organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Chloro­phen­yl)(3,6-di­bromo-2-hy­dr­oxy-7-meth­­oxy-1-naphth­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 24 May 2010; accepted 16 June 2010; online 23 June 2010)

The asymmetric unit of the title compound, C18H11Br2ClO3, contains two crystallographically independent mol­ecules in which the dihedral angles between the naphthalene ring systems and the benzene rings are 55.64 (11) and 60.50 (11)°. In each mol­ecule, an intra­molecular O—H⋯O=C hydrogen bond generates a six-membered ring. In the crystal structure, inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds and two different Br⋯O halogen bonds [2.9850 (19) and 3.2169 (19) Å] are observed.

Related literature

For the structures of closely related compounds, see: Mitsui et al. (2008a[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008a). Acta Cryst. E64, o1278.],b[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008b). Acta Cryst. E64, o2497.], 2009[Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.], 2010a[Mitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, o676.],b[Mitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o873.],c[Mitsui, R., Watanabe, S., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010c). Acta Cryst. E66, o1304.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C18H11Br2ClO3

  • Mr = 470.54

  • Monoclinic, C 2/c

  • a = 32.1178 (6) Å

  • b = 11.1814 (2) Å

  • c = 19.7078 (4) Å

  • β = 104.687 (1)°

  • V = 6846.2 (2) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 7.57 mm−1

  • T = 193 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.135, Tmax = 0.469

  • 60758 measured reflections

  • 6263 independent reflections

  • 5929 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.14

  • 6263 reflections

  • 435 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 0.79 1.77 2.497 (3) 153
O5—H5O⋯O4 0.78 1.85 2.568 (3) 153
C4—H4⋯O4i 0.95 2.42 3.338 (3) 162
C18—H18A⋯Cl2ii 0.98 2.81 3.406 (3) 120
C34—H34⋯O2iii 0.95 2.49 3.397 (4) 160
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x, -y, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we reported the crystal structures of 1-aroylated 2,7-dimethoxynaphthalenes, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008a), (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2008b), (4-chlorophenyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009), 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene (Mitsui et al., 2010a), (8-bromo-2,7-dimethoxy-1-naphthyl)(4-chlorophenyl)methanone (Mitsui et al., 2010b) and (4-chlorophenyl)(3,8-dibromo-2-hydroxy-7-methoxy-1-naphthyl)methanone (Mitsui et al., 2010c). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the structure of a single crystal of 2,7-dibromo-4-(4-chlorobenzoyl)-3-hydroxy-6-methoxynaphthalene, (I). The title compound was prepared by electrophilic aromatic bromination reaction of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone with bromine.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. The title compound crystallizes in the monoclinic crystal system such that there are two molecules in the asymmetric unit, molecules A and B, respectively. In A, the dihedral angle between the naphthalene ring (C1–C10) and the benzene ring (C12–C17) is 55.64 (11)°, and the central carbonyl C—(CO)—C group is relatively coplanar to the naphthalene ring [9.72 (15)°]. In B, by contrast, the dihedral angle between the naphthalene ring (C19–C28) and the benzene ring (C30–C35) is 60.50 (11)°, and the central carbonyl C—(CO)—C group is twisted away from the naphthalene ring [23.73 (15)°]. In each molecule, the hydroxy groups are involved in O—H···OC hydrogen bond generates a six-membered ring (Fig. 1 and Table 1).

In the crystal structure, intermolecular C—H···O and C—H···Cl hydrogen bonding interactions contribute to the stabilization of the molecular and crystal structures (Figs. 2 and 3, Table 1). Additionally, the contact distances Br2···O1 and Br3···O6 are 2.9850 (19) and 3.2169 (19) Å, respectively (Figs. 2 and 3). These contacts are shorter than the sum of their van der Waals radii (3.37 Å), and arranged nearly linearly [C7—Br2···O1 = 172.24 (10)°, C21—Br3···O6 = 142.02 (9)°], suggesting that there is a possibility for halogen bonding, which further contributes to crystal packing stability (Politzer et al., 2007).

Related literature top

For the structures of closely related compounds, see: Mitsui et al. (2008a,b, 2009, 2010a,b,c). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

To a solution of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (313 mg, 1.00 mmol) in chloroform (5 ml) was added Br2 (646 mg, 4.04 mmol) drop-wise at 0 °C. The reaction mixture was stirred for 12 h at 0 °C, then poured into aqueous 2 M Na2S2O3 (10 ml), and the aqueous layer was extracted with CHCl3 (3 × 10 ml). The combined organic layers were washed with 2 M Na2S2O3 (3 × 30 ml) and brine (3 × 30 ml), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by column chromatography (silica gel, CHCl3) to give the title compound (yield 409 mg, 87%). Single crystals suitable for X-ray diffraction analysis were obtained from CHCl3 as yellow blocks (m.p. 431.5–432.0 K).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 10.10 (s, 1H), 8.04 (s, 1H), 7.88 (s, 1H), 7.63 (d, 2H), 7.43 (d, 2H), 6.62 (s, 1H), 3.49 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 194.2, 154.0, 149.2, 138.4, 135.9, 132.3, 131.3, 130.6, 130.5, 128.6, 124.7, 121.0, 111.6, 110.8, 102.8, 55.7; IR (KBr): 1662, 1607, 1591, 1486, 1240, 1211, 1093, 843; HRMS (m/z): [M + H]+ calcd for C18H12Br2ClO3, 468.8842 found, 468.8839. Anal. Calcd for C18H11Br2ClO3: C 45.95, H 2.36. Found: C 46.10, H 2.32.

Refinement top

All the H atoms could be located in difference Fourier maps. All the H atoms were subsequently refined as riding atoms, with O2—H2O = 0.792, O5—H5O = 0.783, C—H = 0.950 (aromatic) and 0.980 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I), showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Partial crystal packing diagram of compound (I), viewed down the c axis. Intermolecular C—H···O hydrogen bonds and Br···O halogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Partial crystal packing diagram of compound (I), viewed down the a axis. Intermolecular C—H···O, C—H···Cl hydrogen bonds and Br···O halogen bonds are shown as dashed lines.
(4-Chlorophenyl)(3,6-dibromo-2-hydroxy-7-methoxy-1-naphthyl)methanone top
Crystal data top
C18H11Br2ClO3F(000) = 3680
Mr = 470.54Dx = 1.826 Mg m3
Monoclinic, C2/cMelting point = 431.5–432.0 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54187 Å
a = 32.1178 (6) ÅCell parameters from 39111 reflections
b = 11.1814 (2) Åθ = 3.2–68.2°
c = 19.7078 (4) ŵ = 7.57 mm1
β = 104.687 (1)°T = 193 K
V = 6846.2 (2) Å3Block, yellow
Z = 160.30 × 0.30 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6263 independent reflections
Radiation source: rotating anode5929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.2°
ω scansh = 3838
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1313
Tmin = 0.135, Tmax = 0.469l = 2323
60758 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.081H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0417P)2 + 12.8149P]
where P = (Fo2 + 2Fc2)/3
6263 reflections(Δ/σ)max = 0.001
435 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
C18H11Br2ClO3V = 6846.2 (2) Å3
Mr = 470.54Z = 16
Monoclinic, C2/cCu Kα radiation
a = 32.1178 (6) ŵ = 7.57 mm1
b = 11.1814 (2) ÅT = 193 K
c = 19.7078 (4) Å0.30 × 0.30 × 0.10 mm
β = 104.687 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6263 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
5929 reflections with I > 2σ(I)
Tmin = 0.135, Tmax = 0.469Rint = 0.036
60758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0417P)2 + 12.8149P]
where P = (Fo2 + 2Fc2)/3
6263 reflectionsΔρmax = 0.85 e Å3
435 parametersΔρmin = 1.08 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.072488 (11)0.38461 (3)0.022815 (15)0.04538 (10)
Br20.173873 (12)0.97541 (3)0.193709 (18)0.04571 (10)
Br30.038818 (9)0.53557 (2)0.168208 (16)0.03360 (9)
Br40.023492 (11)0.17162 (3)0.074334 (14)0.03793 (9)
Cl10.21994 (3)0.46769 (8)0.54028 (4)0.0503 (2)
Cl20.19143 (3)0.20130 (9)0.48243 (5)0.0581 (2)
O10.17220 (7)0.23655 (17)0.22437 (11)0.0403 (5)
O20.12506 (6)0.26173 (17)0.10327 (10)0.0357 (4)
H2O0.14050.23230.13690.043*
O30.22492 (6)0.79766 (17)0.28983 (10)0.0356 (4)
O40.06859 (7)0.28669 (18)0.41182 (10)0.0393 (5)
O50.05702 (6)0.44299 (16)0.31336 (10)0.0303 (4)
H5O0.05930.41450.35040.036*
O60.04818 (7)0.19587 (17)0.22873 (10)0.0372 (5)
C10.15660 (8)0.4293 (2)0.17549 (13)0.0258 (5)
C20.13115 (8)0.3794 (2)0.11283 (14)0.0288 (6)
C30.10935 (8)0.4552 (3)0.05777 (13)0.0309 (6)
C40.11292 (8)0.5753 (3)0.06312 (14)0.0320 (6)
H40.09700.62440.02620.038*
C50.14024 (8)0.6289 (2)0.12333 (13)0.0277 (5)
C60.14426 (9)0.7552 (3)0.12782 (14)0.0322 (6)
H60.12790.80370.09100.039*
C70.17117 (9)0.8070 (2)0.18417 (15)0.0308 (6)
C80.19743 (8)0.7369 (2)0.23794 (14)0.0285 (5)
C90.19403 (8)0.6138 (2)0.23409 (13)0.0268 (5)
H90.21250.56640.26920.032*
C100.16371 (8)0.5568 (2)0.17917 (13)0.0251 (5)
C110.17185 (8)0.3462 (2)0.23443 (14)0.0292 (6)
C120.18475 (8)0.3844 (2)0.30934 (13)0.0265 (5)
C130.22110 (9)0.3333 (3)0.35338 (15)0.0345 (6)
H130.23810.27880.33480.041*
C140.23289 (9)0.3612 (3)0.42463 (15)0.0384 (7)
H140.25850.32950.45450.046*
C150.20650 (9)0.4361 (3)0.45078 (14)0.0328 (6)
C160.16946 (9)0.4855 (3)0.40839 (15)0.0328 (6)
H160.15140.53530.42780.039*
C170.15917 (8)0.4610 (2)0.33720 (14)0.0288 (5)
H170.13450.49670.30710.035*
C180.24891 (9)0.7304 (3)0.34889 (15)0.0358 (6)
H18A0.26680.78490.38320.043*
H18B0.26740.67240.33320.043*
H18C0.22900.68790.37070.043*
C190.06148 (7)0.2314 (2)0.29361 (13)0.0245 (5)
C200.05402 (7)0.3492 (2)0.27021 (13)0.0251 (5)
C210.04405 (8)0.3740 (2)0.19710 (14)0.0261 (5)
C220.03838 (8)0.2840 (2)0.14929 (13)0.0271 (5)
H220.03190.30250.10070.033*
C230.04202 (8)0.1626 (2)0.17117 (13)0.0256 (5)
C240.03339 (8)0.0696 (2)0.12090 (13)0.0273 (5)
H240.02560.08850.07230.033*
C250.03620 (8)0.0467 (2)0.14174 (13)0.0275 (5)
C260.04715 (8)0.0773 (2)0.21398 (13)0.0264 (5)
C270.05499 (8)0.0121 (2)0.26305 (13)0.0259 (5)
H270.06140.00850.31140.031*
C280.05375 (7)0.1344 (2)0.24380 (13)0.0231 (5)
C290.07782 (8)0.2141 (2)0.37033 (13)0.0276 (5)
C300.10722 (8)0.1132 (2)0.39876 (13)0.0273 (5)
C310.14023 (8)0.0807 (3)0.36814 (13)0.0296 (6)
H310.14460.12450.32920.035*
C320.16668 (9)0.0151 (3)0.39424 (15)0.0346 (6)
H320.18930.03770.37380.042*
C330.15938 (9)0.0772 (3)0.45092 (15)0.0367 (6)
C340.12720 (10)0.0470 (3)0.48230 (15)0.0391 (7)
H340.12280.09170.52090.047*
C350.10132 (10)0.0504 (3)0.45627 (14)0.0345 (6)
H350.07940.07430.47800.041*
C360.06237 (12)0.2311 (3)0.30100 (15)0.0438 (8)
H36A0.06190.31850.30430.053*
H36B0.04310.19690.32730.053*
H36C0.09170.20200.32070.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05153 (19)0.0532 (2)0.02754 (16)0.02078 (15)0.00293 (13)0.00796 (13)
Br20.0600 (2)0.01933 (17)0.0526 (2)0.00021 (13)0.00479 (16)0.00278 (13)
Br30.04039 (16)0.02086 (15)0.04206 (17)0.00226 (11)0.01511 (13)0.00746 (11)
Br40.05632 (19)0.02872 (17)0.02572 (15)0.00679 (13)0.00481 (13)0.00455 (11)
Cl10.0497 (4)0.0711 (6)0.0289 (3)0.0060 (4)0.0077 (3)0.0068 (3)
Cl20.0671 (5)0.0552 (5)0.0506 (5)0.0325 (4)0.0123 (4)0.0199 (4)
O10.0628 (13)0.0182 (10)0.0390 (11)0.0006 (9)0.0116 (10)0.0024 (8)
O20.0475 (11)0.0254 (10)0.0342 (10)0.0079 (8)0.0105 (9)0.0082 (8)
O30.0414 (11)0.0228 (10)0.0359 (10)0.0052 (8)0.0023 (8)0.0017 (8)
O40.0536 (12)0.0319 (11)0.0301 (10)0.0092 (9)0.0064 (9)0.0065 (8)
O50.0364 (10)0.0221 (9)0.0325 (9)0.0025 (8)0.0087 (8)0.0022 (7)
O60.0603 (13)0.0202 (10)0.0264 (10)0.0037 (9)0.0025 (9)0.0017 (7)
C10.0290 (12)0.0217 (13)0.0282 (13)0.0018 (10)0.0103 (10)0.0019 (10)
C20.0323 (13)0.0268 (14)0.0307 (13)0.0056 (11)0.0140 (11)0.0069 (11)
C30.0315 (13)0.0377 (16)0.0233 (12)0.0089 (11)0.0062 (10)0.0056 (11)
C40.0316 (13)0.0373 (16)0.0258 (13)0.0028 (12)0.0050 (11)0.0014 (11)
C50.0297 (12)0.0272 (14)0.0263 (12)0.0013 (10)0.0072 (10)0.0003 (10)
C60.0358 (14)0.0268 (14)0.0319 (14)0.0016 (11)0.0049 (11)0.0058 (11)
C70.0375 (14)0.0164 (13)0.0382 (15)0.0007 (10)0.0088 (12)0.0012 (11)
C80.0302 (13)0.0231 (13)0.0307 (13)0.0021 (10)0.0052 (10)0.0014 (10)
C90.0291 (12)0.0227 (13)0.0280 (13)0.0007 (10)0.0063 (10)0.0009 (10)
C100.0276 (12)0.0227 (13)0.0266 (12)0.0011 (10)0.0100 (10)0.0009 (10)
C110.0320 (13)0.0219 (14)0.0353 (14)0.0027 (10)0.0113 (11)0.0012 (11)
C120.0322 (13)0.0197 (13)0.0291 (13)0.0025 (10)0.0103 (10)0.0028 (10)
C130.0402 (15)0.0302 (15)0.0356 (15)0.0088 (12)0.0142 (12)0.0044 (12)
C140.0360 (14)0.0437 (18)0.0345 (15)0.0067 (13)0.0074 (12)0.0077 (13)
C150.0367 (14)0.0371 (16)0.0253 (13)0.0060 (12)0.0095 (11)0.0009 (11)
C160.0331 (14)0.0329 (15)0.0354 (14)0.0000 (11)0.0140 (12)0.0044 (12)
C170.0268 (12)0.0265 (14)0.0333 (14)0.0008 (10)0.0080 (10)0.0016 (11)
C180.0401 (15)0.0295 (15)0.0329 (14)0.0026 (12)0.0003 (12)0.0015 (12)
C190.0213 (11)0.0252 (13)0.0265 (12)0.0018 (9)0.0050 (9)0.0007 (10)
C200.0213 (11)0.0226 (13)0.0316 (13)0.0006 (9)0.0069 (10)0.0015 (10)
C210.0256 (12)0.0186 (12)0.0347 (14)0.0019 (9)0.0086 (10)0.0051 (10)
C220.0283 (12)0.0271 (14)0.0265 (12)0.0012 (10)0.0078 (10)0.0051 (10)
C230.0251 (12)0.0242 (13)0.0267 (13)0.0001 (10)0.0051 (10)0.0025 (10)
C240.0323 (13)0.0281 (14)0.0203 (12)0.0018 (11)0.0044 (10)0.0007 (10)
C250.0331 (13)0.0252 (14)0.0224 (12)0.0043 (10)0.0036 (10)0.0045 (10)
C260.0314 (12)0.0211 (13)0.0250 (12)0.0014 (10)0.0037 (10)0.0012 (10)
C270.0293 (12)0.0241 (13)0.0223 (12)0.0000 (10)0.0030 (10)0.0024 (10)
C280.0221 (11)0.0222 (13)0.0244 (12)0.0007 (9)0.0047 (9)0.0003 (10)
C290.0310 (13)0.0237 (13)0.0266 (13)0.0019 (10)0.0046 (10)0.0027 (10)
C300.0316 (13)0.0261 (14)0.0206 (12)0.0000 (10)0.0002 (10)0.0031 (10)
C310.0278 (12)0.0351 (15)0.0242 (12)0.0025 (11)0.0034 (10)0.0039 (11)
C320.0283 (13)0.0399 (16)0.0334 (14)0.0045 (12)0.0037 (11)0.0016 (12)
C330.0413 (15)0.0332 (16)0.0301 (14)0.0108 (12)0.0008 (12)0.0053 (12)
C340.0527 (17)0.0389 (17)0.0254 (13)0.0080 (14)0.0094 (12)0.0071 (12)
C350.0442 (15)0.0342 (16)0.0259 (13)0.0070 (13)0.0108 (12)0.0016 (11)
C360.071 (2)0.0263 (15)0.0273 (14)0.0007 (14)0.0002 (14)0.0052 (11)
Geometric parameters (Å, º) top
Br1—C31.896 (3)C14—H140.9500
Br2—C71.892 (3)C15—C161.384 (4)
Br3—C211.889 (2)C16—C171.385 (4)
Br4—C251.899 (3)C16—H160.9500
Cl1—C151.743 (3)C17—H170.9500
Cl2—C331.745 (3)C18—H18A0.9800
O1—C111.243 (3)C18—H18B0.9800
O2—C21.336 (3)C18—H18C0.9800
O2—H2O0.7916C19—C201.396 (4)
O3—C81.353 (3)C19—C281.441 (3)
O3—C181.435 (3)C19—C291.482 (3)
O4—C291.240 (3)C20—C211.422 (4)
O5—C201.338 (3)C21—C221.359 (4)
O5—H5O0.7825C22—C231.419 (4)
O6—C261.356 (3)C22—H220.9500
O6—C361.436 (3)C23—C241.414 (4)
C1—C21.412 (4)C23—C281.420 (3)
C1—C101.442 (4)C24—C251.360 (4)
C1—C111.471 (4)C24—H240.9500
C2—C31.415 (4)C25—C261.419 (3)
C3—C41.350 (4)C26—C271.369 (4)
C4—C51.417 (4)C27—C281.417 (4)
C4—H40.9500C27—H270.9500
C5—C101.417 (4)C29—C301.487 (4)
C5—C61.419 (4)C30—C351.386 (4)
C6—C71.353 (4)C30—C311.394 (4)
C6—H60.9500C31—C321.383 (4)
C7—C81.413 (4)C31—H310.9500
C8—C91.381 (4)C32—C331.385 (4)
C9—C101.411 (4)C32—H320.9500
C9—H90.9500C33—C341.374 (4)
C11—C121.491 (4)C34—C351.387 (4)
C12—C131.389 (4)C34—H340.9500
C12—C171.392 (4)C35—H350.9500
C13—C141.394 (4)C36—H36A0.9800
C13—H130.9500C36—H36B0.9800
C14—C151.381 (4)C36—H36C0.9800
C2—O2—H2O104.6H18A—C18—H18C109.5
C8—O3—C18117.6 (2)H18B—C18—H18C109.5
C20—O5—H5O104.4C20—C19—C28119.9 (2)
C26—O6—C36117.7 (2)C20—C19—C29116.5 (2)
C2—C1—C10118.9 (2)C28—C19—C29123.5 (2)
C2—C1—C11116.4 (2)O5—C20—C19123.4 (2)
C10—C1—C11124.6 (2)O5—C20—C21116.9 (2)
O2—C2—C1123.0 (3)C19—C20—C21119.6 (2)
O2—C2—C3117.1 (2)C22—C21—C20121.0 (2)
C1—C2—C3119.9 (2)C22—C21—Br3120.9 (2)
C4—C3—C2121.4 (2)C20—C21—Br3118.16 (19)
C4—C3—Br1120.2 (2)C21—C22—C23120.7 (2)
C2—C3—Br1118.4 (2)C21—C22—H22119.6
C3—C4—C5120.6 (3)C23—C22—H22119.6
C3—C4—H4119.7C24—C23—C22120.2 (2)
C5—C4—H4119.7C24—C23—C28119.8 (2)
C4—C5—C10120.3 (2)C22—C23—C28119.9 (2)
C4—C5—C6120.0 (3)C25—C24—C23120.4 (2)
C10—C5—C6119.7 (2)C25—C24—H24119.8
C7—C6—C5120.4 (3)C23—C24—H24119.8
C7—C6—H6119.8C24—C25—C26120.9 (2)
C5—C6—H6119.8C24—C25—Br4120.40 (19)
C6—C7—C8120.9 (2)C26—C25—Br4118.62 (19)
C6—C7—Br2120.8 (2)O6—C26—C27124.9 (2)
C8—C7—Br2118.3 (2)O6—C26—C25115.9 (2)
O3—C8—C9124.7 (2)C27—C26—C25119.1 (2)
O3—C8—C7116.0 (2)C26—C27—C28121.9 (2)
C9—C8—C7119.2 (2)C26—C27—H27119.1
C8—C9—C10121.4 (2)C28—C27—H27119.1
C8—C9—H9119.3C27—C28—C23117.8 (2)
C10—C9—H9119.3C27—C28—C19123.7 (2)
C9—C10—C5117.8 (2)C23—C28—C19118.4 (2)
C9—C10—C1123.7 (2)O4—C29—C19120.4 (2)
C5—C10—C1118.5 (2)O4—C29—C30118.9 (2)
O1—C11—C1120.8 (2)C19—C29—C30120.7 (2)
O1—C11—C12115.4 (2)C35—C30—C31119.9 (2)
C1—C11—C12123.7 (2)C35—C30—C29119.1 (2)
C13—C12—C17119.5 (2)C31—C30—C29121.0 (2)
C13—C12—C11118.7 (2)C32—C31—C30120.2 (3)
C17—C12—C11121.5 (2)C32—C31—H31119.9
C12—C13—C14120.5 (3)C30—C31—H31119.9
C12—C13—H13119.7C31—C32—C33118.3 (3)
C14—C13—H13119.7C31—C32—H32120.8
C15—C14—C13118.4 (3)C33—C32—H32120.8
C15—C14—H14120.8C34—C33—C32122.7 (3)
C13—C14—H14120.8C34—C33—Cl2118.6 (2)
C14—C15—C16122.1 (3)C32—C33—Cl2118.7 (2)
C14—C15—Cl1118.9 (2)C33—C34—C35118.4 (3)
C16—C15—Cl1119.0 (2)C33—C34—H34120.8
C15—C16—C17118.7 (3)C35—C34—H34120.8
C15—C16—H16120.6C30—C35—C34120.4 (3)
C17—C16—H16120.6C30—C35—H35119.8
C16—C17—C12120.6 (2)C34—C35—H35119.8
C16—C17—H17119.7O6—C36—H36A109.5
C12—C17—H17119.7O6—C36—H36B109.5
O3—C18—H18A109.5H36A—C36—H36B109.5
O3—C18—H18B109.5O6—C36—H36C109.5
H18A—C18—H18B109.5H36A—C36—H36C109.5
O3—C18—H18C109.5H36B—C36—H36C109.5
C10—C1—C2—O2175.8 (2)C28—C19—C20—O5174.3 (2)
C11—C1—C2—O27.9 (4)C29—C19—C20—O56.4 (3)
C10—C1—C2—C36.8 (4)C28—C19—C20—C217.9 (3)
C11—C1—C2—C3169.6 (2)C29—C19—C20—C21171.4 (2)
O2—C2—C3—C4178.8 (2)O5—C20—C21—C22176.9 (2)
C1—C2—C3—C41.2 (4)C19—C20—C21—C225.1 (4)
O2—C2—C3—Br11.8 (3)O5—C20—C21—Br33.0 (3)
C1—C2—C3—Br1175.81 (19)C19—C20—C21—Br3174.94 (18)
C2—C3—C4—C52.7 (4)C20—C21—C22—C230.4 (4)
Br1—C3—C4—C5179.7 (2)Br3—C21—C22—C23179.53 (19)
C3—C4—C5—C100.9 (4)C21—C22—C23—C24176.0 (2)
C3—C4—C5—C6179.0 (3)C21—C22—C23—C283.1 (4)
C4—C5—C6—C7178.1 (3)C22—C23—C24—C25179.0 (2)
C10—C5—C6—C71.7 (4)C28—C23—C24—C250.1 (4)
C5—C6—C7—C83.2 (4)C23—C24—C25—C261.0 (4)
C5—C6—C7—Br2175.7 (2)C23—C24—C25—Br4178.73 (19)
C18—O3—C8—C97.1 (4)C36—O6—C26—C276.0 (4)
C18—O3—C8—C7173.8 (2)C36—O6—C26—C25175.3 (3)
C6—C7—C8—O3176.3 (3)C24—C25—C26—O6178.7 (2)
Br2—C7—C8—O34.7 (3)Br4—C25—C26—O60.9 (3)
C6—C7—C8—C92.9 (4)C24—C25—C26—C270.1 (4)
Br2—C7—C8—C9176.1 (2)Br4—C25—C26—C27177.86 (19)
O3—C8—C9—C10178.3 (2)O6—C26—C27—C28179.4 (2)
C7—C8—C9—C102.6 (4)C25—C26—C27—C281.9 (4)
C8—C9—C10—C57.3 (4)C26—C27—C28—C232.9 (4)
C8—C9—C10—C1175.2 (2)C26—C27—C28—C19179.5 (2)
C4—C5—C10—C9173.0 (2)C24—C23—C28—C272.0 (3)
C6—C5—C10—C96.9 (4)C22—C23—C28—C27177.1 (2)
C4—C5—C10—C14.6 (4)C24—C23—C28—C19178.8 (2)
C6—C5—C10—C1175.5 (2)C22—C23—C28—C190.3 (3)
C2—C1—C10—C9169.1 (2)C20—C19—C28—C27171.4 (2)
C11—C1—C10—C914.9 (4)C29—C19—C28—C279.4 (4)
C2—C1—C10—C58.4 (4)C20—C19—C28—C235.2 (3)
C11—C1—C10—C5167.6 (2)C29—C19—C28—C23174.0 (2)
C2—C1—C11—O118.4 (4)C20—C19—C29—O429.0 (4)
C10—C1—C11—O1165.5 (3)C28—C19—C29—O4151.7 (3)
C2—C1—C11—C12157.1 (2)C20—C19—C29—C30147.9 (2)
C10—C1—C11—C1219.0 (4)C28—C19—C29—C3031.3 (4)
O1—C11—C12—C1345.9 (4)O4—C29—C30—C3544.2 (4)
C1—C11—C12—C13138.4 (3)C19—C29—C30—C35138.8 (3)
O1—C11—C12—C17128.2 (3)O4—C29—C30—C31136.2 (3)
C1—C11—C12—C1747.5 (4)C19—C29—C30—C3140.8 (4)
C17—C12—C13—C142.2 (4)C35—C30—C31—C321.0 (4)
C11—C12—C13—C14176.3 (3)C29—C30—C31—C32178.5 (2)
C12—C13—C14—C153.1 (4)C30—C31—C32—C330.2 (4)
C13—C14—C15—C161.2 (5)C31—C32—C33—C340.4 (5)
C13—C14—C15—Cl1177.9 (2)C31—C32—C33—Cl2177.9 (2)
C14—C15—C16—C171.5 (4)C32—C33—C34—C350.6 (5)
Cl1—C15—C16—C17179.4 (2)Cl2—C33—C34—C35178.9 (2)
C15—C16—C17—C122.5 (4)C31—C30—C35—C342.0 (4)
C13—C12—C17—C160.7 (4)C29—C30—C35—C34177.6 (3)
C11—C12—C17—C16173.3 (2)C33—C34—C35—C301.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.791.772.497 (3)153
O5—H5O···O40.781.852.568 (3)153
C4—H4···O4i0.952.423.338 (3)162
C18—H18A···Cl2ii0.982.813.406 (3)120
C34—H34···O2iii0.952.493.397 (4)160
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z+1; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H11Br2ClO3
Mr470.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)32.1178 (6), 11.1814 (2), 19.7078 (4)
β (°) 104.687 (1)
V3)6846.2 (2)
Z16
Radiation typeCu Kα
µ (mm1)7.57
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.135, 0.469
No. of measured, independent and
observed [I > 2σ(I)] reflections
60758, 6263, 5929
Rint0.036
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.14
No. of reflections6263
No. of parameters435
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0417P)2 + 12.8149P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.85, 1.08

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.791.772.497 (3)153
O5—H5O···O40.781.852.568 (3)153
C4—H4···O4i0.952.423.338 (3)162
C18—H18A···Cl2ii0.982.813.406 (3)120
C34—H34···O2iii0.952.493.397 (4)160
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z+1; (iii) x, y, z+1/2.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by the Mukai Science and Technology Foundation, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o873.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, o676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008a). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008b). Acta Cryst. E64, o2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Watanabe, S., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010c). Acta Cryst. E66, o1304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds