organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,9-Bis(2,4-di­chloro­phen­yl)-2,4,8,10-tetra­oxa­spiro­[5.5]undeca­ne

aKey Laboratory of Fine Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
*Correspondence e-mail: chemsxq@yahoo.com.cn

(Received 6 June 2010; accepted 24 June 2010; online 30 June 2010)

In the title compound, C19H16Cl4O4, the two halves of the mol­ecule are related by a crystallographic twofold rotation axis passing through the central spiro-C atom. The two non-planar six-membered heterocycles both adopt chair conformations, and the dihedral angle between the two benzene rings is 76.6 (1)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis.

Related literature

For general background to spiranes, see: Cismaş et al. (2005[Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287-1314.]); Mihiş et al. (2008[Mihiş, A., Condamine, E., Bogdan, E., Terec, A., Kurtán, T. & Grosu, I. (2008). Molecules, 13, 2848-2858.]); Sun et al. (2010[Sun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152-156.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16Cl4O4

  • Mr = 450.12

  • Monoclinic, P 2/c

  • a = 14.365 (2) Å

  • b = 5.7397 (9) Å

  • c = 11.7464 (19) Å

  • β = 93.275 (3)°

  • V = 966.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 295 K

  • 0.21 × 0.21 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.905

  • 5044 measured reflections

  • 1686 independent reflections

  • 1444 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.160

  • S = 1.02

  • 1686 reflections

  • 123 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.58 3.425 (3) 152
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Owing to their characteristic axial and helical chirality, the stereochemistry of spiranes with six-membered rings has been extensively studied (Cismaş et al., 2005). In the past three decades, most of these investigations were carried out with spiranes containing 1,3-dioxane units (Mihiş et al., 2008; Sun et al., 2010). We herein present the structure of 3,9-bis(2,4-dichlorophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane (Fig. 1).

In the title compound, a 2-fold rotation axis passes through the central spiro-C atom (C9). The two non-planar six-membered heterocycles [(O1, O2 and C7–C10) and (O1A, O2A and C7A–C10A)] both adopt chair conformations, and the dihedral angle between the two benzene rings (C1–C6 and C1A–C6A) is 76.6 (1)°. In the crystal structure, intermolecular C—H···O hydrogen bonds link the molecules to form one-dimensional chain along the c axis (Fig. 2).

Related literature top

For general background to spiranes, see: Cismaş et al. (2005); Mihiş et al. (2008); Sun et al. (2010).

Experimental top

To a solution of 2,4-dichlorobenzaldehyde (5 mmol, 0.88 g) and pentaerythritol (3 mmol, 0.41 g) in toluene (25 ml), phosphotungstic acid (1 mol%, 16.5 mg) was added as catalyst. The mixture was refluxed for 6 h to complete the reaction. After reaction, the mixture was allowed to cool to room temperature, and dichloromethane (25 ml) was added to dissolve the product. The insoluble residues were filtered off and the filtrate was dried over anhydrous Na2SO4. The solvent was evaporated under vacuum and the product recrystallized from ethanol to afford a white solid (71% yield, m.p. 469–470 K). Single crystals suitable for X-ray diffraction were also obtained by evaporation of an ethanol solution.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [Symmetry code: -x + 1, y, -z + 1/2].
[Figure 2] Fig. 2. One-dimensional stack running along the c axis. Hydrogen bonds are shown as dashed lines.
3,9-Bis(2,4-dichlorophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane top
Crystal data top
C19H16Cl4O4F(000) = 460
Mr = 450.12Dx = 1.546 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 14.365 (2) ÅCell parameters from 2876 reflections
b = 5.7397 (9) Åθ = 2.8–29.5°
c = 11.7464 (19) ŵ = 0.64 mm1
β = 93.275 (3)°T = 295 K
V = 966.9 (3) Å3Block, colorless
Z = 20.21 × 0.21 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
1686 independent reflections
Radiation source: fine-focus sealed tube1444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1717
Tmin = 0.878, Tmax = 0.905k = 66
5044 measured reflectionsl = 138
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.133P)2]
where P = (Fo2 + 2Fc2)/3
1686 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C19H16Cl4O4V = 966.9 (3) Å3
Mr = 450.12Z = 2
Monoclinic, P2/cMo Kα radiation
a = 14.365 (2) ŵ = 0.64 mm1
b = 5.7397 (9) ÅT = 295 K
c = 11.7464 (19) Å0.21 × 0.21 × 0.16 mm
β = 93.275 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1444 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.905Rint = 0.022
5044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
1686 reflectionsΔρmin = 0.40 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11833 (4)1.10777 (11)0.35541 (6)0.0638 (3)
Cl20.09727 (5)0.41534 (13)0.65874 (6)0.0751 (3)
O10.39049 (10)1.0814 (2)0.40196 (12)0.0428 (4)
O20.37013 (9)0.7923 (2)0.26477 (12)0.0414 (4)
C10.12123 (14)0.7578 (4)0.50648 (19)0.0483 (6)
H10.05990.79950.51780.058*
C20.17289 (14)0.8801 (3)0.43034 (18)0.0415 (5)
C30.26501 (12)0.8219 (3)0.41278 (16)0.0361 (5)
C40.30282 (15)0.6348 (4)0.47363 (19)0.0455 (5)
H40.36420.59220.46290.055*
C50.25309 (15)0.5092 (4)0.5495 (2)0.0498 (6)
H50.28010.38410.58940.060*
C60.16219 (16)0.5739 (4)0.56487 (19)0.0469 (6)
C70.32422 (14)0.9531 (3)0.33360 (17)0.0388 (5)
H70.28551.05900.28570.047*
C80.44930 (15)1.2158 (4)0.3327 (2)0.0492 (6)
H8A0.49481.29920.38140.059*
H8B0.41181.32980.28980.059*
C90.50001.0610 (4)0.25000.0365 (6)
C100.42682 (15)0.9102 (4)0.18627 (17)0.0427 (5)
H10A0.38771.00730.13570.051*
H10B0.45750.79650.14020.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0494 (4)0.0675 (5)0.0753 (6)0.0257 (3)0.0111 (3)0.0162 (3)
Cl20.0745 (6)0.0858 (6)0.0674 (6)0.0222 (3)0.0251 (4)0.0137 (3)
O10.0476 (9)0.0412 (8)0.0411 (9)0.0055 (6)0.0148 (7)0.0084 (5)
O20.0405 (8)0.0478 (8)0.0371 (8)0.0064 (6)0.0124 (6)0.0095 (6)
C10.0344 (10)0.0593 (13)0.0524 (14)0.0033 (9)0.0125 (9)0.0040 (10)
C20.0357 (10)0.0456 (12)0.0435 (12)0.0069 (8)0.0048 (8)0.0030 (8)
C30.0316 (10)0.0439 (10)0.0331 (10)0.0029 (8)0.0033 (8)0.0044 (8)
C40.0355 (11)0.0532 (13)0.0480 (13)0.0095 (8)0.0043 (9)0.0047 (9)
C50.0486 (12)0.0515 (12)0.0491 (13)0.0040 (10)0.0016 (10)0.0098 (10)
C60.0476 (13)0.0525 (12)0.0414 (12)0.0086 (9)0.0108 (9)0.0005 (9)
C70.0348 (10)0.0474 (11)0.0347 (11)0.0071 (8)0.0052 (8)0.0018 (8)
C80.0559 (14)0.0384 (11)0.0554 (14)0.0039 (9)0.0225 (11)0.0064 (9)
C90.0404 (15)0.0340 (13)0.0362 (15)0.0000.0114 (11)0.000
C100.0417 (11)0.0554 (12)0.0315 (11)0.0013 (8)0.0082 (9)0.0012 (8)
Geometric parameters (Å, º) top
Cl1—C21.737 (2)C4—H40.9300
Cl2—C61.741 (2)C5—C61.379 (3)
O1—C71.417 (3)C5—H50.9300
O1—C81.431 (2)C7—H70.9800
O2—C71.414 (2)C8—C91.531 (2)
O2—C101.434 (2)C8—H8A0.9700
C1—C61.373 (3)C8—H8B0.9700
C1—C21.386 (3)C9—C10i1.525 (2)
C1—H10.9300C9—C101.525 (2)
C2—C31.391 (3)C9—C8i1.531 (2)
C3—C41.384 (3)C10—H10A0.9700
C3—C71.499 (3)C10—H10B0.9700
C4—C51.378 (3)
C7—O1—C8110.95 (15)O1—C7—C3107.23 (15)
C7—O2—C10111.11 (15)O2—C7—H7110.1
C6—C1—C2118.81 (19)O1—C7—H7110.1
C6—C1—H1120.6C3—C7—H7110.1
C2—C1—H1120.6O1—C8—C9111.43 (16)
C1—C2—C3121.53 (19)O1—C8—H8A109.3
C1—C2—Cl1117.74 (15)C9—C8—H8A109.3
C3—C2—Cl1120.73 (16)O1—C8—H8B109.3
C4—C3—C2117.28 (19)C9—C8—H8B109.3
C4—C3—C7119.37 (17)H8A—C8—H8B108.0
C2—C3—C7123.34 (17)C10i—C9—C10110.8 (2)
C5—C4—C3122.52 (19)C10i—C9—C8i107.54 (12)
C5—C4—H4118.7C10—C9—C8i110.94 (12)
C3—C4—H4118.7C10i—C9—C8110.94 (12)
C4—C5—C6118.3 (2)C10—C9—C8107.54 (12)
C4—C5—H5120.9C8i—C9—C8109.1 (2)
C6—C5—H5120.9O2—C10—C9110.67 (14)
C1—C6—C5121.6 (2)O2—C10—H10A109.5
C1—C6—Cl2119.24 (17)C9—C10—H10A109.5
C5—C6—Cl2119.17 (18)O2—C10—H10B109.5
O2—C7—O1110.06 (16)C9—C10—H10B109.5
O2—C7—C3109.08 (16)H10A—C10—H10B108.1
C6—C1—C2—C30.6 (3)C8—O1—C7—O262.5 (2)
C6—C1—C2—Cl1178.60 (17)C8—O1—C7—C3179.01 (15)
C1—C2—C3—C40.7 (3)C4—C3—C7—O247.8 (2)
Cl1—C2—C3—C4178.44 (16)C2—C3—C7—O2133.17 (19)
C1—C2—C3—C7178.38 (19)C4—C3—C7—O171.4 (2)
Cl1—C2—C3—C72.5 (3)C2—C3—C7—O1107.7 (2)
C2—C3—C4—C50.4 (3)C7—O1—C8—C957.8 (2)
C7—C3—C4—C5178.70 (19)O1—C8—C9—C10i69.6 (2)
C3—C4—C5—C60.0 (4)O1—C8—C9—C1051.7 (2)
C2—C1—C6—C50.1 (3)O1—C8—C9—C8i172.1 (2)
C2—C1—C6—Cl2178.77 (16)C7—O2—C10—C959.2 (2)
C4—C5—C6—C10.2 (3)C10i—C9—C10—O269.36 (13)
C4—C5—C6—Cl2179.05 (17)C8i—C9—C10—O2171.24 (15)
C10—O2—C7—O163.4 (2)C8—C9—C10—O252.1 (2)
C10—O2—C7—C3179.21 (15)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2ii0.932.583.425 (3)152
C7—H7···Cl10.982.603.113 (2)113
Symmetry code: (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H16Cl4O4
Mr450.12
Crystal system, space groupMonoclinic, P2/c
Temperature (K)295
a, b, c (Å)14.365 (2), 5.7397 (9), 11.7464 (19)
β (°) 93.275 (3)
V3)966.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.21 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.878, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
5044, 1686, 1444
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.160, 1.02
No. of reflections1686
No. of parameters123
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.40

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.583.425 (3)152
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the Natural Science Foundation of China (No. 20872051).

References

First citationBruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287–1314.  Google Scholar
First citationMihiş, A., Condamine, E., Bogdan, E., Terec, A., Kurtán, T. & Grosu, I. (2008). Molecules, 13, 2848–2858.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152–156.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds