metal-organic compounds
catena-Poly[[dichloridozinc(II)]-μ-1,1′-(butane-1,4-diyl)diimidazole-κ2N3:N3′]
aThe State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: jwxu@ciac.jl.cn
The title compound, [ZnCl2(C10H14N4)]n, is a coordination polymer consisting of zigzag chains propagating in [001], in which the metal cation exhibits a distorted tetrahedral ZnCl2N2 coordination. Adjacent chains are linked by intermolecular C—H⋯Cl hydrogen bonds, forming a three-dimensional supramolecular network.
Related literature
For general background to metal complexes of N-heterocyclic compounds, see: Hu et al. (2003); Ohmori et al. (2005); Chen et al. (2004); Hu et al. (2005). For related structures, see: Li et al. (2006); Liu et al. (2007); Jin et al. (2007); Yang et al. (2009); Qi et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810018246/ez2200sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810018246/ez2200Isup2.hkl
The title compound was solvothermally prepared from a reaction mixture of ZnCl2 (0.3 mmol), bbi (0.1 mmol), ethanol (3 ml) and distilled water (7 ml); the pH value was adjusted to 4.5 with triethylamine and acetic acid. The mixture was stirred for 20 min at room temperature, then sealed in a 20 ml teflon-lined stainless steel autoclave and heated at 433 K for 72 h under autogenous pressure. After cooling to room temperature, colorless block crystals were obtained (yield 83% based on Zn).
H atoms were positioned geometrically and refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(C)], using a riding model, with C—H distances of 0.93 Å for Csp2 and 0.97 Å for CH2.
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[ZnCl2(C10H14N4)] | F(000) = 664 |
Mr = 326.52 | Dx = 1.517 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2763 reflections |
a = 7.8090 (9) Å | θ = 2.2–26.1° |
b = 11.6001 (13) Å | µ = 2.08 mm−1 |
c = 15.8047 (18) Å | T = 185 K |
β = 92.908 (2)° | Block, colorless |
V = 1429.8 (3) Å3 | 0.29 × 0.22 × 0.15 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 2820 independent reflections |
Radiation source: fine-focus sealed tube | 2174 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ϕ and ω scans | θmax = 26.1°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.585, Tmax = 0.742 | k = −11→14 |
7827 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2952P] where P = (Fo2 + 2Fc2)/3 |
2820 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
[ZnCl2(C10H14N4)] | V = 1429.8 (3) Å3 |
Mr = 326.52 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8090 (9) Å | µ = 2.08 mm−1 |
b = 11.6001 (13) Å | T = 185 K |
c = 15.8047 (18) Å | 0.29 × 0.22 × 0.15 mm |
β = 92.908 (2)° |
Bruker SMART APEX CCD diffractometer | 2820 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2174 reflections with I > 2σ(I) |
Tmin = 0.585, Tmax = 0.742 | Rint = 0.054 |
7827 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.68 e Å−3 |
2820 reflections | Δρmin = −0.36 e Å−3 |
154 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.46384 (6) | 0.61215 (4) | 0.27801 (3) | 0.02355 (16) | |
Cl1 | 0.33311 (13) | 0.46729 (9) | 0.34476 (7) | 0.0299 (3) | |
Cl2 | 0.67102 (14) | 0.55460 (11) | 0.19540 (7) | 0.0370 (3) | |
N2 | 0.1432 (4) | 0.8426 (3) | 0.1480 (2) | 0.0244 (8) | |
N1 | 0.2770 (4) | 0.6993 (3) | 0.2141 (2) | 0.0249 (8) | |
N3 | 0.5563 (4) | 0.7158 (3) | 0.3717 (2) | 0.0289 (9) | |
N4 | 0.6711 (5) | 0.8617 (3) | 0.4421 (2) | 0.0341 (10) | |
C1 | 0.1030 (5) | 0.6818 (4) | 0.2160 (3) | 0.0319 (11) | |
H1 | 0.0509 | 0.6195 | 0.2413 | 0.038* | |
C2 | 0.0202 (6) | 0.7689 (4) | 0.1755 (3) | 0.0342 (11) | |
H2 | −0.0980 | 0.7776 | 0.1676 | 0.041* | |
C3 | 0.2941 (5) | 0.7974 (4) | 0.1726 (3) | 0.0283 (10) | |
H3 | 0.3992 | 0.8307 | 0.1620 | 0.034* | |
C6 | 0.5363 (6) | 0.6995 (4) | 0.4562 (3) | 0.0384 (12) | |
H6 | 0.4815 | 0.6368 | 0.4796 | 0.046* | |
C5 | 0.6077 (6) | 0.7875 (4) | 0.5003 (3) | 0.0423 (13) | |
H5 | 0.6131 | 0.7965 | 0.5589 | 0.051* | |
C4 | 0.6379 (6) | 0.8141 (4) | 0.3661 (3) | 0.0359 (11) | |
H4 | 0.6688 | 0.8468 | 0.3153 | 0.043* | |
C7 | 0.1145 (6) | 0.9520 (4) | 0.1043 (3) | 0.0302 (11) | |
H7A | 0.2243 | 0.9890 | 0.0974 | 0.036* | |
H7B | 0.0478 | 1.0018 | 0.1393 | 0.036* | |
C8 | 0.0227 (5) | 0.9402 (4) | 0.0186 (3) | 0.0261 (10) | |
H8A | −0.0814 | 0.8957 | 0.0238 | 0.031* | |
H8B | 0.0952 | 0.8993 | −0.0194 | 0.031* | |
C9 | 0.7655 (6) | 0.9682 (4) | 0.4623 (3) | 0.0438 (13) | |
H9A | 0.7132 | 1.0070 | 0.5089 | 0.053* | |
H9B | 0.7574 | 1.0192 | 0.4136 | 0.053* | |
C10 | 0.9514 (6) | 0.9456 (4) | 0.4862 (3) | 0.0423 (13) | |
H10A | 1.0055 | 0.9121 | 0.4380 | 0.051* | |
H10B | 0.9591 | 0.8899 | 0.5320 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0249 (3) | 0.0224 (3) | 0.0230 (3) | −0.0008 (2) | −0.00252 (19) | 0.0021 (2) |
Cl1 | 0.0288 (6) | 0.0250 (6) | 0.0366 (6) | −0.0026 (5) | 0.0069 (5) | 0.0052 (5) |
Cl2 | 0.0349 (6) | 0.0457 (8) | 0.0311 (6) | 0.0052 (6) | 0.0072 (5) | 0.0077 (5) |
N2 | 0.0253 (19) | 0.024 (2) | 0.0237 (18) | 0.0029 (16) | −0.0019 (15) | 0.0046 (15) |
N1 | 0.0265 (19) | 0.023 (2) | 0.0247 (19) | 0.0014 (16) | −0.0006 (15) | 0.0043 (16) |
N3 | 0.031 (2) | 0.028 (2) | 0.027 (2) | −0.0034 (17) | −0.0035 (16) | 0.0027 (16) |
N4 | 0.039 (2) | 0.031 (2) | 0.031 (2) | −0.0085 (18) | −0.0086 (18) | −0.0007 (17) |
C1 | 0.028 (2) | 0.034 (3) | 0.034 (3) | −0.001 (2) | 0.002 (2) | 0.015 (2) |
C2 | 0.022 (2) | 0.038 (3) | 0.043 (3) | −0.002 (2) | 0.003 (2) | 0.012 (2) |
C3 | 0.026 (2) | 0.031 (3) | 0.028 (2) | −0.003 (2) | −0.0038 (18) | 0.004 (2) |
C6 | 0.048 (3) | 0.040 (3) | 0.028 (3) | −0.018 (3) | 0.000 (2) | 0.001 (2) |
C5 | 0.054 (3) | 0.048 (3) | 0.024 (2) | −0.011 (3) | −0.001 (2) | 0.001 (2) |
C4 | 0.045 (3) | 0.035 (3) | 0.027 (2) | −0.007 (2) | −0.006 (2) | 0.005 (2) |
C7 | 0.036 (3) | 0.022 (3) | 0.032 (3) | −0.001 (2) | −0.002 (2) | 0.005 (2) |
C8 | 0.024 (2) | 0.030 (3) | 0.025 (2) | 0.005 (2) | 0.0043 (18) | 0.0050 (19) |
C9 | 0.057 (3) | 0.037 (3) | 0.037 (3) | −0.018 (3) | −0.007 (2) | 0.003 (2) |
C10 | 0.052 (3) | 0.034 (3) | 0.039 (3) | −0.017 (3) | −0.008 (2) | 0.002 (2) |
Zn1—N1 | 2.005 (3) | C3—H3 | 0.9300 |
Zn1—N3 | 2.013 (3) | C6—C5 | 1.342 (7) |
Zn1—Cl2 | 2.2321 (12) | C6—H6 | 0.9300 |
Zn1—Cl1 | 2.2557 (11) | C5—H5 | 0.9300 |
N2—C3 | 1.330 (5) | C4—H4 | 0.9300 |
N2—C2 | 1.373 (5) | C7—C8 | 1.506 (6) |
N2—C7 | 1.457 (5) | C7—H7A | 0.9700 |
N1—C3 | 1.323 (5) | C7—H7B | 0.9700 |
N1—C1 | 1.375 (5) | C8—C8i | 1.540 (8) |
N3—C4 | 1.312 (6) | C8—H8A | 0.9700 |
N3—C6 | 1.364 (5) | C8—H8B | 0.9700 |
N4—C4 | 1.336 (5) | C9—C10 | 1.504 (6) |
N4—C5 | 1.369 (6) | C9—H9A | 0.9700 |
N4—C9 | 1.466 (6) | C9—H9B | 0.9700 |
C1—C2 | 1.344 (6) | C10—C10ii | 1.524 (9) |
C1—H1 | 0.9300 | C10—H10A | 0.9700 |
C2—H2 | 0.9300 | C10—H10B | 0.9700 |
N1—Zn1—N3 | 107.13 (14) | C6—C5—N4 | 106.5 (4) |
N1—Zn1—Cl2 | 112.74 (10) | C6—C5—H5 | 126.8 |
N3—Zn1—Cl2 | 111.43 (11) | N4—C5—H5 | 126.8 |
N1—Zn1—Cl1 | 106.02 (10) | N3—C4—N4 | 111.7 (4) |
N3—Zn1—Cl1 | 104.75 (11) | N3—C4—H4 | 124.1 |
Cl2—Zn1—Cl1 | 114.17 (5) | N4—C4—H4 | 124.1 |
C3—N2—C2 | 106.6 (4) | N2—C7—C8 | 113.7 (4) |
C3—N2—C7 | 126.6 (4) | N2—C7—H7A | 108.8 |
C2—N2—C7 | 126.8 (4) | C8—C7—H7A | 108.8 |
C3—N1—C1 | 105.2 (4) | N2—C7—H7B | 108.8 |
C3—N1—Zn1 | 126.4 (3) | C8—C7—H7B | 108.8 |
C1—N1—Zn1 | 127.5 (3) | H7A—C7—H7B | 107.7 |
C4—N3—C6 | 105.5 (4) | C7—C8—C8i | 110.6 (5) |
C4—N3—Zn1 | 128.8 (3) | C7—C8—H8A | 109.5 |
C6—N3—Zn1 | 125.6 (3) | C8i—C8—H8A | 109.5 |
C4—N4—C5 | 106.5 (4) | C7—C8—H8B | 109.5 |
C4—N4—C9 | 128.0 (4) | C8i—C8—H8B | 109.5 |
C5—N4—C9 | 125.3 (4) | H8A—C8—H8B | 108.1 |
C2—C1—N1 | 109.3 (4) | N4—C9—C10 | 112.1 (4) |
C2—C1—H1 | 125.3 | N4—C9—H9A | 109.2 |
N1—C1—H1 | 125.3 | C10—C9—H9A | 109.2 |
C1—C2—N2 | 106.9 (4) | N4—C9—H9B | 109.2 |
C1—C2—H2 | 126.5 | C10—C9—H9B | 109.2 |
N2—C2—H2 | 126.5 | H9A—C9—H9B | 107.9 |
N1—C3—N2 | 112.0 (4) | C9—C10—C10ii | 112.8 (5) |
N1—C3—H3 | 124.0 | C9—C10—H10A | 109.0 |
N2—C3—H3 | 124.0 | C10ii—C10—H10A | 109.0 |
C5—C6—N3 | 109.7 (4) | C9—C10—H10B | 109.0 |
C5—C6—H6 | 125.1 | C10ii—C10—H10B | 109.0 |
N3—C6—H6 | 125.1 | H10A—C10—H10B | 107.8 |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cl1iii | 0.93 | 2.63 | 3.538 (2) | 166 |
C5—H5···Cl2iv | 0.93 | 2.78 | 3.599 (5) | 147 |
Symmetry codes: (iii) −x+1, y+1/2, −z+1/2; (iv) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [ZnCl2(C10H14N4)] |
Mr | 326.52 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 185 |
a, b, c (Å) | 7.8090 (9), 11.6001 (13), 15.8047 (18) |
β (°) | 92.908 (2) |
V (Å3) | 1429.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.08 |
Crystal size (mm) | 0.29 × 0.22 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.585, 0.742 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7827, 2820, 2174 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.107, 1.06 |
No. of reflections | 2820 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −0.36 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cl1i | 0.93 | 2.63 | 3.538 (2) | 166 |
C5—H5···Cl2ii | 0.93 | 2.78 | 3.599 (5) | 147 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+3/2, z+1/2. |
Acknowledgements
The authors thank Changchun Institute of Applied Chemistry for supporting this work.
References
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Y.-B., Kang, Y., Qin, Y.-Y., Li, Z.-J., Cheng, J.-K., Hu, R.-F., Wen, Y.-H. & Yao, Y.-G. (2004). Acta Cryst. C60, m168–m169. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hu, S., Chen, J.-C., Tong, M.-L., Wang, B., Yan, Y.-X. & Batten, S. R. (2005). Angew. Chem. Int. Ed. 44, 5471–5475. Web of Science CSD CrossRef CAS Google Scholar
Hu, X.-L., Tang, Y.-J., Gantzel, P. & Meyer, K. (2003). J. Am. Chem. Soc. 22, 612–614. CAS Google Scholar
Jin, S.-W., Wang, D.-Q. & Chen, W.-Z. (2007). Inorg. Chem. Commun. 10, 685–689. Web of Science CSD CrossRef CAS Google Scholar
Li, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Jia, H. Q. & Hu, N.-H. (2006). Cryst. Growth Des. 6, 209–215. Web of Science CSD CrossRef CAS Google Scholar
Liu, Y.-Y., Ma, J.-F. & Zhang, L.-P. (2007). Acta Cryst. E63, m2317. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ohmori, O., Kawano, M. & Fujita, M. (2005). Angew. Chem. Int. Ed. 44, 1962–1964. Web of Science CSD CrossRef CAS Google Scholar
Qi, Y., Luo, F., Batten, S. R., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2806–2813. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, J., Ma, J.-F., Liu, Y.-Y. & Batten, S. R. (2009). CrystEngComm, 11, 151–159. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-heterocyclic compounds have been extensively studied in coordination chemistry research for their excellent bridging ability (Hu et al., 2003; Ohmori et al., 2005; Chen et al., 2004; Hu et al., 2005). The compound 1,1'-(1,4-butanediyl)bis(imidazole) (bbi), as a flexible nitrogenous ligand with a long -CH2CH2CH2CH2- spacer, can link discrete clusters into an extended network and is a good candidate to form highly connected 3D frameworks. A number of metal-bbi coordination polymers have been reported (Li et al., 2006; Liu et al., 2007; Jin et al., 2007; Yang et al., 2009; Qi et al., 2008). Here we present a new polymeric compound, [ZnCl2(bbi)]n, (I), with a zigzag chain structure, synthesized under solvothermal conditions.
In the title compound, (I), the Zn centers are four-coordinated by two N atoms from two bbi ligands [Zn(1)—N(1) = 2.005 (3) Å and Zn(1)—N(3) = 2.013 (3) Å] and two Cl atoms [Zn(1)—Cl(1) = 2.2557 (11) Å and Zn(1)—Cl(2) =2.2321 (12) Å], resulting in a distorted tetrahedral geometry (Fig. 1). Each bbi coordinates to two Zn atoms through its two aromatic N atoms and acts as a bridging bidentate ligand to form a one-dimensional zigzag chain (Fig. 2). The adjacent Zn···Zn distance is 14.290 Å, which is similar to that observed in [Cu2(bbi)2Cl2] (Qi et al., 2008). In addition, these one-dimensional chains are further connected by weak intermolecular C—H···Cl hydrogen bonds to construct a three-dimensional supramolecular network (Fig. 2).