organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-Amino-5-[2,4-dimeth­­oxy-6-(4-meth­oxy­styr­yl)benzyl­­idene]-1,3-thia­zol-4(5H)-one methanol solvate

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: pcrooks@email.uky.edu

(Received 10 March 2010; accepted 18 May 2010; online 26 June 2010)

In the crystal structure of the title compound, C21H20N2O4S·CH3OH, mol­ecules are linked into chains by a series of inter­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds. The mol­ecular structure shows a double bond with Z geometry, connecting the thia­zolone and resveratrol units. The dihedral angle between the thiazolone ring and the nearest dimethoxy­benzene ring is 53.02 (7)°.

Related literature

For related structure–activitystudies, see; Aggarwal et al. (2004[Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res. 24, 2783-2840.]); Pettit et al. (1995[Pettit, G. R., Singh, S. B., Boyd, M. R., Hamel, E., Pettit, R. K., Schmidt, J. M. & Hogan, F. (1995). J. Med. Chem. 38, 1666-1672.]); Cushman et al. (1991[Cushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, C. M. & Hamel, E. (1991). J. Med. Chem. 34, 2579-2588.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N2O4S·CH4O

  • Mr = 428.49

  • Monoclinic, P 21 /c

  • a = 10.6243 (2) Å

  • b = 22.2530 (5) Å

  • c = 9.0562 (2) Å

  • β = 93.028 (1)°

  • V = 2138.10 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.65 mm−1

  • T = 90 K

  • 0.15 × 0.08 × 0.02 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.777, Tmax = 0.968

  • 31098 measured reflections

  • 3911 independent reflections

  • 3631 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.112

  • S = 1.13

  • 3911 reflections

  • 276 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.88 2.07 2.926 (2) 163
N2—H2A⋯N1i 0.88 2.64 3.175 (2) 120
N2—H2B⋯O1Sii 0.88 2.05 2.872 (2) 154
O1S—H1S⋯O4 0.84 1.88 2.716 (2) 172
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Many natural products possessing a trimethoxybenzene ring, e.g., colchicines, and podophyllotoxins, are potent cytotoxic agents and exert their antitumor properties by their antitubulin activity. In view of the activity of such trimethoxybenzenes, similar structurally related stilbene moieties have been studied. The trihydroxy compound, resveratrol, a naturally occurring phytoalexin (trans-3, 4, 5-trihydroxystilbene) present in grapes, berries, peanuts,and red wine [Aggarwal et al.,2004, Pettit et al., 1995) is reported to be a potential cancer chemotherapeutic agent based on its striking inhibitory effects on cellular events associated with cancer initiation, promotion, and progression. (Cushman et al., 1991). These observations encouraged us to design and synthesise a series of novel trimethoxy resveratrol analogs that were expected to function as potent cytotoxic agents against lung and breast cancer cells. The structural characterization of the title compound by x-ray analysis was performed to determine the geometry (E vs Z) of the double bond connecting the thiozolone ring and the resveratrol moiety, which cannot be easily determined by NMR spectroscopic analysis, and to obtain detailed information on the structural conformation of the molecule, that may be useful in structure-activity relationship (SAR) analysis. The title compound was synthesized in two steps. In step one, the formylation of (E)-1, 3-dimethoxy-5- (4-methoxystyryl)benzene with a slight excess of phosphorous oxychloride in dimethylformamide at 0 °C resulted the formation of trans-2-formyl-3, 4', 5-trimethoxystilbene. In step two, the reaction of trans-2-formyl-3, 4', 5-trimethoxystilbene with the active methelene compound, 2-aminothiazol-4(5H)-one in presence of ammonium acetate in acetic acid under microwave irradiation conditions yielded the title compound, (Z)-2-amino-5-[2,4-dimethoxy-6- (4-methoxystyryl)benzylidene]thiazol-4(5H)-one in 90% yield. The x-ray analysis studies revealed that the double bond connecting the thiazolone and resveratrol moieties has the Z geometry. The dihedral angle between the plane of the thiazolone ring and the plane of the nearest phenyl ring is 53.02 (7)°. The crystal packing is stabilized by a series of N—H···O, N—H···N and O—H···O intermolecular hydrogen bonds.

Related literature top

For related structure–activitystudies, see; Aggarwal et al. (2004); Pettit et al. (1995); Cushman et al. (1991).

Experimental top

A mixture of trans-2-formyl-3,4',5-trimethoxystilbene (50 mg, 1 mmol), 2-aminothiazol-4(5H)-one (20.44 mg, 1.1 mmol), ammonium acetate (13.56 mg, 1.1 mmol) and acetic acid (0.25 ml) was irradiated in a domestic microwave oven for 60 sec with intermittent cooling to room temperature every 20 sec. The reaction mixture was allowed to cool to room temperature, and treated with saturated aqueous sodium bicarbonate solution. The precipitate thus obtained was collected by filtration, washed with cold water and dried, to afford the crude product. Crystallization from methanol gave a white crystalline product of (Z)-2-amino-5-[2,4-dimethoxy-6-(4-methoxystyryl) benzylidene]thiazol-4(5H)-one methanolate, which was suitable for x-ray analysis. 1H NMR (DMSO-d6): δ 3.77 (s, 3H, -OCH3), 3.82 (s, 3H, -OCH3), 3.86 (s, 3H, -OCH3), 6.54-6.55 (d, J=2 Hz, 1H), 6.90-6.91 (m, 1H), 6.93-6.95 (d, J=2 Hz, 3H), 7.20-7.23 (d, J=16 Hz, 1H), 7.47-7.49 (d, J=9 Hz, 2H), 7.61 (s, 1H), 8.83 (s, 1H), 9.12 (s, 1H) ppm. 13C NMR (DMSO-d6): δ 55.6, 55.9, 56.3, 98.1, 102.8, 114.9, 115.9, 124.2,125.7, 128.6, 130.2, 131.6, 134.6, 138.4, 150.5, 158.9, 159.9, 161.6, 176.6, 180.3, 181.3. M. P: 172-175 °C

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.95 Å (CArH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(Z)-2-Amino-5-[2,4-dimethoxy-6-(4-methoxystyryl)benzylidene]-1,3- thiazol-4(5H)-one methanol solvate top
Crystal data top
C21H20N2O4S·CH4OF(000) = 904
Mr = 428.49Dx = 1.331 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9054 reflections
a = 10.6243 (2) Åθ = 4.0–68.4°
b = 22.2530 (5) ŵ = 1.65 mm1
c = 9.0562 (2) ÅT = 90 K
β = 93.028 (1)°Lath, yellow
V = 2138.10 (8) Å30.15 × 0.08 × 0.02 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
3911 independent reflections
Radiation source: fine-focus rotating anode3631 reflections with I > 2σ(I)
Graded multilayer optics monochromatorRint = 0.044
Detector resolution: 5.6 pixels mm-1θmax = 68.4°, θmin = 4.0°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 2626
Tmin = 0.777, Tmax = 0.968l = 1010
31098 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0357P)2 + 2.3067P]
where P = (Fo2 + 2Fc2)/3
3911 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H20N2O4S·CH4OV = 2138.10 (8) Å3
Mr = 428.49Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.6243 (2) ŵ = 1.65 mm1
b = 22.2530 (5) ÅT = 90 K
c = 9.0562 (2) Å0.15 × 0.08 × 0.02 mm
β = 93.028 (1)°
Data collection top
Bruker X8 Proteum
diffractometer
3911 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3631 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.968Rint = 0.044
31098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.13Δρmax = 0.51 e Å3
3911 reflectionsΔρmin = 0.30 e Å3
276 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73380 (5)0.59495 (2)0.83763 (5)0.02575 (15)
O10.84106 (14)0.45171 (6)0.46089 (17)0.0294 (3)
N10.79198 (16)0.69625 (7)0.70367 (18)0.0233 (4)
C10.67303 (19)0.48654 (9)0.5941 (2)0.0230 (4)
O20.56944 (16)0.31027 (7)0.6733 (2)0.0401 (4)
N20.78786 (18)0.70133 (8)0.95934 (19)0.0288 (4)
H2A0.80670.73980.95910.035*
H2B0.77660.68281.04350.035*
C20.73882 (19)0.43671 (9)0.5382 (2)0.0247 (4)
O30.15908 (16)0.72923 (7)1.04700 (19)0.0379 (4)
C30.7014 (2)0.37874 (9)0.5646 (2)0.0287 (5)
H30.74590.34570.52600.034*
O40.79309 (15)0.66720 (6)0.46217 (15)0.0276 (3)
C40.5968 (2)0.36913 (9)0.6495 (2)0.0285 (5)
C50.5283 (2)0.41643 (9)0.7024 (2)0.0254 (4)
H50.45600.40900.75710.031*
C60.56614 (19)0.47574 (9)0.6748 (2)0.0227 (4)
C70.49002 (19)0.52638 (9)0.7237 (2)0.0230 (4)
H70.49580.56290.67020.028*
C80.41358 (19)0.52599 (9)0.8360 (2)0.0252 (4)
H80.40320.48900.88610.030*
C90.34427 (19)0.57835 (9)0.8881 (2)0.0249 (4)
C100.2585 (2)0.57198 (10)0.9977 (2)0.0280 (5)
H100.24340.53301.03590.034*
C110.1938 (2)0.62079 (10)1.0535 (2)0.0296 (5)
H110.13560.61501.12830.036*
C120.2153 (2)0.67762 (10)0.9992 (2)0.0296 (5)
C130.2998 (2)0.68532 (10)0.8890 (3)0.0363 (5)
H130.31380.72430.85020.044*
C140.3634 (2)0.63662 (10)0.8357 (3)0.0325 (5)
H140.42190.64280.76140.039*
C150.71662 (18)0.54678 (9)0.5548 (2)0.0223 (4)
H150.73060.55310.45330.027*
C160.73910 (19)0.59395 (9)0.6445 (2)0.0224 (4)
C170.77662 (18)0.65520 (9)0.5932 (2)0.0218 (4)
C180.77655 (19)0.67159 (9)0.8345 (2)0.0227 (4)
C190.9131 (2)0.40406 (10)0.4010 (3)0.0352 (5)
H19A0.94690.37830.48150.053*
H19B0.98290.42110.34800.053*
H19C0.85900.38020.33260.053*
C200.4740 (2)0.29656 (11)0.7742 (3)0.0427 (6)
H20A0.49250.31770.86780.064*
H20B0.47260.25310.79210.064*
H20C0.39170.30950.73160.064*
C210.0789 (2)0.72365 (12)1.1677 (3)0.0387 (6)
H21A0.00980.69591.14070.058*
H21B0.04430.76311.19090.058*
H21C0.12760.70811.25430.058*
O1S0.80228 (17)0.61397 (7)0.19308 (17)0.0374 (4)
H1S0.79560.62770.27870.056*
C1S0.8883 (2)0.56477 (11)0.1984 (3)0.0355 (5)
H1S10.95730.57310.27170.053*
H1S20.92260.55930.10090.053*
H1S30.84420.52810.22620.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0407 (3)0.0184 (3)0.0178 (3)0.0068 (2)0.0021 (2)0.00092 (18)
O10.0325 (8)0.0229 (7)0.0330 (8)0.0030 (6)0.0050 (6)0.0030 (6)
N10.0327 (9)0.0184 (8)0.0185 (8)0.0006 (7)0.0005 (7)0.0005 (6)
C10.0286 (10)0.0183 (10)0.0215 (10)0.0002 (8)0.0055 (8)0.0022 (8)
O20.0421 (9)0.0152 (7)0.0638 (12)0.0006 (6)0.0108 (8)0.0004 (7)
N20.0457 (11)0.0208 (9)0.0196 (9)0.0054 (8)0.0004 (8)0.0007 (7)
C20.0267 (10)0.0236 (10)0.0232 (10)0.0020 (8)0.0036 (8)0.0015 (8)
O30.0432 (9)0.0266 (8)0.0448 (10)0.0034 (7)0.0121 (7)0.0054 (7)
C30.0316 (11)0.0203 (10)0.0337 (12)0.0045 (8)0.0033 (9)0.0026 (9)
O40.0431 (9)0.0214 (7)0.0185 (7)0.0005 (6)0.0018 (6)0.0010 (5)
C40.0326 (11)0.0160 (10)0.0363 (12)0.0020 (8)0.0043 (9)0.0008 (8)
C50.0273 (10)0.0201 (10)0.0284 (11)0.0008 (8)0.0032 (8)0.0001 (8)
C60.0276 (10)0.0184 (9)0.0211 (10)0.0008 (8)0.0071 (8)0.0023 (8)
C70.0264 (10)0.0162 (9)0.0256 (11)0.0015 (8)0.0059 (8)0.0007 (8)
C80.0295 (11)0.0190 (10)0.0263 (11)0.0028 (8)0.0047 (8)0.0000 (8)
C90.0279 (10)0.0236 (10)0.0227 (10)0.0024 (8)0.0028 (8)0.0019 (8)
C100.0356 (11)0.0236 (11)0.0244 (11)0.0031 (9)0.0015 (9)0.0018 (8)
C110.0312 (11)0.0348 (12)0.0230 (11)0.0035 (9)0.0022 (8)0.0023 (9)
C120.0322 (11)0.0238 (11)0.0325 (12)0.0008 (9)0.0002 (9)0.0076 (9)
C130.0440 (13)0.0215 (11)0.0446 (14)0.0035 (10)0.0121 (11)0.0015 (10)
C140.0364 (12)0.0229 (11)0.0390 (13)0.0042 (9)0.0098 (10)0.0040 (9)
C150.0259 (10)0.0215 (10)0.0192 (10)0.0014 (8)0.0020 (8)0.0012 (8)
C160.0249 (10)0.0188 (10)0.0232 (10)0.0005 (8)0.0015 (8)0.0023 (8)
C170.0252 (10)0.0195 (10)0.0206 (10)0.0012 (8)0.0010 (8)0.0011 (8)
C180.0258 (10)0.0186 (9)0.0234 (10)0.0023 (8)0.0001 (8)0.0017 (8)
C190.0337 (12)0.0319 (12)0.0401 (13)0.0067 (10)0.0038 (10)0.0053 (10)
C200.0417 (14)0.0210 (11)0.0662 (18)0.0025 (10)0.0092 (12)0.0090 (11)
C210.0366 (13)0.0387 (13)0.0413 (14)0.0073 (10)0.0058 (10)0.0064 (11)
O1S0.0644 (11)0.0277 (8)0.0199 (8)0.0013 (8)0.0020 (7)0.0003 (6)
C1S0.0409 (13)0.0380 (13)0.0275 (12)0.0060 (10)0.0017 (10)0.0014 (10)
Geometric parameters (Å, º) top
S1—C161.753 (2)C9—C101.390 (3)
S1—C181.765 (2)C9—C141.399 (3)
O1—C21.365 (3)C10—C111.394 (3)
O1—C191.431 (3)C10—H100.9500
N1—C181.324 (3)C11—C121.380 (3)
N1—C171.358 (3)C11—H110.9500
C1—C61.403 (3)C12—C131.388 (3)
C1—C21.418 (3)C13—C141.378 (3)
C1—C151.468 (3)C13—H130.9500
O2—C41.362 (3)C14—H140.9500
O2—C201.433 (3)C15—C161.341 (3)
N2—C181.310 (3)C15—H150.9500
N2—H2A0.8800C16—C171.501 (3)
N2—H2B0.8800C19—H19A0.9800
C2—C31.375 (3)C19—H19B0.9800
O3—C121.375 (3)C19—H19C0.9800
O3—C211.426 (3)C20—H20A0.9800
C3—C41.401 (3)C20—H20B0.9800
C3—H30.9500C20—H20C0.9800
O4—C171.237 (2)C21—H21A0.9800
C4—C51.380 (3)C21—H21B0.9800
C5—C61.406 (3)C21—H21C0.9800
C5—H50.9500O1S—C1S1.425 (3)
C6—C71.469 (3)O1S—H1S0.8400
C7—C81.334 (3)C1S—H1S10.9800
C7—H70.9500C1S—H1S20.9800
C8—C91.470 (3)C1S—H1S30.9800
C8—H80.9500
C16—S1—C1888.54 (9)C14—C13—C12120.2 (2)
C2—O1—C19118.01 (17)C14—C13—H13119.9
C18—N1—C17111.41 (17)C12—C13—H13119.9
C6—C1—C2118.67 (18)C13—C14—C9121.8 (2)
C6—C1—C15123.84 (18)C13—C14—H14119.1
C2—C1—C15117.36 (18)C9—C14—H14119.1
C4—O2—C20118.05 (18)C16—C15—C1128.05 (19)
C18—N2—H2A120.0C16—C15—H15116.0
C18—N2—H2B120.0C1—C15—H15116.0
H2A—N2—H2B120.0C15—C16—C17124.40 (18)
O1—C2—C3124.34 (19)C15—C16—S1126.89 (16)
O1—C2—C1114.37 (18)C17—C16—S1108.69 (14)
C3—C2—C1121.28 (19)O4—C17—N1122.94 (18)
C12—O3—C21117.11 (18)O4—C17—C16123.11 (18)
C2—C3—C4118.93 (19)N1—C17—C16113.95 (17)
C2—C3—H3120.5N2—C18—N1123.57 (18)
C4—C3—H3120.5N2—C18—S1119.09 (15)
O2—C4—C5123.9 (2)N1—C18—S1117.32 (15)
O2—C4—C3114.60 (19)O1—C19—H19A109.5
C5—C4—C3121.50 (19)O1—C19—H19B109.5
C4—C5—C6119.6 (2)H19A—C19—H19B109.5
C4—C5—H5120.2O1—C19—H19C109.5
C6—C5—H5120.2H19A—C19—H19C109.5
C1—C6—C5120.01 (18)H19B—C19—H19C109.5
C1—C6—C7119.95 (18)O2—C20—H20A109.5
C5—C6—C7119.97 (19)O2—C20—H20B109.5
C8—C7—C6126.26 (19)H20A—C20—H20B109.5
C8—C7—H7116.9O2—C20—H20C109.5
C6—C7—H7116.9H20A—C20—H20C109.5
C7—C8—C9125.10 (19)H20B—C20—H20C109.5
C7—C8—H8117.5O3—C21—H21A109.5
C9—C8—H8117.5O3—C21—H21B109.5
C10—C9—C14116.7 (2)H21A—C21—H21B109.5
C10—C9—C8120.47 (19)O3—C21—H21C109.5
C14—C9—C8122.80 (19)H21A—C21—H21C109.5
C9—C10—C11122.3 (2)H21B—C21—H21C109.5
C9—C10—H10118.9C1S—O1S—H1S109.5
C11—C10—H10118.9O1S—C1S—H1S1109.5
C12—C11—C10119.4 (2)O1S—C1S—H1S2109.5
C12—C11—H11120.3H1S1—C1S—H1S2109.5
C10—C11—H11120.3O1S—C1S—H1S3109.5
O3—C12—C11124.8 (2)H1S1—C1S—H1S3109.5
O3—C12—C13115.6 (2)H1S2—C1S—H1S3109.5
C11—C12—C13119.7 (2)
C19—O1—C2—C31.1 (3)C9—C10—C11—C120.2 (3)
C19—O1—C2—C1179.79 (18)C21—O3—C12—C114.0 (3)
C6—C1—C2—O1179.80 (17)C21—O3—C12—C13175.4 (2)
C15—C1—C2—O13.9 (3)C10—C11—C12—O3178.8 (2)
C6—C1—C2—C31.5 (3)C10—C11—C12—C130.6 (3)
C15—C1—C2—C3177.44 (19)O3—C12—C13—C14178.5 (2)
O1—C2—C3—C4178.09 (19)C11—C12—C13—C141.0 (4)
C1—C2—C3—C40.5 (3)C12—C13—C14—C91.0 (4)
C20—O2—C4—C58.1 (3)C10—C9—C14—C130.5 (3)
C20—O2—C4—C3172.3 (2)C8—C9—C14—C13178.2 (2)
C2—C3—C4—O2178.10 (19)C6—C1—C15—C1652.1 (3)
C2—C3—C4—C52.3 (3)C2—C1—C15—C16132.2 (2)
O2—C4—C5—C6178.4 (2)C1—C15—C16—C17176.34 (19)
C3—C4—C5—C62.0 (3)C1—C15—C16—S15.2 (3)
C2—C1—C6—C51.8 (3)C18—S1—C16—C15179.4 (2)
C15—C1—C6—C5177.43 (19)C18—S1—C16—C170.77 (14)
C2—C1—C6—C7175.00 (18)C18—N1—C17—O4176.10 (19)
C15—C1—C6—C70.7 (3)C18—N1—C17—C163.4 (2)
C4—C5—C6—C10.1 (3)C15—C16—C17—O41.8 (3)
C4—C5—C6—C7176.70 (19)S1—C16—C17—O4176.94 (16)
C1—C6—C7—C8157.3 (2)C15—C16—C17—N1178.79 (19)
C5—C6—C7—C825.9 (3)S1—C16—C17—N12.5 (2)
C6—C7—C8—C9176.15 (18)C17—N1—C18—N2179.14 (19)
C7—C8—C9—C10174.4 (2)C17—N1—C18—S12.8 (2)
C7—C8—C9—C148.0 (3)C16—S1—C18—N2179.25 (18)
C14—C9—C10—C110.1 (3)C16—S1—C18—N11.12 (17)
C8—C9—C10—C11177.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.882.072.926 (2)163
N2—H2A···N1i0.882.643.175 (2)120
N2—H2B···O1Sii0.882.052.872 (2)154
O1S—H1S···O40.841.882.716 (2)172
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H20N2O4S·CH4O
Mr428.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)10.6243 (2), 22.2530 (5), 9.0562 (2)
β (°) 93.028 (1)
V3)2138.10 (8)
Z4
Radiation typeCu Kα
µ (mm1)1.65
Crystal size (mm)0.15 × 0.08 × 0.02
Data collection
DiffractometerBruker X8 Proteum
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.777, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
31098, 3911, 3631
Rint0.044
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 1.13
No. of reflections3911
No. of parameters276
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.882.072.926 (2)163
N2—H2A···N1i0.882.643.175 (2)120
N2—H2B···O1Sii0.882.052.872 (2)154
O1S—H1S···O40.841.882.716 (2)172
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

This investigation was supported by NIH/National Cancer Institute grant PO1 CA104457 (PAC) and by NSF MRI grant CHE 0319176 (SP).

References

First citationAggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res. 24, 2783–2840.  Web of Science PubMed CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, C. M. & Hamel, E. (1991). J. Med. Chem. 34, 2579–2588.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPettit, G. R., Singh, S. B., Boyd, M. R., Hamel, E., Pettit, R. K., Schmidt, J. M. & Hogan, F. (1995). J. Med. Chem. 38, 1666–1672.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds