metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetato-κ2O,O′)bis­­(1,10-phenanthroline-κ2N,N′)copper(II) tri­fluoro­acetate tetra­hydrate

aSchool of Science, North University of China, Taiyuan 030051, People's Republic of China, and bSchool of Chemical Engineering and Environment, North University of China, Taiyuan 030051, People's Republic of China
*Correspondence e-mail: kxin_2010@163.com

(Received 17 May 2010; accepted 23 June 2010; online 30 June 2010)

In the title compound, [Cu(CH3CO2)(C12H8N2)2](CF3CO2)·4H2O, the CuII atom shows a distorted octa­hedral coordination with four N atoms [Cu—N = 2.015 (3)–2.244 (3) Å] from the two phenanthroline ligands and two O atoms from the acetate [Cu—O = 1.953 (3) and 2.764 (3) Å]. Strong inter­molecular O—H⋯O hydrogen-bonding inter­actions consolidate the crystal packing. The F atoms of the anion are disordered over two positions in a 0.5233 (3):0.4767 (3) ratio.

Related literature

For metal–1,10-phenanthroline complexes with carboxyl­ates, see: Sun et al. (2007[Sun, J., Ma, C. & Zhang, R. (2007). Acta Cryst. E63, m2691-m2692.]); Liu et al. (2009[Liu, Y., Ning, J., Sun, J. & Zhang, C. (2009). Acta Cryst. E65, m113.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3O2)(C12H8N2)2](C2F3O2)·4H2O

  • Mr = 668.08

  • Triclinic, [P \overline 1]

  • a = 8.9019 (7) Å

  • b = 11.6662 (9) Å

  • c = 15.698 (1) Å

  • α = 101.619 (1)°

  • β = 101.512 (1)°

  • γ = 108.514 (1)°

  • V = 1451.98 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.28 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.801, Tmax = 0.859

  • 7689 measured reflections

  • 5112 independent reflections

  • 4389 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.159

  • S = 1.02

  • 5112 reflections

  • 425 parameters

  • 103 restraints

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.953 (3)
Cu1—N1 2.015 (3)
Cu1—N4 2.022 (3)
Cu1—N2 2.037 (3)
Cu1—N3 2.244 (3)
O1—Cu1—N1 91.55 (13)
O1—Cu1—N4 93.66 (13)
N1—Cu1—N4 169.21 (13)
O1—Cu1—N2 171.51 (12)
N1—Cu1—N2 81.21 (14)
N4—Cu1—N2 92.78 (14)
O1—Cu1—N3 93.94 (12)
N1—Cu1—N3 110.64 (13)
N4—Cu1—N3 78.44 (13)
N2—Cu1—N3 92.75 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O5 0.85 1.95 2.787 (8) 168
O7—H7B⋯O4 0.85 2.11 2.854 (8) 145
O6—H6A⋯O1 0.85 2.00 2.844 (5) 170
O6—H6B⋯O4i 0.85 2.03 2.881 (7) 175
O8—H8B⋯O3ii 0.85 2.03 2.868 (10) 171
O8—H8A⋯O6iii 0.85 2.17 2.809 (9) 132
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal complexes with carboxylates are among the most investigated complexes in the field of coordination chemistry, in which metal-1,10-phenanthroline complexes and their derivatives have also attracted much attention during recent decades because of their interesting features (Sun et al., 2007; Liu et al., 2009). In this work, the title compound was obtained by the reaction of trifluoroacetic acid and cupric acetate in the presence of 1,10-phenanthroline as co-ligand.

The molecular structure of the title complex is shown in Fig. 1. The CuII atom exhibits a six-coordinate distorted octahedral geometry with four N atoms [Cu—N 2.015 (3) Å–2.244 (3) Å] from two phenanthroline ligands and two O atoms from the acetate ligand [Cu—O 1.953 (3), 2.764 (3) Å]. Three N atoms and one O atom occupy the equatorial positions with a slight departure from the ideal plane by 0.0563 (2) Å, while one O atom and one N atom lie in the apical positions with an axis angle of 140.63 (10)°, showing a large deviation from the expected 180°. Strong intermolecular O—H···O hydrogen bonding interactions exist.

Related literature top

For metal–1,10-phenanthroline complexes with carboxylates, see: Sun et al. (2007); Liu et al. (2009).

Experimental top

The reaction was carried out by the solvothermal method. Trifluoroacetic acid (0.114 g,1 mmol) and cupric acetate (0.199 g, 1 mmol) and 1,10-phenanthroline (0.312 g, 2 mmol) were added to an airtight vessel with the 21 ml of a 2:1 ethanol-water mixture. The resulting blue solution was filtered. Upon standing, the filtrate yielded blue block-shaped crystals after several days.

The yield is 76% and elemental analysis: calc. for C28H27CuF3N4O8: C 50.34, H 4.07, N 8.39; found: C 50.52, H 4.29, N 8.53. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Refinement top

The Uiso(H) values were set at 1.2Ueq(C—H) for the H atoms from the phen rings and waters, 1.5Ueq(C—H) for the methyl moiety. As the diffraction intensities were of high quality, the H atoms could be located in difference Fourier maps and refined using the riding model. Three disordered F atoms were treated as statistically disordered between two positions with the refined occupancies of 0.5233 (3) and 0.4767 (3), respectively.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
(Acetato-κ2O,O')bis(1,10-phenanthroline- κ2N,N')copper(II) trifluoroacetate tetrahydrate top
Crystal data top
[Cu(C2H3O2)(C12H8N2)2](C2F3O2)·4H2OZ = 2
Mr = 668.08F(000) = 686
Triclinic, P1Dx = 1.528 Mg m3
a = 8.9019 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6662 (9) ÅCell parameters from 4430 reflections
c = 15.698 (1) Åθ = 2.5–27.8°
α = 101.619 (1)°µ = 0.83 mm1
β = 101.512 (1)°T = 293 K
γ = 108.514 (1)°Block, blue
V = 1451.98 (19) Å30.28 × 0.25 × 0.19 mm
Data collection top
Bruker SMART APEX
diffractometer
5112 independent reflections
Radiation source: fine-focus sealed tube4389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.801, Tmax = 0.859k = 1313
7689 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.108P)2 + 0.7243P]
where P = (Fo2 + 2Fc2)/3
5112 reflections(Δ/σ)max = 0.002
425 parametersΔρmax = 1.04 e Å3
103 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Cu(C2H3O2)(C12H8N2)2](C2F3O2)·4H2Oγ = 108.514 (1)°
Mr = 668.08V = 1451.98 (19) Å3
Triclinic, P1Z = 2
a = 8.9019 (7) ÅMo Kα radiation
b = 11.6662 (9) ŵ = 0.83 mm1
c = 15.698 (1) ÅT = 293 K
α = 101.619 (1)°0.28 × 0.25 × 0.19 mm
β = 101.512 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5112 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4389 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.859Rint = 0.043
7689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051103 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.02Δρmax = 1.04 e Å3
5112 reflectionsΔρmin = 0.87 e Å3
425 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.70769 (5)0.42710 (4)0.71713 (3)0.0397 (2)
F10.083 (2)0.9968 (17)0.6171 (10)0.133 (4)0.52 (2)
F20.138 (2)0.8377 (11)0.5566 (10)0.118 (4)0.52 (2)
F30.3252 (15)1.0243 (15)0.6021 (9)0.121 (4)0.52 (2)
F1'0.0317 (13)0.9385 (17)0.5837 (12)0.120 (4)0.48 (2)
F2'0.206 (2)0.8680 (17)0.5546 (10)0.117 (4)0.48 (2)
F3'0.263 (2)1.0720 (11)0.6148 (9)0.116 (4)0.48 (2)
N10.5545 (4)0.3202 (3)0.5937 (2)0.0432 (8)
N20.5668 (4)0.5324 (3)0.6982 (2)0.0440 (8)
N30.6031 (4)0.3667 (3)0.8268 (2)0.0439 (8)
N40.8712 (4)0.5606 (3)0.8296 (2)0.0428 (8)
O10.8368 (4)0.3195 (3)0.7158 (2)0.0491 (7)
O20.9846 (4)0.4555 (4)0.6563 (2)0.0676 (9)
O30.1324 (9)0.8811 (7)0.7380 (5)0.146 (2)
O40.3983 (7)0.9689 (5)0.7462 (4)0.1105 (16)
O50.7803 (6)0.8614 (5)0.9518 (4)0.1055 (15)
H5A0.81300.86790.90510.127*
H5B0.84800.92070.99780.127*
O60.7421 (6)0.0847 (4)0.7568 (4)0.0954 (14)
H6A0.75870.15080.73920.115*
H6B0.64190.05420.75700.115*
O70.5361 (8)0.9627 (7)0.9249 (4)0.139 (2)
H7A0.61160.93270.92560.166*
H7B0.52760.99630.88180.166*
O80.9949 (10)1.0217 (8)0.8494 (5)0.176 (3)
H8A0.89090.99970.82940.211*
H8B1.02760.97990.81130.211*
C10.9569 (5)0.3597 (5)0.6812 (3)0.0505 (10)
C21.0606 (7)0.2817 (6)0.6725 (4)0.0720 (15)
H2A1.01920.21090.69510.108*
H2B1.17310.33150.70710.108*
H2C1.05560.25220.60990.108*
C31.0023 (6)0.6569 (4)0.8305 (3)0.0539 (11)
H31.02260.66440.77570.065*
C41.1096 (6)0.7466 (4)0.9102 (4)0.0624 (13)
H41.19980.81260.90820.075*
C51.0821 (6)0.7371 (4)0.9907 (3)0.0583 (12)
H51.15330.79661.04440.070*
C60.9449 (5)0.6366 (4)0.9928 (3)0.0497 (10)
C70.8417 (5)0.5507 (4)0.9101 (3)0.0402 (9)
C80.6997 (5)0.4478 (4)0.9087 (3)0.0401 (9)
C90.6667 (6)0.4339 (4)0.9899 (3)0.0511 (11)
C100.5254 (7)0.3300 (5)0.9842 (4)0.0659 (14)
H100.49850.31741.03680.079*
C110.4303 (7)0.2496 (5)0.9031 (4)0.0676 (14)
H110.33780.18090.89920.081*
C120.4720 (6)0.2712 (4)0.8253 (3)0.0544 (11)
H120.40470.21530.76940.065*
C130.7751 (7)0.5228 (5)1.0731 (3)0.0633 (13)
H130.75360.51361.12740.076*
C140.9071 (7)0.6189 (5)1.0746 (3)0.0627 (13)
H140.97550.67531.13010.075*
C150.5530 (6)0.2158 (4)0.5418 (3)0.0566 (11)
H150.63030.18260.56310.068*
C160.4407 (7)0.1531 (5)0.4566 (3)0.0685 (14)
H160.44530.08060.42140.082*
C170.3246 (7)0.1982 (6)0.4250 (3)0.0719 (16)
H170.24760.15560.36870.086*
C180.3210 (5)0.3089 (5)0.4771 (3)0.0568 (12)
C190.4408 (5)0.3674 (4)0.5617 (3)0.0446 (9)
C200.4465 (5)0.4808 (4)0.6192 (3)0.0435 (9)
C210.3284 (5)0.5328 (5)0.5919 (3)0.0549 (11)
C220.3376 (7)0.6413 (6)0.6535 (4)0.0709 (15)
H220.26170.67880.63920.085*
C230.4577 (8)0.6925 (5)0.7343 (4)0.0720 (15)
H230.46220.76370.77570.086*
C240.5729 (6)0.6375 (5)0.7545 (3)0.0585 (12)
H240.65650.67510.80900.070*
C250.2096 (6)0.4726 (6)0.5058 (4)0.0689 (16)
H250.13260.50730.48700.083*
C260.2068 (6)0.3658 (7)0.4505 (4)0.0698 (16)
H260.12850.32950.39410.084*
C270.2466 (9)0.9333 (5)0.7120 (4)0.0738 (16)
C280.1951 (7)0.9529 (5)0.6193 (4)0.0709 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0400 (3)0.0424 (3)0.0318 (3)0.0131 (2)0.0061 (2)0.0079 (2)
F10.127 (8)0.135 (8)0.138 (8)0.076 (6)0.004 (6)0.033 (6)
F20.108 (8)0.122 (6)0.075 (5)0.001 (6)0.009 (6)0.010 (5)
F30.109 (7)0.130 (7)0.119 (6)0.005 (6)0.049 (5)0.070 (6)
F1'0.071 (6)0.127 (8)0.130 (8)0.013 (6)0.004 (5)0.032 (6)
F2'0.118 (8)0.148 (8)0.071 (5)0.060 (7)0.024 (6)0.015 (6)
F3'0.127 (8)0.102 (7)0.094 (6)0.006 (6)0.018 (6)0.050 (5)
N10.0406 (18)0.0477 (19)0.0347 (17)0.0091 (15)0.0117 (14)0.0089 (15)
N20.0454 (19)0.0455 (19)0.0408 (18)0.0165 (15)0.0121 (15)0.0125 (15)
N30.0445 (19)0.0401 (18)0.0436 (19)0.0126 (15)0.0115 (15)0.0108 (15)
N40.0416 (18)0.0445 (18)0.0366 (17)0.0123 (15)0.0057 (14)0.0110 (15)
O10.0505 (17)0.0550 (17)0.0462 (16)0.0231 (14)0.0162 (13)0.0159 (14)
O20.072 (2)0.080 (2)0.066 (2)0.0317 (19)0.0306 (18)0.038 (2)
O30.175 (6)0.155 (6)0.132 (5)0.042 (5)0.091 (5)0.077 (5)
O40.098 (4)0.090 (3)0.113 (4)0.023 (3)0.004 (3)0.020 (3)
O50.093 (3)0.131 (4)0.099 (3)0.045 (3)0.031 (3)0.038 (3)
O60.090 (3)0.075 (3)0.127 (4)0.027 (2)0.034 (3)0.044 (3)
O70.136 (5)0.190 (6)0.109 (4)0.102 (5)0.023 (4)0.029 (4)
O80.203 (8)0.259 (9)0.161 (7)0.159 (7)0.096 (6)0.099 (7)
C10.051 (2)0.068 (3)0.034 (2)0.025 (2)0.0098 (18)0.016 (2)
C20.076 (3)0.102 (4)0.062 (3)0.053 (3)0.032 (3)0.030 (3)
C30.051 (3)0.051 (2)0.051 (3)0.009 (2)0.008 (2)0.018 (2)
C40.047 (3)0.045 (3)0.074 (3)0.004 (2)0.001 (2)0.012 (2)
C50.053 (3)0.048 (3)0.052 (3)0.015 (2)0.007 (2)0.003 (2)
C60.052 (2)0.052 (2)0.042 (2)0.026 (2)0.0027 (19)0.0063 (19)
C70.044 (2)0.043 (2)0.0327 (19)0.0205 (18)0.0040 (16)0.0087 (16)
C80.045 (2)0.044 (2)0.038 (2)0.0233 (18)0.0126 (17)0.0132 (17)
C90.062 (3)0.062 (3)0.046 (2)0.036 (2)0.023 (2)0.021 (2)
C100.075 (3)0.078 (4)0.068 (3)0.035 (3)0.041 (3)0.037 (3)
C110.066 (3)0.060 (3)0.083 (4)0.019 (3)0.036 (3)0.029 (3)
C120.054 (3)0.044 (2)0.061 (3)0.012 (2)0.020 (2)0.014 (2)
C130.086 (4)0.079 (4)0.036 (2)0.043 (3)0.022 (2)0.017 (2)
C140.075 (3)0.078 (3)0.033 (2)0.039 (3)0.005 (2)0.004 (2)
C150.058 (3)0.053 (3)0.048 (3)0.010 (2)0.018 (2)0.004 (2)
C160.070 (3)0.063 (3)0.049 (3)0.005 (3)0.020 (2)0.003 (2)
C170.056 (3)0.086 (4)0.034 (2)0.008 (3)0.005 (2)0.002 (2)
C180.041 (2)0.078 (3)0.037 (2)0.001 (2)0.0096 (18)0.019 (2)
C190.034 (2)0.056 (2)0.038 (2)0.0049 (18)0.0116 (16)0.0184 (19)
C200.036 (2)0.055 (2)0.042 (2)0.0124 (18)0.0152 (17)0.0231 (19)
C210.043 (2)0.071 (3)0.064 (3)0.022 (2)0.022 (2)0.039 (3)
C220.066 (3)0.079 (4)0.096 (4)0.043 (3)0.035 (3)0.050 (3)
C230.086 (4)0.062 (3)0.083 (4)0.041 (3)0.032 (3)0.022 (3)
C240.068 (3)0.056 (3)0.055 (3)0.029 (2)0.017 (2)0.013 (2)
C250.039 (2)0.108 (5)0.071 (3)0.024 (3)0.015 (2)0.056 (4)
C260.037 (2)0.115 (5)0.047 (3)0.010 (3)0.005 (2)0.038 (3)
C270.094 (4)0.050 (3)0.073 (4)0.018 (3)0.036 (3)0.010 (3)
C280.069 (3)0.065 (3)0.074 (4)0.015 (3)0.028 (3)0.020 (3)
Geometric parameters (Å, º) top
Cu1—O11.953 (3)C4—H40.9300
Cu1—N12.015 (3)C5—C61.410 (7)
Cu1—N42.022 (3)C5—H50.9300
Cu1—N22.037 (3)C6—C71.397 (6)
Cu1—N32.244 (3)C6—C141.428 (7)
F1—C281.256 (11)C7—C81.433 (6)
F2—C281.367 (12)C8—C91.392 (6)
F3—C281.308 (10)C9—C101.415 (7)
F1'—C281.393 (12)C9—C131.425 (7)
F2'—C281.311 (12)C10—C111.343 (8)
F3'—C281.351 (11)C10—H100.9301
N1—C151.317 (6)C11—C121.392 (7)
N1—C191.357 (5)C11—H110.9300
N2—C241.337 (6)C12—H120.9300
N2—C201.344 (5)C13—C141.334 (8)
N3—C121.326 (6)C13—H130.9300
N3—C81.357 (5)C14—H140.9300
N4—C31.333 (6)C15—C161.389 (7)
N4—C71.361 (5)C15—H150.9300
O1—C11.294 (5)C16—C171.355 (8)
O2—C11.226 (6)C16—H160.9300
O3—C271.202 (8)C17—C181.396 (8)
O4—C271.245 (8)C17—H170.9300
O5—H5A0.8500C18—C191.406 (6)
O5—H5B0.8500C18—C261.422 (8)
O6—H6A0.8501C19—C201.423 (6)
O6—H6B0.8500C20—C211.410 (6)
O7—H7A0.8500C21—C221.397 (8)
O7—H7B0.8501C21—C251.419 (7)
O8—H8A0.8500C22—C231.363 (8)
O8—H8B0.8500C22—H220.9300
C1—C21.494 (7)C23—C241.391 (7)
C2—H2A0.9600C23—H230.9300
C2—H2B0.9600C24—H240.9300
C2—H2C0.9600C25—C261.356 (8)
C3—C41.390 (7)C25—H250.9300
C3—H30.9300C26—H260.9300
C4—C51.353 (8)C27—C281.521 (9)
O1—Cu1—N191.55 (13)C14—C13—C9121.3 (4)
O1—Cu1—N493.66 (13)C14—C13—H13119.3
N1—Cu1—N4169.21 (13)C9—C13—H13119.4
O1—Cu1—N2171.51 (12)C13—C14—C6121.3 (4)
N1—Cu1—N281.21 (14)C13—C14—H14119.2
N4—Cu1—N292.78 (14)C6—C14—H14119.6
O1—Cu1—N393.94 (12)N1—C15—C16122.8 (5)
N1—Cu1—N3110.64 (13)N1—C15—H15118.5
N4—Cu1—N378.44 (13)C16—C15—H15118.7
N2—Cu1—N392.75 (13)C17—C16—C15119.6 (5)
C15—N1—C19117.9 (4)C17—C16—H16120.2
C15—N1—Cu1129.2 (3)C15—C16—H16120.2
C19—N1—Cu1112.9 (3)C16—C17—C18120.0 (4)
C24—N2—C20118.2 (4)C16—C17—H17120.1
C24—N2—Cu1129.2 (3)C18—C17—H17120.0
C20—N2—Cu1112.5 (3)C17—C18—C19116.7 (5)
C12—N3—C8117.7 (4)C17—C18—C26124.9 (5)
C12—N3—Cu1132.8 (3)C19—C18—C26118.4 (5)
C8—N3—Cu1109.5 (2)N1—C19—C18123.0 (4)
C3—N4—C7118.3 (4)N1—C19—C20116.5 (4)
C3—N4—Cu1125.3 (3)C18—C19—C20120.5 (4)
C7—N4—Cu1116.4 (3)N2—C20—C21123.5 (4)
C1—O1—Cu1110.9 (3)N2—C20—C19116.9 (4)
H5A—O5—H5B109.6C21—C20—C19119.6 (4)
H6A—O6—H6B109.6C22—C21—C20116.4 (4)
H7A—O7—H7B109.8C22—C21—C25124.8 (5)
H8A—O8—H8B108.6C20—C21—C25118.8 (5)
O2—C1—O1122.5 (4)C23—C22—C21120.3 (5)
O2—C1—C2121.4 (4)C23—C22—H22119.8
O1—C1—C2116.0 (4)C21—C22—H22119.9
C1—C2—H2A109.0C22—C23—C24119.6 (5)
C1—C2—H2B109.7C22—C23—H23120.1
H2A—C2—H2B109.5C24—C23—H23120.3
C1—C2—H2C109.8N2—C24—C23122.0 (5)
H2A—C2—H2C109.5N2—C24—H24119.3
H2B—C2—H2C109.5C23—C24—H24118.7
N4—C3—C4122.7 (4)C26—C25—C21121.3 (5)
N4—C3—H3118.7C26—C25—H25119.6
C4—C3—H3118.7C21—C25—H25119.2
C5—C4—C3119.5 (5)C25—C26—C18121.4 (5)
C5—C4—H4120.3C25—C26—H26119.1
C3—C4—H4120.2C18—C26—H26119.5
C4—C5—C6119.7 (4)O3—C27—O4130.9 (7)
C4—C5—H5120.2O3—C27—C28113.8 (7)
C6—C5—H5120.1O4—C27—C28115.2 (6)
C7—C6—C5117.6 (4)F1—C28—F3113.6 (9)
C7—C6—C14118.9 (4)F1—C28—F2'127.6 (11)
C5—C6—C14123.5 (4)F3—C28—F2'81.4 (9)
N4—C7—C6122.2 (4)F1—C28—F3'74.3 (9)
N4—C7—C8118.1 (3)F3—C28—F3'40.5 (6)
C6—C7—C8119.6 (4)F2'—C28—F3'113.5 (10)
N3—C8—C9122.7 (4)F1—C28—F2110.5 (9)
N3—C8—C7117.6 (3)F3—C28—F2106.9 (8)
C9—C8—C7119.7 (4)F2'—C28—F226.1 (8)
C8—C9—C10117.2 (4)F3'—C28—F2132.9 (10)
C8—C9—C13119.1 (4)F1—C28—F1'30.7 (7)
C10—C9—C13123.7 (4)F3—C28—F1'126.8 (10)
C11—C10—C9120.0 (5)F2'—C28—F1'99.2 (9)
C11—C10—H10120.0F3'—C28—F1'96.1 (9)
C9—C10—H10120.0F2—C28—F1'79.8 (9)
C10—C11—C12119.0 (5)F1—C28—C27109.3 (8)
C10—C11—H11120.3F3—C28—C27109.3 (8)
C12—C11—H11120.7F2'—C28—C27112.0 (9)
N3—C12—C11123.4 (5)F3'—C28—C27115.4 (7)
N3—C12—H12118.3F2—C28—C27107.1 (8)
C11—C12—H12118.3F1'—C28—C27119.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O50.851.952.787 (8)168
O7—H7B···O40.852.112.854 (8)145
O6—H6A···O10.852.002.844 (5)170
O6—H6B···O4i0.852.032.881 (7)175
O8—H8B···O3ii0.852.032.868 (10)171
O8—H8A···O6iii0.852.172.809 (9)132
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)(C12H8N2)2](C2F3O2)·4H2O
Mr668.08
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9019 (7), 11.6662 (9), 15.698 (1)
α, β, γ (°)101.619 (1), 101.512 (1), 108.514 (1)
V3)1451.98 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.28 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.801, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
7689, 5112, 4389
Rint0.043
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.159, 1.02
No. of reflections5112
No. of parameters425
No. of restraints103
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.87

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.953 (3)Cu1—N22.037 (3)
Cu1—N12.015 (3)Cu1—N32.244 (3)
Cu1—N42.022 (3)
O1—Cu1—N191.55 (13)N4—Cu1—N292.78 (14)
O1—Cu1—N493.66 (13)O1—Cu1—N393.94 (12)
N1—Cu1—N4169.21 (13)N1—Cu1—N3110.64 (13)
O1—Cu1—N2171.51 (12)N4—Cu1—N378.44 (13)
N1—Cu1—N281.21 (14)N2—Cu1—N392.75 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O50.851.952.787 (8)168.1
O7—H7B···O40.852.112.854 (8)145.1
O6—H6A···O10.852.002.844 (5)169.5
O6—H6B···O4i0.852.032.881 (7)174.6
O8—H8B···O3ii0.852.032.868 (10)170.9
O8—H8A···O6iii0.852.172.809 (9)131.5
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the Young Foundation of Shanxi Province for financial support (grant No. 2010021022-1).

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Y., Ning, J., Sun, J. & Zhang, C. (2009). Acta Cryst. E65, m113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J., Ma, C. & Zhang, R. (2007). Acta Cryst. E63, m2691–m2692.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds