organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1878-o1879

3β-Hy­dr­oxy­lup-20(29)-en-28-yl 1H-imidazole-1-carboxyl­ate

aLaboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, P-3000-548 Coimbra, Portugal, and bCEMDRX, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: jap@pollux.fis.uc.pt

(Received 3 June 2010; accepted 24 June 2010; online 30 June 2010)

The title triterpene, C34H52N2O3, is a C-28 carbamate derivative of betulin prepared in a one-step reaction from the commercially available 1,1′-carbonyl­diimidazole (CDI). All rings are fused trans. The X-ray study shows the retention of the configuration of C-28 with respect to the known chiral centres of the molecule. In the crystal, the mol­ecules are O—H⋯O hydrogen bonded via the hy­droxy group and the carbonyl group of the carbamate function into chains running along the c axis. A quantum-mechanical ab initio Roothaan Hartree–Fock calculation of the equilibrium geometry of the isolated mol­ecule gives values for bond-lengths and valency angles close to the experimental values. The calculations also reproduce the mol­ecular conformation well, with calculated puckering parameters that agree well with the observed values.

Related literature

For the synthesis of the title compound, see: Santos et al. (2009[Santos, R. C., Salvador, J. A. R., Marín, S. & Cascante, M. (2009). Bioorg. Med. Chem. 17, 6241-6250.]). For the biological activity of betulin and betulinic acid, see: Dzubak et al. (2006[Dzubak, P., Hajduch, M., Vydra, D., Hustova, A., Kvasnica, M., Biedermann, D., Markova, L., Urban, M. & Sarek, J. (2006). Nat. Prod. Rep. 23, 294-411.]); Tolstikova et al. (2006[Tolstikova, T. G., Sorokina, I. V., Tolstikov, G. A., Tolstikov, A. G. & Flekhter, O. B. (2006). Russ. J. Bioorg. Chem. 32, 37-49.]); Petronelli et al. (2009[Petronelli, A., Pannitteri, G. & Testa, U. (2009). Anticancer Drugs, 20, 880-892.]). For plant triterpenes as potential anti-cancer drugs, see: Kinghorn et al. (2004[Kinghorn, A. D., Su, B. N., Jang, D. S., Chang, L. C., Lee, D., Gu, J. Q., Carcache-Blanco, E. J., Powlus, A. D., Lee, S. K., Park, E. J., Cuendet, M., Gills, J. J., Bhat, K., Park, H. S., Mata-Greenwood, E., Song, L. L., Jong, M. H. & Pezzuto, J. M. (2004). Planta Med. 70, 691-705.]); Setzer & Setzer (2003[Setzer, W. N. & Setzer, M. C. (2003). Mini Rev. Med. Chem. 3, 540-556.]). For products afforded by the reaction of CDI with alcohols and phenols, see: Tang et al. (2004[Tang, Y. Q., Dong, Y. X. & Vennerstrom, J. L. (2004). Synthesis, pp. 2540-2544.]); Totleben et al. (1997[Totleben, M. J., Freeman, J. P. & Szmuszkovicz, J. (1997). J. Org. Chem. 62, 7319-7323.]); Herbez & Fischer (2005[Herbez, V. & Fischer, F. (2005). Tetrahedron Lett. 46, 6797-6799.]); Moreira et al. (2008[Moreira, V. M. A., Vasaitis, T. S., Guo, Z. Y., Njar, V. C. O. & Salvador, J. A. R. (2008). Steroids, 73, 1217-1227.]); Ramos Silva et al. (2007[Ramos Silva, M., Matos Beja, A., Moreira, V. M., Santos, R. C. & Salvador, J. A. R. (2007). Acta Cryst. E63, o4824.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure. New York: Plenum Press.]). The quantum chemical calculations were performed with the computer program GAMESS (Schmidt et al., 1993[Schmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.]).

[Scheme 1]

Experimental

Crystal data
  • C34H52N2O3

  • Mr = 536.78

  • Orthorhombic, P 21 21 21

  • a = 8.2575 (2) Å

  • b = 12.3909 (4) Å

  • c = 29.0992 (8) Å

  • V = 2977.37 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.898, Tmax = 1.0

  • 54547 measured reflections

  • 3117 independent reflections

  • 2106 reflections with I > 2σ(I)

  • Rint = 0.111

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.119

  • S = 1.02

  • 3117 reflections

  • 360 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3A⋯O28Bi 0.82 2.13 2.920 (4) 162
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cancer is the second most important disease leading to death in both the developing and developed countries nowadays. Numerous experimental and epidemiological studies have shown that several plant derived natural products may serve as effective anticancer drugs, among which are plant triterpenes (Kinghorn et al., 2004 and Setzer et al., 2003). Betulin and betulinic acid, two pentacyclic lupane triterpenes were reported to display several biological effects including anti-inflammatory, antiviral, antimalarial and in particular anticancer (Dzubak et al., 2006 and Tolstikova et al., 2006). The therapeutic characteristics of betulinic acid regarding specificity and mode of action make it a promising anticancer agent presently under evaluation in phase I studies (Petronelli et al., 2009).

As part of our current interest in the synthesis of new triterpenoid derivatives with cytotoxic activity, we have recently reported the synthesis and evaluation of novel carbamates and N-acylheterocyclic derivatives of betulin and betulinic acid for potential use as chemotherapeutic agents (Santos et al., 2009).

The general procedure for the synthesis of the novel lupane derivatives involved dissolution of the corresponding lupanes and CDI, in THF at reflux, under N2. The reaction of CDI with alcohols and phenols has been reported to afford either N-alkylimidazoles (Tang et al., 2004 and Totleben et al., 1997) or imidazole carboxylic esters (carbamates) (Herbez et al., 2005; Moreira et al., 2008; Ramos Silva et al., 2007; Tang et al., 2004 and Totleben et al., 1997) depending both on alcohol type and on the reaction conditions used. In this case the reaction afforded the carbamate derivative 3β-hydroxy-lup-20 (29)-en-28-yl-1H-imidazole-1-carboxylate in good yield. This compound had been found to induce a selective dose-dependent decrease in the viability of HepG2, HeLa and Jurkat cells after 72 h of treatment according to the determined IC50 values (4.2 µ M, 7.6 µ M and 16.3µ M, respectively), which were 2–8 times lower than that obtained with betulinic acid.

Mindful of the biological and synthetic importance of such molecules, we report in this communication the molecular structure of the 3β-hydroxy-lup-20 (29)-en-28-yl-1H-imidazole-1-carboxylate determined by single-crystal X-ray diffraction, and compare it with that of the free molecule as given by a quantum mechanical ab initio calculation. The structure of this compound with the corresponding atomic numbering scheme is shown in Fig. 1. This triterpenoid compound is a lupane-type with an imidazole carbonyloxy at C-28. The retention of configuration of C-28 was unequivocally demonstrated by this X-ray crystallographic study.

Bond lengths and valency angles have typical values for this type of compounds. All rings are fused trans as shown by the angle between the least-squares planes of the rings [rings A and B: 14.63 (18)°, B and C: 10.63 (18)°, C and D: 6.67 (18)°, D and E: 4.6 (2)°]. Rings A and C have conformations close to chair while rings B and D have conformations slightly distorted from chair towards half-chair as shown by the Cremer & Pople (1975) parameters [ring A: Q = 0.545 (4) Å, θ = 5.4 (4)° and ϕ = 36 (5)°; B: Q = 0.571 (4) Å, θ = 11.3 (4)° and ϕ = 1.0 (19)°; C: Q = 0.601 (4) Å, θ = 5.7 (4)° and ϕ = 338 (3)°; D: Q = 0.569 (4) Å, θ = 171.1 (4)° and ϕ = 90 (2)°]. Ring E has a twisted conformation along the C17–C18 bond [q2 = 0.443 (4) Å and ϕ2 = 9.0 (5)° and asymmetry parameters (Duax & Norton, 1975) ΔC2(C21) = ΔC2(C17,18) = 11.7 (4)°].

The molecules are hydrogen bonded involving the hydroxyl group at C3 and the carbonyl group of the carbamate moiety, forming infinite chains running along the c axis. In addition, two short distances between C16—H16A and C28—H28B and the O28A and O28B atoms, respectively may be due to weak intramolecular C—H···O interactions.

In order to gain some insight on how the crystal packing of (I) might affect the molecular geometry we have performed a quantum chemical calculation on the equilibrium geometry of the free molecule. These calculations were performed with the computer program GAMESS (Schmidt et al., 1993).

The ab initio calculations reproduce the observed experimental bond lengths and valency angles of the molecule well, with the exception of the bond C20—C30 for which the calculations gave a distance of 1.5103 Å instead of the observed value of 1.433 (6) Å. Also, the calculated conformations of the rings are very close to the experimental values, with the exception of ring E for which the calculations gave a conformation closer to envelope on C17, instead of the observed twisted conformation around C17–C18.

Related literature top

For the synthesis of the title compound, see: Santos et al. (2009). For the biological activity of betulin and betulinic acid, see: Dzubak et al. (2006); Tolstikova et al. (2006); Petronelli et al. (2009). For plant triterpenes as potential anti-cancer drugs, see: Kinghorn et al. (2004); Setzer & Setzer (2003). For products afforded by the reaction of CDI with alcohols and phenols, see: Tang et al. (2004); Totleben et al. (1997); Herbez & Fischer (2005); Moreira et al. (2008); Ramos Silva et al. (2007). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Duax & Norton (1975). The quantum chemical calculations were performed with the computer program GAMESS (Schmidt et al., 1993).

Experimental top

All reagents were obtained from Sigma-Aldrich Co. THF was dried and purified before use according to standard procedures. A solution of betulin (200 mg, 0.45 mmol) and CDI (219 mg, 1.35 mmol) was refluxed in anyhdrous THF (8 ml). After 7 h the reaction was complete (TLC control). Water (30 ml) was added to the mixture and the resulting precipitate was dissolved in ethyl ether (50 ml). The aqueous phase was extracted twice with diethyl ether (2 x 30 ml). The organic phase was then washed with water (30 ml), brine (30 ml), dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure to give a yellowish solid. This solid was submitted to f.c.c. with petroleum ether 40–60°C/ethyl acetate (3:2) and afforded the title compound (246 mg, 82%). Full analytical details for this compound (MS, IR, 1H and 13C NMR spectroscopy data) can be found in Santos et al., 2009. Recrystallization from acetone at room temperature gave colourless single crystals suitable for X-ray diffraction.

Ab initio calculations were based on a molecular orbital Roothaan Hartree-Fock method using an extended 6–31 G(d,p) basis set. Tight conditions for convergence of both the self-consistent field cycles and maximum density and energy gradient variations were imposed (10-6 atomic units). The program was run on the Milipeia cluster of UC-LCA (using 16 Opteron cores at 2.2 GHz, runing Linux).

Refinement top

All H atoms attached to C atoms were refined as riding on their parent atoms using SHELXL97 defaults. The H atom of the hydroxyl group was refined using an HFIX 147 instruction with Uiso= 1.5 Ueq of the O atom. The absolute configuration was not determined from the X-ray data, as the molecule lacks any strong anomalous scatterers at the Mo Kα wavelength, but was known from the synthetic route. Friedel pairs were merged for the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII plot of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Packing diagram (view along the a axis) showing the hydrogen bonding network.
[Figure 3] Fig. 3. The formation of the title compound.
3β-Hydroxylup-20 (29)-en-28-yl 1H-imidazole-1-carboxylate top
Crystal data top
C34H52N2O3Dx = 1.197 Mg m3
Mr = 536.78Melting point: 476 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3394 reflections
a = 8.2575 (2) Åθ = 2.6–19.6°
b = 12.3909 (4) ŵ = 0.08 mm1
c = 29.0992 (8) ÅT = 293 K
V = 2977.37 (15) Å3Block, colourless
Z = 40.25 × 0.22 × 0.18 mm
F(000) = 1176
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3117 independent reflections
Radiation source: fine-focus sealed tube2106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
ϕ and ω scansθmax = 25.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 99
Tmin = 0.898, Tmax = 1.0k = 1414
54547 measured reflectionsl = 3535
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.259P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3117 reflectionsΔρmax = 0.17 e Å3
360 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (6)
Crystal data top
C34H52N2O3V = 2977.37 (15) Å3
Mr = 536.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2575 (2) ŵ = 0.08 mm1
b = 12.3909 (4) ÅT = 293 K
c = 29.0992 (8) Å0.25 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3117 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2106 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 1.0Rint = 0.111
54547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
3117 reflectionsΔρmin = 0.20 e Å3
360 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O3A1.2324 (3)0.9802 (3)0.21004 (8)0.0692 (9)
H3A1.18560.94760.23070.104*
O28A0.3667 (3)1.0883 (2)0.12637 (8)0.0487 (7)
O28B0.3861 (3)1.1078 (3)0.20317 (9)0.0608 (8)
N28A0.1558 (3)1.1559 (2)0.16449 (11)0.0456 (8)
N28B0.0758 (4)1.2165 (3)0.13709 (15)0.0720 (11)
C11.1881 (4)0.9825 (3)0.08289 (11)0.0431 (10)
H1A1.26191.01030.05980.052*
H1B1.17840.90520.07820.052*
C21.2598 (4)1.0030 (4)0.13052 (11)0.0472 (10)
H2A1.27661.07990.13460.057*
H2B1.36430.96760.13280.057*
C31.1511 (4)0.9619 (3)0.16763 (11)0.0447 (9)
H31.14100.88370.16360.054*
C40.9786 (4)1.0102 (3)0.16640 (12)0.0403 (9)
C50.9112 (4)0.9973 (3)0.11667 (11)0.0351 (8)
H50.90230.91910.11240.042*
C60.7385 (4)1.0385 (3)0.11032 (11)0.0449 (10)
H6A0.73961.11660.10810.054*
H6B0.67391.01870.13690.054*
C70.6626 (4)0.9911 (3)0.06708 (11)0.0452 (10)
H7A0.65110.91380.07110.054*
H7B0.55491.02110.06340.054*
C80.7600 (4)1.0123 (3)0.02291 (11)0.0354 (8)
C90.9435 (4)0.9876 (3)0.03140 (11)0.0342 (8)
H90.94790.90920.03580.041*
C101.0205 (4)1.0351 (3)0.07616 (11)0.0350 (8)
C111.0414 (4)1.0077 (3)0.01245 (11)0.0421 (9)
H11A1.15370.98900.00690.051*
H11B1.03691.08390.02000.051*
C120.9792 (4)0.9427 (3)0.05311 (11)0.0390 (9)
H12A1.03940.96280.08040.047*
H12B0.99800.86660.04740.047*
C130.7987 (4)0.9610 (3)0.06169 (10)0.0334 (8)
H130.78581.03830.06780.040*
C140.6979 (4)0.9367 (3)0.01754 (11)0.0346 (8)
C150.5141 (4)0.9542 (3)0.02663 (12)0.0455 (10)
H15A0.49331.03110.02800.055*
H15B0.45390.92550.00070.055*
C160.4497 (4)0.9020 (3)0.07071 (12)0.0470 (10)
H16A0.33800.92370.07540.056*
H16B0.45200.82410.06740.056*
C170.5496 (4)0.9344 (3)0.11233 (12)0.0376 (9)
C180.7289 (4)0.9020 (3)0.10367 (11)0.0365 (9)
H180.72820.82500.09590.044*
C190.8096 (4)0.9114 (3)0.15107 (11)0.0403 (9)
H190.83790.98740.15600.048*
C200.9578 (5)0.8441 (3)0.16120 (13)0.0477 (10)
C210.6699 (5)0.8817 (4)0.18491 (13)0.0552 (11)
H21A0.69390.81440.20050.066*
H21B0.65710.93790.20790.066*
C220.5159 (4)0.8707 (3)0.15669 (13)0.0466 (10)
H22A0.42400.90080.17300.056*
H22B0.49380.79550.14990.056*
C230.9800 (6)1.1274 (3)0.18353 (14)0.0609 (12)
H23A1.01881.12950.21460.091*
H23B1.04991.16990.16430.091*
H23C0.87221.15630.18240.091*
C240.8719 (5)0.9437 (4)0.19920 (12)0.0549 (11)
H24A0.76640.97600.20120.082*
H24B0.86200.87140.18770.082*
H24C0.92060.94220.22910.082*
C251.0456 (5)1.1586 (3)0.07340 (13)0.0534 (11)
H25A1.07811.17800.04280.080*
H25B0.94611.19460.08090.080*
H25C1.12821.17990.09480.080*
C260.7317 (5)1.1319 (3)0.01023 (12)0.0494 (10)
H26A0.76051.17680.03580.074*
H26B0.79741.15050.01580.074*
H26C0.61961.14270.00280.074*
C270.7156 (5)0.8154 (3)0.00488 (12)0.0455 (10)
H27A0.65820.77230.02690.068*
H27B0.82810.79590.00510.068*
H27C0.67150.80310.02520.068*
C280.5360 (4)1.0553 (3)0.12224 (13)0.0461 (10)
H28A0.59271.07190.15060.055*
H28B0.58701.09560.09760.055*
C28A0.3144 (4)1.1153 (3)0.16739 (14)0.0452 (9)
C28B0.0639 (5)1.1753 (3)0.12673 (15)0.0536 (11)
H28C0.09741.16080.09680.064*
C28C0.0750 (6)1.2231 (4)0.18384 (19)0.0810 (16)
H28D0.16151.24870.20120.097*
C28D0.0650 (5)1.1884 (4)0.20191 (16)0.0702 (14)
H28E0.09451.18670.23270.084*
C290.9945 (6)0.7521 (4)0.13855 (17)0.0801 (15)
H29A1.08190.71030.14800.096*
H29B0.93240.73060.11350.096*
C301.0532 (6)0.8776 (4)0.19981 (16)0.0818 (16)
H30A1.14560.83110.20280.123*
H30B0.98900.87350.22730.123*
H30C1.08890.95060.19530.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O3A0.0532 (18)0.118 (3)0.0366 (15)0.0123 (18)0.0124 (13)0.0020 (16)
O28A0.0432 (15)0.0619 (18)0.0411 (15)0.0164 (13)0.0093 (12)0.0033 (14)
O28B0.0542 (17)0.083 (2)0.0449 (17)0.0161 (16)0.0023 (14)0.0079 (16)
N28A0.0382 (16)0.0482 (19)0.0505 (19)0.0132 (15)0.0066 (16)0.0009 (17)
N28B0.054 (2)0.071 (3)0.091 (3)0.020 (2)0.016 (2)0.009 (2)
C10.0292 (18)0.063 (3)0.038 (2)0.0043 (19)0.0011 (15)0.0032 (19)
C20.034 (2)0.070 (3)0.038 (2)0.005 (2)0.0047 (16)0.001 (2)
C30.041 (2)0.060 (3)0.034 (2)0.0035 (18)0.0061 (18)0.0000 (19)
C40.043 (2)0.048 (2)0.0300 (19)0.0036 (18)0.0006 (17)0.0017 (18)
C50.0328 (18)0.040 (2)0.0322 (19)0.0014 (17)0.0038 (15)0.0012 (17)
C60.038 (2)0.058 (3)0.039 (2)0.0024 (19)0.0030 (17)0.0054 (19)
C70.0283 (17)0.065 (3)0.042 (2)0.0008 (19)0.0018 (16)0.001 (2)
C80.0311 (18)0.039 (2)0.0362 (19)0.0052 (16)0.0016 (15)0.0024 (17)
C90.0282 (17)0.043 (2)0.0319 (19)0.0013 (16)0.0053 (15)0.0007 (16)
C100.0297 (19)0.040 (2)0.035 (2)0.0021 (16)0.0007 (16)0.0016 (16)
C110.0297 (18)0.065 (3)0.0313 (19)0.0065 (19)0.0005 (15)0.0022 (19)
C120.0309 (18)0.052 (2)0.034 (2)0.0016 (18)0.0033 (16)0.0058 (17)
C130.0308 (18)0.038 (2)0.0311 (18)0.0021 (15)0.0020 (15)0.0038 (16)
C140.0269 (17)0.042 (2)0.0349 (19)0.0031 (16)0.0042 (15)0.0044 (16)
C150.0309 (19)0.062 (3)0.043 (2)0.0027 (18)0.0013 (17)0.0008 (19)
C160.0302 (18)0.060 (3)0.050 (2)0.0003 (19)0.0032 (18)0.002 (2)
C170.036 (2)0.036 (2)0.041 (2)0.0021 (17)0.0088 (17)0.0011 (17)
C180.0317 (18)0.040 (2)0.038 (2)0.0027 (16)0.0008 (16)0.0015 (17)
C190.042 (2)0.040 (2)0.039 (2)0.0010 (17)0.0004 (17)0.0028 (18)
C200.044 (2)0.056 (3)0.043 (2)0.002 (2)0.004 (2)0.016 (2)
C210.060 (3)0.062 (3)0.045 (2)0.002 (2)0.007 (2)0.005 (2)
C220.043 (2)0.045 (2)0.051 (2)0.0038 (18)0.0128 (19)0.0057 (19)
C230.070 (3)0.060 (3)0.053 (3)0.003 (2)0.002 (2)0.021 (2)
C240.049 (2)0.076 (3)0.040 (2)0.008 (2)0.0032 (19)0.000 (2)
C250.063 (3)0.048 (3)0.049 (2)0.015 (2)0.003 (2)0.006 (2)
C260.050 (2)0.049 (3)0.050 (2)0.006 (2)0.0109 (19)0.0034 (19)
C270.045 (2)0.045 (2)0.046 (2)0.0104 (19)0.0012 (19)0.0084 (18)
C280.038 (2)0.052 (3)0.047 (2)0.0067 (19)0.0117 (18)0.0009 (19)
C28A0.042 (2)0.044 (2)0.050 (3)0.0037 (19)0.005 (2)0.005 (2)
C28B0.057 (3)0.050 (3)0.054 (3)0.002 (2)0.010 (2)0.004 (2)
C28C0.057 (3)0.098 (4)0.088 (4)0.033 (3)0.009 (3)0.011 (3)
C28D0.061 (3)0.095 (4)0.054 (3)0.024 (3)0.008 (2)0.009 (3)
C290.076 (3)0.069 (3)0.095 (4)0.028 (3)0.025 (3)0.018 (3)
C300.064 (3)0.110 (4)0.072 (3)0.004 (3)0.010 (3)0.004 (3)
Geometric parameters (Å, º) top
O3A—C31.423 (4)C14—C151.555 (4)
O3A—H3A0.8200C15—C161.532 (5)
O28A—C28A1.312 (4)C15—H15A0.9700
O28A—C281.462 (4)C15—H15B0.9700
O28B—C28A1.201 (4)C16—C171.520 (5)
N28A—C28B1.357 (5)C16—H16A0.9700
N28A—C28D1.382 (5)C16—H16B0.9700
N28A—C28A1.406 (5)C17—C281.529 (5)
N28B—C28B1.297 (5)C17—C221.539 (5)
N28B—C28C1.363 (6)C17—C181.555 (5)
C1—C21.528 (4)C18—C191.536 (4)
C1—C101.543 (5)C18—H180.9800
C1—H1A0.9700C19—C201.510 (5)
C1—H1B0.9700C19—C211.561 (5)
C2—C31.494 (5)C19—H190.9800
C2—H2A0.9700C20—C291.352 (6)
C2—H2B0.9700C20—C301.433 (6)
C3—C41.546 (5)C21—C221.520 (5)
C3—H30.9800C21—H21A0.9700
C4—C231.535 (5)C21—H21B0.9700
C4—C241.539 (5)C22—H22A0.9700
C4—C51.559 (5)C22—H22B0.9700
C5—C61.526 (5)C23—H23A0.9600
C5—C101.557 (5)C23—H23B0.9600
C5—H50.9800C23—H23C0.9600
C6—C71.524 (4)C24—H24A0.9600
C6—H6A0.9700C24—H24B0.9600
C6—H6B0.9700C24—H24C0.9600
C7—C81.539 (5)C25—H25A0.9600
C7—H7A0.9700C25—H25B0.9600
C7—H7B0.9700C25—H25C0.9600
C8—C261.545 (5)C26—H26A0.9600
C8—C91.566 (4)C26—H26B0.9600
C8—C141.590 (5)C26—H26C0.9600
C9—C111.531 (4)C27—H27A0.9600
C9—C101.565 (4)C27—H27B0.9600
C9—H90.9800C27—H27C0.9600
C10—C251.547 (5)C28—H28A0.9700
C11—C121.520 (4)C28—H28B0.9700
C11—H11A0.9700C28B—H28C0.9300
C11—H11B0.9700C28C—C28D1.341 (6)
C12—C131.528 (4)C28C—H28D0.9300
C12—H12A0.9700C28D—H28E0.9300
C12—H12B0.9700C29—H29A0.9300
C13—C181.536 (4)C29—H29B0.9300
C13—C141.560 (4)C30—H30A0.9600
C13—H130.9800C30—H30B0.9600
C14—C271.554 (5)C30—H30C0.9600
C3—O3A—H3A109.5C17—C16—C15111.5 (3)
C28A—O28A—C28117.4 (3)C17—C16—H16A109.3
C28B—N28A—C28D106.5 (3)C15—C16—H16A109.3
C28B—N28A—C28A129.3 (4)C17—C16—H16B109.3
C28D—N28A—C28A124.2 (4)C15—C16—H16B109.3
C28B—N28B—C28C104.6 (4)H16A—C16—H16B108.0
C2—C1—C10113.1 (3)C16—C17—C28111.7 (3)
C2—C1—H1A109.0C16—C17—C22115.8 (3)
C10—C1—H1A109.0C28—C17—C22109.3 (3)
C2—C1—H1B109.0C16—C17—C18108.6 (3)
C10—C1—H1B109.0C28—C17—C18110.7 (3)
H1A—C1—H1B107.8C22—C17—C18100.1 (3)
C3—C2—C1111.5 (3)C13—C18—C19121.0 (3)
C3—C2—H2A109.3C13—C18—C17111.3 (3)
C1—C2—H2A109.3C19—C18—C17104.4 (3)
C3—C2—H2B109.3C13—C18—H18106.4
C1—C2—H2B109.3C19—C18—H18106.4
H2A—C2—H2B108.0C17—C18—H18106.4
O3A—C3—C2106.8 (3)C20—C19—C18119.0 (3)
O3A—C3—C4113.1 (3)C20—C19—C21110.2 (3)
C2—C3—C4113.9 (3)C18—C19—C21103.2 (3)
O3A—C3—H3107.6C20—C19—H19108.0
C2—C3—H3107.6C18—C19—H19108.0
C4—C3—H3107.6C21—C19—H19108.0
C23—C4—C24108.0 (3)C29—C20—C30120.2 (4)
C23—C4—C3110.6 (3)C29—C20—C19123.5 (4)
C24—C4—C3107.8 (3)C30—C20—C19116.0 (4)
C23—C4—C5113.7 (3)C22—C21—C19107.4 (3)
C24—C4—C5108.4 (3)C22—C21—H21A110.2
C3—C4—C5108.1 (3)C19—C21—H21A110.2
C6—C5—C10110.4 (3)C22—C21—H21B110.2
C6—C5—C4114.3 (3)C19—C21—H21B110.2
C10—C5—C4117.7 (3)H21A—C21—H21B108.5
C6—C5—H5104.2C21—C22—C17104.8 (3)
C10—C5—H5104.2C21—C22—H22A110.8
C4—C5—H5104.2C17—C22—H22A110.8
C7—C6—C5110.8 (3)C21—C22—H22B110.8
C7—C6—H6A109.5C17—C22—H22B110.8
C5—C6—H6A109.5H22A—C22—H22B108.9
C7—C6—H6B109.5C4—C23—H23A109.5
C5—C6—H6B109.5C4—C23—H23B109.5
H6A—C6—H6B108.1H23A—C23—H23B109.5
C6—C7—C8114.1 (3)C4—C23—H23C109.5
C6—C7—H7A108.7H23A—C23—H23C109.5
C8—C7—H7A108.7H23B—C23—H23C109.5
C6—C7—H7B108.7C4—C24—H24A109.5
C8—C7—H7B108.7C4—C24—H24B109.5
H7A—C7—H7B107.6H24A—C24—H24B109.5
C7—C8—C26106.5 (3)C4—C24—H24C109.5
C7—C8—C9109.9 (3)H24A—C24—H24C109.5
C26—C8—C9111.8 (3)H24B—C24—H24C109.5
C7—C8—C14110.4 (3)C10—C25—H25A109.5
C26—C8—C14109.9 (3)C10—C25—H25B109.5
C9—C8—C14108.3 (3)H25A—C25—H25B109.5
C11—C9—C10114.7 (3)C10—C25—H25C109.5
C11—C9—C8110.3 (3)H25A—C25—H25C109.5
C10—C9—C8116.8 (3)H25B—C25—H25C109.5
C11—C9—H9104.5C8—C26—H26A109.5
C10—C9—H9104.5C8—C26—H26B109.5
C8—C9—H9104.5H26A—C26—H26B109.5
C1—C10—C25107.8 (3)C8—C26—H26C109.5
C1—C10—C5107.2 (3)H26A—C26—H26C109.5
C25—C10—C5114.5 (3)H26B—C26—H26C109.5
C1—C10—C9108.1 (3)C14—C27—H27A109.5
C25—C10—C9112.6 (3)C14—C27—H27B109.5
C5—C10—C9106.3 (3)H27A—C27—H27B109.5
C12—C11—C9112.6 (3)C14—C27—H27C109.5
C12—C11—H11A109.1H27A—C27—H27C109.5
C9—C11—H11A109.1H27B—C27—H27C109.5
C12—C11—H11B109.1O28A—C28—C17111.1 (3)
C9—C11—H11B109.1O28A—C28—H28A109.4
H11A—C11—H11B107.8C17—C28—H28A109.4
C11—C12—C13112.2 (3)O28A—C28—H28B109.4
C11—C12—H12A109.2C17—C28—H28B109.4
C13—C12—H12A109.2H28A—C28—H28B108.0
C11—C12—H12B109.2O28B—C28A—O28A127.3 (3)
C13—C12—H12B109.2O28B—C28A—N28A122.6 (4)
H12A—C12—H12B107.9O28A—C28A—N28A110.1 (3)
C12—C13—C18115.1 (3)N28B—C28B—N28A112.2 (4)
C12—C13—C14110.9 (3)N28B—C28B—H28C123.9
C18—C13—C14111.3 (3)N28A—C28B—H28C123.9
C12—C13—H13106.3C28D—C28C—N28B112.1 (4)
C18—C13—H13106.3C28D—C28C—H28D124.0
C14—C13—H13106.3N28B—C28C—H28D124.0
C27—C14—C15105.5 (3)C28C—C28D—N28A104.6 (4)
C27—C14—C13109.4 (3)C28C—C28D—H28E127.7
C15—C14—C13110.7 (3)N28A—C28D—H28E127.7
C27—C14—C8111.4 (3)C20—C29—H29A120.0
C15—C14—C8111.0 (3)C20—C29—H29B120.0
C13—C14—C8108.9 (3)H29A—C29—H29B120.0
C16—C15—C14115.0 (3)C20—C30—H30A109.5
C16—C15—H15A108.5C20—C30—H30B109.5
C14—C15—H15A108.5H30A—C30—H30B109.5
C16—C15—H15B108.5C20—C30—H30C109.5
C14—C15—H15B108.5H30A—C30—H30C109.5
H15A—C15—H15B107.5H30B—C30—H30C109.5
C10—C1—C2—C358.5 (4)C9—C8—C14—C2760.7 (3)
C1—C2—C3—O3A177.2 (3)C7—C8—C14—C1557.6 (4)
C1—C2—C3—C457.1 (4)C26—C8—C14—C1559.6 (4)
O3A—C3—C4—C2348.1 (4)C9—C8—C14—C15178.0 (3)
C2—C3—C4—C2374.1 (4)C7—C8—C14—C13179.7 (3)
O3A—C3—C4—C2469.8 (4)C26—C8—C14—C1362.5 (3)
C2—C3—C4—C24168.0 (3)C9—C8—C14—C1359.9 (3)
O3A—C3—C4—C5173.2 (3)C27—C14—C15—C1670.6 (4)
C2—C3—C4—C551.0 (4)C13—C14—C15—C1647.6 (4)
C23—C4—C5—C658.6 (4)C8—C14—C15—C16168.6 (3)
C24—C4—C5—C661.6 (4)C14—C15—C16—C1752.6 (4)
C3—C4—C5—C6178.2 (3)C15—C16—C17—C2865.0 (4)
C23—C4—C5—C1073.5 (4)C15—C16—C17—C22169.0 (3)
C24—C4—C5—C10166.3 (3)C15—C16—C17—C1857.4 (4)
C3—C4—C5—C1049.7 (4)C12—C13—C18—C1951.4 (4)
C10—C5—C6—C763.2 (4)C14—C13—C18—C19178.7 (3)
C4—C5—C6—C7161.3 (3)C12—C13—C18—C17174.4 (3)
C5—C6—C7—C856.1 (4)C14—C13—C18—C1758.3 (4)
C6—C7—C8—C2675.0 (4)C16—C17—C18—C1361.6 (4)
C6—C7—C8—C946.3 (4)C28—C17—C18—C1361.4 (4)
C6—C7—C8—C14165.7 (3)C22—C17—C18—C13176.7 (3)
C7—C8—C9—C11179.6 (3)C16—C17—C18—C19166.3 (3)
C26—C8—C9—C1162.3 (4)C28—C17—C18—C1970.7 (4)
C14—C8—C9—C1158.9 (4)C22—C17—C18—C1944.6 (3)
C7—C8—C9—C1047.0 (4)C13—C18—C19—C2079.6 (4)
C26—C8—C9—C1071.1 (4)C17—C18—C19—C20154.2 (3)
C14—C8—C9—C10167.7 (3)C13—C18—C19—C21158.0 (3)
C2—C1—C10—C2570.7 (4)C17—C18—C19—C2131.8 (4)
C2—C1—C10—C553.0 (4)C18—C19—C20—C2922.7 (5)
C2—C1—C10—C9167.4 (3)C21—C19—C20—C2996.1 (5)
C6—C5—C10—C1175.3 (3)C18—C19—C20—C30163.0 (4)
C4—C5—C10—C151.0 (4)C21—C19—C20—C3078.2 (4)
C6—C5—C10—C2565.2 (4)C20—C19—C21—C22134.8 (3)
C4—C5—C10—C2568.5 (4)C18—C19—C21—C226.7 (4)
C6—C5—C10—C959.8 (4)C19—C21—C22—C1721.2 (4)
C4—C5—C10—C9166.5 (3)C16—C17—C22—C21156.3 (3)
C11—C9—C10—C160.2 (4)C28—C17—C22—C2176.5 (4)
C8—C9—C10—C1168.4 (3)C18—C17—C22—C2139.8 (4)
C11—C9—C10—C2558.7 (4)C28A—O28A—C28—C17109.7 (4)
C8—C9—C10—C2572.7 (4)C16—C17—C28—O28A53.7 (4)
C11—C9—C10—C5175.1 (3)C22—C17—C28—O28A75.7 (4)
C8—C9—C10—C553.5 (4)C18—C17—C28—O28A174.9 (3)
C10—C9—C11—C12169.2 (3)C28—O28A—C28A—O28B6.5 (6)
C8—C9—C11—C1256.4 (4)C28—O28A—C28A—N28A173.6 (3)
C9—C11—C12—C1354.2 (4)C28B—N28A—C28A—O28B175.4 (4)
C11—C12—C13—C18177.3 (3)C28D—N28A—C28A—O28B1.8 (6)
C11—C12—C13—C1455.2 (4)C28B—N28A—C28A—O28A4.7 (5)
C12—C13—C14—C2763.5 (4)C28D—N28A—C28A—O28A178.1 (4)
C18—C13—C14—C2766.0 (3)C28C—N28B—C28B—N28A0.6 (5)
C12—C13—C14—C15179.4 (3)C28D—N28A—C28B—N28B0.3 (5)
C18—C13—C14—C1549.8 (4)C28A—N28A—C28B—N28B177.9 (4)
C12—C13—C14—C858.4 (4)C28B—N28B—C28C—C28D1.3 (7)
C18—C13—C14—C8172.1 (3)N28B—C28C—C28D—N28A1.4 (6)
C7—C8—C14—C2759.6 (4)C28B—N28A—C28D—C28C1.0 (5)
C26—C8—C14—C27176.9 (3)C28A—N28A—C28D—C28C178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O28Bi0.822.132.920 (4)162
Symmetry code: (i) x+3/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC34H52N2O3
Mr536.78
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.2575 (2), 12.3909 (4), 29.0992 (8)
V3)2977.37 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.898, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
54547, 3117, 2106
Rint0.111
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 1.02
No. of reflections3117
No. of parameters360
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O28Bi0.822.132.920 (4)162.2
Symmetry code: (i) x+3/2, y+2, z1/2.
 

Acknowledgements

This work was supported by the Fundação para a Ciência e Tecnologia. RCS thanks the FCT for a grant (SFRH/BD/23700/2005). We gratefully acknowledge the LCA-UC for granting computer time in the Milipeia cluster and Mr Carlos Pereira for help in the analysis of the output of the GAMESS code.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure. New York: Plenum Press.  Google Scholar
First citationDzubak, P., Hajduch, M., Vydra, D., Hustova, A., Kvasnica, M., Biedermann, D., Markova, L., Urban, M. & Sarek, J. (2006). Nat. Prod. Rep. 23, 294–411.  Web of Science CrossRef Google Scholar
First citationHerbez, V. & Fischer, F. (2005). Tetrahedron Lett. 46, 6797–6799.  Web of Science CrossRef CAS Google Scholar
First citationKinghorn, A. D., Su, B. N., Jang, D. S., Chang, L. C., Lee, D., Gu, J. Q., Carcache-Blanco, E. J., Powlus, A. D., Lee, S. K., Park, E. J., Cuendet, M., Gills, J. J., Bhat, K., Park, H. S., Mata-Greenwood, E., Song, L. L., Jong, M. H. & Pezzuto, J. M. (2004). Planta Med. 70, 691–705.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoreira, V. M. A., Vasaitis, T. S., Guo, Z. Y., Njar, V. C. O. & Salvador, J. A. R. (2008). Steroids, 73, 1217–1227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPetronelli, A., Pannitteri, G. & Testa, U. (2009). Anticancer Drugs, 20, 880–892.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSantos, R. C., Salvador, J. A. R., Marín, S. & Cascante, M. (2009). Bioorg. Med. Chem. 17, 6241–6250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347–1363.  Web of Science CrossRef CAS Google Scholar
First citationSetzer, W. N. & Setzer, M. C. (2003). Mini Rev. Med. Chem. 3, 540–556.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamos Silva, M., Matos Beja, A., Moreira, V. M., Santos, R. C. & Salvador, J. A. R. (2007). Acta Cryst. E63, o4824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y. Q., Dong, Y. X. & Vennerstrom, J. L. (2004). Synthesis, pp. 2540–2544.  Google Scholar
First citationTolstikova, T. G., Sorokina, I. V., Tolstikov, G. A., Tolstikov, A. G. & Flekhter, O. B. (2006). Russ. J. Bioorg. Chem. 32, 37–49.  Web of Science CrossRef CAS Google Scholar
First citationTotleben, M. J., Freeman, J. P. & Szmuszkovicz, J. (1997). J. Org. Chem. 62, 7319–7323.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1878-o1879
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds