.0052 (15)0.0109 (16)
C360.0598 (16)0.0419 (16)0.075 (2)0.0192 (12)0.0097 (14)0.0055 (15)
O50.0779 (14)0.0842 (17)0.0699 (15)0.0144 (12)0.0105 (11)0.0102 (12)
Geometric parameters (Å, º) top
Zn—O12.1105 (15)C17—C181.371 (3)
Zn—N4i2.160 (2)C17—H17A0.9300
Zn—N12.180 (2)C18—N41.338 (3)
Zn—N2ii2.1808 (19)C18—H18A0.9300
Zn—N32.186 (2)N4—C191.338 (3)
Zn—O32.2019 (16)N4—Znii2.160 (2)
N1—C51.332 (3)C19—C201.371 (3)
N1—C11.333 (3)C19—H19A0.9300
C1—C21.386 (3)C20—H20A0.9300
C1—H1A0.9300O1—C211.270 (2)
C2—C31.383 (3)O2—C211.235 (3)
C2—H2A0.9300C21—C221.512 (4)
C3—C41.385 (3)C22—C231.494 (4)
C3—S11.776 (2)C22—H22A0.9700
C4—C51.381 (3)C22—H22B0.9700
C4—H4A0.9300C23—C241.369 (4)
C5—H5A0.9300C23—C281.375 (4)
S1—S22.0311 (10)C24—C251.387 (5)
S2—C61.770 (2)C24—H24A0.9300
C6—C71.377 (3)C25—C261.351 (6)
C6—C101.387 (3)C25—H25A0.9300
C7—C81.381 (3)C26—C271.351 (6)
C7—H7A0.9300C26—H26A0.9300
C8—N21.324 (3)C27—C281.376 (5)
C8—H8A0.9300C27—H27A0.9300
N2—C91.343 (3)C28—H28A0.9300
N2—Zni2.1808 (19)O3—C291.251 (3)
C9—C101.376 (3)O4—C291.242 (3)
C9—H9A0.9300C29—C301.528 (4)
C10—H10A0.9300C30—C311.504 (4)
N3—C151.335 (3)C30—H30A0.9700
N3—C111.341 (3)C30—H30B0.9700
C11—C121.375 (3)C31—C361.379 (4)
C11—H11A0.9300C31—C321.380 (4)
C12—C131.387 (3)C32—C331.373 (4)
C12—H12A0.9300C32—H32A0.9300
C13—C141.387 (3)C33—C341.372 (4)
C13—S31.773 (2)C33—H33A0.9300
C14—C151.376 (3)C34—C351.357 (4)
C14—H14A0.9300C34—H34A0.9300
C15—H15A0.9300C35—C361.379 (4)
S3—S42.0294 (10)C35—H35A0.9300
S4—C161.764 (2)C36—H36A0.9300
C16—C171.382 (3)O5—H5C0.8098
C16—C201.392 (3)O5—H5D0.8029
O1—Zn—N4i97.17 (7)C17—C16—S4126.14 (17)
O1—Zn—N187.04 (7)C20—C16—S4115.38 (17)
N4i—Zn—N188.63 (7)C18—C17—C16118.5 (2)
O1—Zn—N2ii88.99 (7)C18—C17—H17A120.7
N4i—Zn—N2ii173.74 (7)C16—C17—H17A120.7
N1—Zn—N2ii90.57 (7)N4—C18—C17124.0 (2)
O1—Zn—N388.99 (7)N4—C18—H18A118.0
N4i—Zn—N392.71 (7)C17—C18—H18A118.0
N1—Zn—N3175.94 (7)C19—N4—C18116.7 (2)
N2ii—Zn—N388.51 (7)C19—N4—Znii119.65 (14)
O1—Zn—O3174.45 (6)C18—N4—Znii122.96 (15)
N4i—Zn—O384.12 (7)N4—C19—C20123.7 (2)
N1—Zn—O398.39 (7)N4—C19—H19A118.2
N2ii—Zn—O389.85 (7)C20—C19—H19A118.2
N3—Zn—O385.56 (7)C19—C20—C16118.6 (2)
C5—N1—C1117.18 (19)C19—C20—H20A120.7
C5—N1—Zn122.60 (15)C16—C20—H20A120.7
C1—N1—Zn119.88 (15)C21—O1—Zn137.60 (16)
N1—C1—C2123.3 (2)O2—C21—O1126.2 (2)
N1—C1—H1A118.4O2—C21—C22116.3 (2)
C2—C1—H1A118.4O1—C21—C22117.5 (2)
C3—C2—C1118.7 (2)C23—C22—C21117.5 (2)
C3—C2—H2A120.6C23—C22—H22A107.9
C1—C2—H2A120.6C21—C22—H22A107.9
C2—C3—C4118.5 (2)C23—C22—H22B107.9
C2—C3—S1116.61 (17)C21—C22—H22B107.9
C4—C3—S1124.88 (18)H22A—C22—H22B107.2
C5—C4—C3118.4 (2)C24—C23—C28116.9 (3)
C5—C4—H4A120.8C24—C23—C22121.5 (3)
C3—C4—H4A120.8C28—C23—C22121.6 (3)
N1—C5—C4123.9 (2)C23—C24—C25121.4 (3)
N1—C5—H5A118.1C23—C24—H24A119.3
C4—C5—H5A118.1C25—C24—H24A119.3
C3—S1—S2104.60 (9)C26—C25—C24119.9 (4)
C6—S2—S1105.51 (8)C26—C25—H25A120.1
C7—C6—C10118.0 (2)C24—C25—H25A120.1
C7—C6—S2125.76 (19)C25—C26—C27120.2 (4)
C10—C6—S2116.21 (16)C25—C26—H26A119.9
C6—C7—C8119.0 (2)C27—C26—H26A119.9
C6—C7—H7A120.5C26—C27—C28119.8 (4)
C8—C7—H7A120.5C26—C27—H27A120.1
N2—C8—C7123.7 (2)C28—C27—H27A120.1
N2—C8—H8A118.2C23—C28—C27121.9 (3)
C7—C8—H8A118.2C23—C28—H28A119.1
C8—N2—C9117.00 (19)C27—C28—H28A119.1
C8—N2—Zni121.68 (14)C29—O3—Zn143.09 (17)
C9—N2—Zni120.90 (15)O4—C29—O3125.0 (2)
N2—C9—C10123.3 (2)O4—C29—C30117.4 (2)
N2—C9—H9A118.4O3—C29—C30117.5 (2)
C10—C9—H9A118.4C31—C30—C29117.2 (2)
C9—C10—C6118.9 (2)C31—C30—H30A108.0
C9—C10—H10A120.5C29—C30—H30A108.0
C6—C10—H10A120.5C31—C30—H30B108.0
C15—N3—C11117.28 (19)C29—C30—H30B108.0
C15—N3—Zn122.71 (14)H30A—C30—H30B107.3
C11—N3—Zn119.66 (14)C36—C31—C32117.1 (3)
N3—C11—C12123.3 (2)C36—C31—C30122.5 (3)
N3—C11—H11A118.4C32—C31—C30120.3 (3)
C12—C11—H11A118.4C33—C32—C31121.7 (3)
C11—C12—C13118.72 (19)C33—C32—H32A119.2
C11—C12—H12A120.6C31—C32—H32A119.2
C13—C12—H12A120.6C34—C33—C32120.3 (3)
C14—C13—C12118.5 (2)C34—C33—H33A119.9
C14—C13—S3125.30 (17)C32—C33—H33A119.9
C12—C13—S3116.18 (16)C35—C34—C33118.9 (3)
C15—C14—C13118.6 (2)C35—C34—H34A120.6
C15—C14—H14A120.7C33—C34—H34A120.6
C13—C14—H14A120.7C34—C35—C36120.9 (3)
N3—C15—C14123.5 (2)C34—C35—H35A119.5
N3—C15—H15A118.2C36—C35—H35A119.5
C14—C15—H15A118.2C31—C36—C35121.1 (3)
C13—S3—S4105.43 (8)C31—C36—H36A119.5
C16—S4—S3106.12 (8)C35—C36—H36A119.5
C17—C16—C20118.5 (2)H5C—O5—H5D95.1
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5c···O4iii0.812.202.970 (3)158
O5—H5d···O40.802.152.945 (3)169
Symmetry code: (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C8H7O2)2(C10H8N2S2)2]·H2O
Mr794.27
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.851 (2), 11.130 (2), 18.319 (4)
α, β, γ (°)90.38 (3), 98.88 (3), 115.89 (3)
V3)1779.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.51 × 0.41 × 0.36
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.623, 0.701
No. of measured, independent and
observed [I > 2σ(I)] reflections
16701, 7859, 6036
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.07
No. of reflections7859
No. of parameters451
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5c···O4i0.812.202.970 (3)158
O5—H5d···O40.802.152.945 (3)169
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 20072022) and the Education Department of Zhejiang Province. Grateful thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationBiradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.  Web of Science CrossRef Google Scholar
First citationCarballo, R., Covelo, B., Fernández-Fermida, N., García-Martinez, E., Lago, A. B. & Vázquez-Löpez, E. M. (2008). Cryst. Growth Des. 8, 995–1004.  Web of Science CSD CrossRef CAS Google Scholar
First citationHernández-Ahuactzi, I. F., Höpfl, H., Barba, V., Román-Bravo, P., Zamudio-Rivera, L. S. & Beltrán, H. I. (2008). Eur. J. Inorg. Chem. pp. 2746–2755.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHorikoshi, R. & Mikuriya, M. (2005). Cryst. Growth Des. pp. 223–230.  Web of Science CSD CrossRef Google Scholar
First citationHorikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595–2609.  Web of Science CrossRef CAS Google Scholar
First citationJohnston, L. L., Brown, K. A., Martin, D. P. & LaDuca, R. L. (2008). J. Mol. Struct. 882, 80–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327–2334.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, L. F., Wang, L. Y., Hu, J. L., Wang, Y. Y., Batten, S. R. & Wang, J. G. (2009). CrystEngComm, 11, 777–783.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, L. F., Wang, L. Y., Wang, Y. Y., Du, M. & Wang, J. G. (2009). CrystEngComm, 11, 109–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m788-m789
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds