organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­benzyl-1,2,3,4-tetra­hydro­quinazoline-2,4-dione

aThe Mirzo Ulugbek National University of Uzbekistan, Faculty of Chemistry, University Str. 6, Tashkent 100779, Uzbekistan, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 83, Tashkent, 100125 Uzbekistan, and cS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: gavhar1979.79@mail.ru

(Received 7 May 2010; accepted 26 May 2010; online 5 June 2010)

The asymmetric unit of the title compound, C22H18N2O2, contains two independent mol­ecules, which differ in the orientations of the benzyl groups with respect to the planar (r.m.s. deviations of 0.031 and 0.020 Å) quinazoline-2,4-dione skeletons [dihedral angles of 73.97 (4) and 70.07 (4)° in the first mol­ecule and 75.63 (4) and 63.52 (3)° in the second]. The crystal structure is stabilized by weak inter­molecular C—H⋯O and C—H⋯π interactions and aromatic ππ stacking inter­actions [centroid–centroid distance = 3.735 (2) Å].

Related literature

For the synthesis of the title compound, see: Hedayatullah (1981[Hedayatullah, M. (1981). J. Heterocycl. Chem. 18, 339-342.]). For the synthesis of quinazoline-2,4-dione derivatives, see: Shi et al. (2007[Shi, D.-Q., Dou, G.-L., Li, Z.-Y., Ni, S.-N., Li, X.-Y., Wang, X.-S., Wu, H. & Ji, S.-J. (2007). Tetrahedron, 63, 9764-9773.]); Kuryazov et al. (2008[Kuryazov, R. Sh., Mukhamedov, N. S. & Shakhidoyatov, Kh. M. (2008). Chem. Heterocycl. Compd, 44, 324-329.]). For the biological activity of quinazoline-2,4-dione derivatives, see: Colottaa et al. (2004[Colottaa, V., Catarzia, D., Varanoa, F., Calabria, F. R., Filacchionia, G., Costaglib, C. & Gallib, A. (2004). Bioorg. Med. Chem. Lett. 14, 2345-2349.]); Yakhontov et al. (1977[Yakhontov, L. N., Liberman, S. S., Zhikhareva, G. P. & Kuzmina, K. K. (1977). Pharm. Chem. J. 11, 598-612.]). For related structures, see: Mazza et al. (1988[Mazza, F., Pochetti, G., Pinnen, F. & Lucente, G. (1988). Acta Cryst. C44, 1014-1017.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2O2

  • Mr = 342.38

  • Orthorhombic, P b c a

  • a = 17.8989 (4) Å

  • b = 14.0071 (4) Å

  • c = 27.7222 (6) Å

  • V = 6950.3 (3) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.5 × 0.4 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.804, Tmax = 1.000

  • 18947 measured reflections

  • 7088 independent reflections

  • 4141 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 0.90

  • 7088 reflections

  • 470 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg8 are the centroids of the C17A–C22A and C10B–C15B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19A—H19A⋯O2bi 0.93 2.70 3.419 (3) 134
C6B—H6B⋯C11aii 0.93 2.89 3.604 (3) 134
C21B—H21B⋯C11aiii 0.93 2.80 3.600 (3) 145
C19A—H19A⋯O2bi 0.93 2.70 3.419 (3) 134
C7B—H7BCg4 0.93 2.78 3.586 (2) 146
C5A—H5ACg8ii 0.93 2.90 3.641 (2) 138
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinazoline-2,4-diones have been frequently used as intermediates and synthetic precursors for the preparation of a wide variety of heterocyclic compounds (Kuryazov et al., 2008). In addition, they possess different biological activities (Colottaa et al., 2004; Yakhontov et al., 1977).

The title compound consists of a quinazoline-2,4-dione skeleton with two benzyl groups. The asymmetric unit contains two molecules of 1,2,3,4-tetrahydro-1,3-dibenzylquinazoline-2,4-dione (Fig.1). Orientation of benzyl groups with respect to the planar quinazoline-2,4-dione skeletons are different for independent molecules. Dihedral angles between planar quinazoline-2,4-dione system and benzyl group planes are 73.97 (4)° and 70.07 (4)° (for molecule A) and 75.63 (4)° and 63.52 (3)° (for molecule B). Torsion angles responsible for orientation of benzyl groups are shown in table 1. (In order compare torsions between A and B independent molecules must be taken absolute values of torsion angles).

Quinazoline-2,4-dione system of the molecules are packed into sheets along b axis by a aromatic ππ stacking interaction. The benzene rings in the quinazoline-2,4-dione system standing nearly parallel (molecules A and B) are separated with distance of 3.477 (2) Å and benzene ring-centroid separation is 3.735 (2) Å with ring offset of 1.364 (2) Å. This distances for molecules of A at (x,y,z) and B at (1.5 - x, 1/2 + y, z) are 3.493 (2) Å, 3.791 (2) Å and 1.473 (2) Å.

The observed structure is stabilized by weak C—H···O and C—H···Car type hydrogen bonds (Table 2). The bond distances and angles in organic compound molecules are in normal ranges (Allen et al., 1987).

Related literature top

For the synthesis of the title compound, see: Hedayatullah (1981). For the synthesis of quinazoline-2,4-dione derivatives, see: Shi et al. (2007); Kuryazov et al. (2008). For the biological activity of quinazoline-2,4-dione derivatives, see: Colottaa et al. (2004); Yakhontov et al. (1977). For related structures, see: Mazza et al. (1988). For bond-length data, see: Allen et al. (1987).

Experimental top

To suspension of 1H-quinazoline-2,4-dione (1.62 g) in 40 ml benzene was added 10% aqueous solution of sodium hydroxide (40 ml), tetrabutylammonium bromide (1.29 g, 4 mmol) and benzyl chloride (3.80 g, 30 mmol). The mixture was heated until 60° C and helded out for 6 h (Hedayatullah, 1981). The organic layer was separated, washed with water until neutral reaction and dryed with Na2SO4, benzene was evaporated. Residue was recrystallized from benzene and obtained in 88% yield (3.02 g) of title compound. Colorless crystals suitable for X-ray analysis were obtained from dimethylformamide by slow evaporation.

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and were refined with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of cell with atom labels and 30% probability displacement ellipsoids for non-H atoms.
1,3-Dibenzyl-1,2,3,4-tetrahydroquinazoline-2,4-dione top
Crystal data top
C22H18N2O2Dx = 1.309 Mg m3
Mr = 342.38Melting point: 398(2) K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 2463 reflections
a = 17.8989 (4) Åθ = 3.5–35.8°
b = 14.0071 (4) ŵ = 0.68 mm1
c = 27.7222 (6) ÅT = 293 K
V = 6950.3 (3) Å3Prism, colourless
Z = 160.5 × 0.4 × 0.35 mm
F(000) = 2880
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
7088 independent reflections
Radiation source: Enhance (Cu) X-ray Source4141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.2576 pixels mm-1θmax = 75.8°, θmin = 4.0°
ω scansh = 2218
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1117
Tmin = 0.804, Tmax = 1.000l = 3134
18947 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0587P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.002
7088 reflectionsΔρmax = 0.28 e Å3
470 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00081 (5)
Crystal data top
C22H18N2O2V = 6950.3 (3) Å3
Mr = 342.38Z = 16
Orthorhombic, PbcaCu Kα radiation
a = 17.8989 (4) ŵ = 0.68 mm1
b = 14.0071 (4) ÅT = 293 K
c = 27.7222 (6) Å0.5 × 0.4 × 0.35 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
7088 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4141 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 1.000Rint = 0.030
18947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.90Δρmax = 0.28 e Å3
7088 reflectionsΔρmin = 0.14 e Å3
470 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.90039 (7)0.27786 (11)0.72998 (5)0.0745 (4)
O2A0.85328 (8)0.30319 (11)0.89063 (5)0.0770 (4)
N1A0.77945 (8)0.27259 (10)0.75417 (5)0.0498 (4)
N3A0.87693 (8)0.29234 (10)0.81052 (6)0.0531 (4)
C2A0.85450 (10)0.28112 (13)0.76252 (7)0.0538 (5)
C4A0.82872 (11)0.29654 (13)0.84973 (7)0.0542 (5)
C4AA0.74920 (10)0.29394 (11)0.83793 (6)0.0476 (4)
C5A0.69582 (11)0.30185 (13)0.87449 (7)0.0596 (5)
H5A0.71130.30910.90630.072*
C6A0.62102 (11)0.29916 (14)0.86422 (8)0.0639 (5)
H6A0.58590.30330.88880.077*
C7A0.59835 (11)0.29017 (13)0.81658 (8)0.0627 (5)
H7A0.54760.28940.80940.075*
C8A0.64939 (10)0.28232 (13)0.77977 (7)0.0563 (5)
H8A0.63320.27670.74800.068*
C8AA0.72575 (9)0.28287 (11)0.79034 (6)0.0454 (4)
C9A0.75706 (10)0.24198 (13)0.70537 (6)0.0531 (4)
H9AA0.71640.19650.70840.064*
H9AB0.79880.20890.69060.064*
C10A0.73253 (9)0.32101 (13)0.67192 (6)0.0480 (4)
C11A0.76693 (11)0.40913 (13)0.67155 (7)0.0583 (5)
H11A0.80390.42280.69410.070*
C12A0.74673 (12)0.47754 (15)0.63777 (8)0.0722 (6)
H12A0.77010.53680.63770.087*
C13A0.69229 (13)0.45750 (18)0.60452 (8)0.0775 (7)
H13A0.67850.50350.58200.093*
C14A0.65844 (13)0.37067 (19)0.60429 (8)0.0801 (7)
H14A0.62200.35720.58140.096*
C15A0.67784 (11)0.30240 (16)0.63795 (7)0.0671 (5)
H15A0.65390.24340.63780.081*
C16A0.95826 (10)0.29432 (13)0.81973 (8)0.0627 (5)
H16A0.96810.33320.84800.075*
H16C0.98340.32350.79250.075*
C17A0.98951 (9)0.19523 (13)0.82771 (7)0.0530 (4)
C18A1.00645 (10)0.13649 (14)0.78927 (8)0.0617 (5)
H18A1.00110.15930.75790.074*
C19A1.03111 (11)0.04455 (16)0.79674 (9)0.0748 (6)
H19A1.04090.00490.77060.090*
C20A1.04120 (12)0.01171 (18)0.84297 (10)0.0873 (7)
H20A1.05790.05030.84810.105*
C21A1.02667 (12)0.07020 (18)0.88159 (9)0.0853 (7)
H21A1.03460.04820.91280.102*
C22A1.00042 (10)0.16140 (16)0.87410 (7)0.0684 (6)
H22A0.99000.20050.90040.082*
O1B0.61180 (7)0.06448 (9)0.98324 (5)0.0633 (4)
O2B0.54505 (7)0.03102 (10)0.82607 (5)0.0668 (4)
N1B0.70512 (7)0.06323 (10)0.92718 (5)0.0467 (3)
N3B0.57889 (7)0.04627 (9)0.90467 (5)0.0455 (3)
C2B0.63124 (9)0.05873 (12)0.94108 (7)0.0480 (4)
C4AB0.67396 (9)0.04264 (11)0.84349 (6)0.0444 (4)
C4B0.59496 (9)0.03999 (12)0.85581 (6)0.0476 (4)
C5B0.69580 (10)0.03363 (12)0.79517 (6)0.0542 (5)
H5B0.65970.02780.77120.065*
C6B0.76984 (11)0.03330 (13)0.78293 (7)0.0599 (5)
H6B0.78420.02640.75090.072*
C7B0.82289 (10)0.04332 (13)0.81853 (7)0.0576 (5)
H7B0.87320.04290.81020.069*
C8AB0.72776 (9)0.05321 (11)0.87922 (6)0.0435 (4)
C8B0.80291 (9)0.05388 (12)0.86611 (7)0.0533 (4)
H8B0.83960.06150.88960.064*
C9B0.76085 (10)0.07851 (12)0.96557 (6)0.0545 (5)
H9B0.73590.10410.99380.065*
H9D0.79680.12570.95470.065*
C10B0.80190 (10)0.01121 (13)0.97963 (6)0.0498 (4)
C11B0.76367 (11)0.08904 (13)0.99740 (7)0.0588 (5)
H11B0.71200.08621.00050.071*
C12B0.80122 (13)0.17137 (15)1.01063 (8)0.0711 (6)
H12B0.77490.22291.02330.085*
C13B0.87748 (13)0.17699 (17)1.00508 (8)0.0769 (6)
H13B0.90260.23291.01310.092*
C14B0.91636 (12)0.09989 (17)0.98765 (8)0.0736 (6)
H14B0.96790.10350.98400.088*
C15B0.87924 (10)0.01730 (15)0.97548 (7)0.0617 (5)
H15B0.90610.03510.96440.074*
C16B0.50000 (9)0.03632 (12)0.91967 (7)0.0511 (4)
H16B0.49810.00010.94940.061*
H16D0.47330.00040.89520.061*
C17B0.46085 (8)0.13002 (12)0.92738 (6)0.0458 (4)
C18B0.44536 (10)0.16354 (14)0.97336 (7)0.0588 (5)
H18B0.46110.12861.00000.071*
C19B0.40708 (11)0.24777 (15)0.98023 (8)0.0698 (6)
H19B0.39660.26891.01130.084*
C20B0.38446 (11)0.30048 (14)0.94116 (8)0.0667 (6)
H20B0.35910.35770.94560.080*
C21B0.39945 (10)0.26832 (14)0.89542 (8)0.0636 (5)
H21B0.38410.30400.86890.076*
C22B0.43716 (10)0.18334 (13)0.88838 (7)0.0546 (4)
H22B0.44660.16200.85720.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0545 (8)0.1060 (12)0.0629 (9)0.0081 (8)0.0042 (7)0.0195 (8)
O2A0.0782 (10)0.0927 (11)0.0600 (8)0.0061 (8)0.0186 (8)0.0133 (8)
N1A0.0497 (8)0.0526 (8)0.0470 (8)0.0007 (7)0.0019 (7)0.0021 (7)
N3A0.0485 (8)0.0514 (9)0.0592 (9)0.0013 (7)0.0091 (7)0.0050 (7)
C2A0.0508 (10)0.0543 (11)0.0564 (11)0.0043 (8)0.0011 (9)0.0129 (9)
C4A0.0613 (11)0.0454 (10)0.0558 (11)0.0007 (9)0.0080 (10)0.0016 (9)
C4AA0.0562 (10)0.0357 (8)0.0509 (10)0.0001 (8)0.0025 (8)0.0001 (8)
C5A0.0755 (13)0.0490 (11)0.0544 (11)0.0009 (10)0.0017 (10)0.0074 (9)
C6A0.0621 (12)0.0599 (12)0.0699 (13)0.0041 (10)0.0134 (11)0.0085 (10)
C7A0.0521 (11)0.0594 (12)0.0765 (14)0.0048 (9)0.0008 (10)0.0087 (11)
C8A0.0519 (10)0.0581 (11)0.0589 (11)0.0027 (9)0.0024 (9)0.0011 (10)
C8AA0.0496 (9)0.0364 (8)0.0501 (10)0.0015 (7)0.0003 (8)0.0025 (8)
C9A0.0567 (10)0.0526 (10)0.0500 (10)0.0017 (9)0.0012 (9)0.0030 (9)
C10A0.0447 (9)0.0556 (10)0.0436 (9)0.0055 (8)0.0024 (8)0.0033 (8)
C11A0.0571 (11)0.0617 (12)0.0561 (11)0.0052 (9)0.0041 (9)0.0008 (10)
C12A0.0811 (15)0.0588 (12)0.0766 (14)0.0096 (11)0.0074 (12)0.0109 (11)
C13A0.0798 (15)0.0928 (17)0.0599 (13)0.0336 (14)0.0013 (12)0.0178 (13)
C14A0.0747 (15)0.1002 (18)0.0653 (14)0.0219 (14)0.0215 (12)0.0031 (14)
C15A0.0579 (11)0.0750 (14)0.0684 (13)0.0040 (10)0.0115 (10)0.0061 (11)
C16A0.0493 (10)0.0628 (12)0.0758 (14)0.0107 (9)0.0113 (10)0.0083 (10)
C17A0.0356 (8)0.0619 (11)0.0616 (11)0.0065 (8)0.0052 (8)0.0112 (10)
C18A0.0470 (10)0.0761 (14)0.0621 (12)0.0012 (10)0.0051 (9)0.0156 (11)
C19A0.0567 (12)0.0811 (15)0.0867 (16)0.0119 (11)0.0168 (11)0.0081 (13)
C20A0.0631 (14)0.0857 (17)0.113 (2)0.0246 (12)0.0145 (14)0.0336 (16)
C21A0.0695 (14)0.110 (2)0.0764 (16)0.0181 (14)0.0016 (12)0.0386 (15)
C22A0.0568 (12)0.0878 (15)0.0607 (12)0.0031 (11)0.0043 (10)0.0106 (12)
O1B0.0576 (8)0.0803 (9)0.0520 (8)0.0075 (7)0.0021 (6)0.0003 (7)
O2B0.0490 (7)0.0854 (10)0.0661 (8)0.0013 (7)0.0096 (7)0.0101 (7)
N1B0.0412 (7)0.0463 (8)0.0525 (8)0.0014 (6)0.0047 (6)0.0038 (7)
N3B0.0388 (7)0.0430 (8)0.0545 (9)0.0020 (6)0.0008 (6)0.0011 (7)
C2B0.0468 (9)0.0414 (9)0.0558 (11)0.0049 (8)0.0025 (8)0.0012 (8)
C4AB0.0451 (9)0.0342 (8)0.0539 (10)0.0011 (7)0.0002 (8)0.0014 (8)
C4B0.0430 (9)0.0424 (9)0.0573 (11)0.0001 (8)0.0052 (8)0.0026 (8)
C5B0.0563 (11)0.0509 (10)0.0556 (11)0.0017 (9)0.0021 (9)0.0032 (9)
C6B0.0647 (12)0.0540 (11)0.0610 (12)0.0016 (9)0.0103 (10)0.0006 (10)
C7B0.0469 (10)0.0493 (10)0.0766 (14)0.0005 (8)0.0122 (9)0.0075 (10)
C8AB0.0410 (9)0.0329 (8)0.0567 (10)0.0001 (7)0.0021 (8)0.0006 (8)
C8B0.0426 (9)0.0503 (10)0.0670 (12)0.0011 (8)0.0036 (9)0.0051 (9)
C9B0.0515 (10)0.0515 (10)0.0605 (11)0.0012 (8)0.0098 (9)0.0124 (9)
C10B0.0493 (10)0.0514 (10)0.0486 (10)0.0019 (8)0.0101 (8)0.0098 (8)
C11B0.0569 (11)0.0610 (12)0.0584 (11)0.0023 (9)0.0048 (9)0.0066 (10)
C12B0.0818 (15)0.0609 (13)0.0704 (13)0.0033 (11)0.0094 (12)0.0060 (11)
C13B0.0835 (16)0.0728 (15)0.0745 (15)0.0234 (13)0.0169 (13)0.0020 (12)
C14B0.0555 (12)0.0895 (16)0.0759 (14)0.0186 (12)0.0117 (11)0.0002 (13)
C15B0.0499 (11)0.0696 (13)0.0654 (12)0.0003 (10)0.0100 (9)0.0030 (10)
C16B0.0393 (9)0.0478 (10)0.0662 (12)0.0032 (8)0.0020 (8)0.0087 (9)
C17B0.0338 (8)0.0465 (10)0.0570 (10)0.0023 (7)0.0011 (8)0.0081 (8)
C18B0.0556 (11)0.0633 (12)0.0574 (12)0.0069 (9)0.0038 (9)0.0122 (10)
C19B0.0674 (13)0.0741 (14)0.0679 (14)0.0142 (11)0.0075 (11)0.0061 (12)
C20B0.0549 (11)0.0543 (12)0.0908 (16)0.0124 (9)0.0031 (11)0.0005 (11)
C21B0.0558 (11)0.0586 (12)0.0764 (14)0.0083 (9)0.0088 (10)0.0154 (11)
C22B0.0502 (10)0.0575 (11)0.0561 (11)0.0037 (9)0.0032 (9)0.0078 (9)
Geometric parameters (Å, º) top
O1A—C2A1.221 (2)O1B—C2B1.222 (2)
O2A—C4A1.220 (2)O2B—C4B1.2222 (19)
N1A—C2A1.368 (2)N1B—C2B1.379 (2)
N1A—C8AA1.397 (2)N1B—C8AB1.397 (2)
N1A—C9A1.474 (2)N1B—C9B1.474 (2)
N3A—C4A1.389 (2)N3B—C4B1.387 (2)
N3A—C2A1.399 (2)N3B—C2B1.388 (2)
N3A—C16A1.478 (2)N3B—C16B1.479 (2)
C4A—C4AA1.461 (2)C4AB—C8AB1.389 (2)
C4AA—C8AA1.393 (2)C4AB—C5B1.401 (2)
C4AA—C5A1.397 (2)C4AB—C4B1.455 (2)
C5A—C6A1.369 (3)C5B—C6B1.368 (2)
C5A—H5A0.9300C5B—H5B0.9300
C6A—C7A1.387 (3)C6B—C7B1.377 (3)
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.374 (2)C7B—C8B1.375 (2)
C7A—H7A0.9300C7B—H7B0.9300
C8A—C8AA1.398 (2)C8AB—C8B1.393 (2)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.510 (2)C9B—C10B1.507 (2)
C9A—H9AA0.9700C9B—H9B0.9700
C9A—H9AB0.9700C9B—H9D0.9700
C10A—C11A1.379 (2)C10B—C11B1.378 (2)
C10A—C15A1.383 (2)C10B—C15B1.392 (2)
C11A—C12A1.388 (3)C11B—C12B1.384 (3)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.370 (3)C12B—C13B1.376 (3)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.359 (3)C13B—C14B1.373 (3)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C15A1.380 (3)C14B—C15B1.376 (3)
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.513 (2)C16B—C17B1.503 (2)
C16A—H16A0.9700C16B—H16B0.9700
C16A—H16C0.9700C16B—H16D0.9700
C17A—C18A1.380 (3)C17B—C22B1.381 (2)
C17A—C22A1.384 (3)C17B—C18B1.386 (2)
C18A—C19A1.377 (3)C18B—C19B1.378 (2)
C18A—H18A0.9300C18B—H18B0.9300
C19A—C20A1.374 (3)C19B—C20B1.372 (3)
C19A—H19A0.9300C19B—H19B0.9300
C20A—C21A1.373 (3)C20B—C21B1.372 (3)
C20A—H20A0.9300C20B—H20B0.9300
C21A—C22A1.377 (3)C21B—C22B1.382 (2)
C21A—H21A0.9300C21B—H21B0.9300
C22A—H22A0.9300C22B—H22B0.9300
C2A—N1A—C8AA123.03 (15)C2B—N1B—C8AB122.66 (14)
C2A—N1A—C9A116.58 (15)C2B—N1B—C9B116.98 (14)
C8AA—N1A—C9A120.11 (14)C8AB—N1B—C9B120.36 (14)
C4A—N3A—C2A124.81 (15)C4B—N3B—C2B125.30 (14)
C4A—N3A—C16A118.42 (15)C4B—N3B—C16B117.80 (14)
C2A—N3A—C16A116.68 (16)C2B—N3B—C16B116.87 (14)
O1A—C2A—N1A122.15 (17)O1B—C2B—N1B122.51 (16)
O1A—C2A—N3A120.93 (17)O1B—C2B—N3B120.76 (16)
N1A—C2A—N3A116.91 (16)N1B—C2B—N3B116.73 (15)
O2A—C4A—N3A120.45 (18)C8AB—C4AB—C5B119.85 (16)
O2A—C4A—C4AA124.14 (18)C8AB—C4AB—C4B120.59 (16)
N3A—C4A—C4AA115.41 (16)C5B—C4AB—C4B119.56 (16)
C8AA—C4AA—C5A119.31 (16)O2B—C4B—N3B120.91 (15)
C8AA—C4AA—C4A120.56 (16)O2B—C4B—C4AB123.68 (17)
C5A—C4AA—C4A120.13 (16)N3B—C4B—C4AB115.40 (15)
C6A—C5A—C4AA121.04 (18)C6B—C5B—C4AB120.52 (17)
C6A—C5A—H5A119.5C6B—C5B—H5B119.7
C4AA—C5A—H5A119.5C4AB—C5B—H5B119.7
C5A—C6A—C7A119.11 (19)C5B—C6B—C7B119.34 (18)
C5A—C6A—H6A120.4C5B—C6B—H6B120.3
C7A—C6A—H6A120.4C7B—C6B—H6B120.3
C8A—C7A—C6A121.32 (18)C8B—C7B—C6B121.30 (18)
C8A—C7A—H7A119.3C8B—C7B—H7B119.4
C6A—C7A—H7A119.3C6B—C7B—H7B119.4
C7A—C8A—C8AA119.60 (18)C4AB—C8AB—C8B118.93 (16)
C7A—C8A—H8A120.2C4AB—C8AB—N1B119.22 (15)
C8AA—C8A—H8A120.2C8B—C8AB—N1B121.84 (15)
C4AA—C8AA—N1A118.95 (15)C7B—C8B—C8AB120.05 (17)
C4AA—C8AA—C8A119.60 (17)C7B—C8B—H8B120.0
N1A—C8AA—C8A121.45 (16)C8AB—C8B—H8B120.0
N1A—C9A—C10A115.43 (14)N1B—C9B—C10B113.29 (14)
N1A—C9A—H9AA108.4N1B—C9B—H9B108.9
C10A—C9A—H9AA108.4C10B—C9B—H9B108.9
N1A—C9A—H9AB108.4N1B—C9B—H9D108.9
C10A—C9A—H9AB108.4C10B—C9B—H9D108.9
H9AA—C9A—H9AB107.5H9B—C9B—H9D107.7
C11A—C10A—C15A118.66 (18)C11B—C10B—C15B118.35 (17)
C11A—C10A—C9A122.06 (16)C11B—C10B—C9B120.66 (16)
C15A—C10A—C9A119.08 (17)C15B—C10B—C9B120.98 (17)
C10A—C11A—C12A120.43 (19)C10B—C11B—C12B120.85 (19)
C10A—C11A—H11A119.8C10B—C11B—H11B119.6
C12A—C11A—H11A119.8C12B—C11B—H11B119.6
C13A—C12A—C11A119.9 (2)C13B—C12B—C11B120.0 (2)
C13A—C12A—H12A120.1C13B—C12B—H12B120.0
C11A—C12A—H12A120.1C11B—C12B—H12B120.0
C14A—C13A—C12A120.2 (2)C14B—C13B—C12B119.8 (2)
C14A—C13A—H13A119.9C14B—C13B—H13B120.1
C12A—C13A—H13A119.9C12B—C13B—H13B120.1
C13A—C14A—C15A120.3 (2)C13B—C14B—C15B120.2 (2)
C13A—C14A—H14A119.8C13B—C14B—H14B119.9
C15A—C14A—H14A119.8C15B—C14B—H14B119.9
C14A—C15A—C10A120.5 (2)C14B—C15B—C10B120.8 (2)
C14A—C15A—H15A119.7C14B—C15B—H15B119.6
C10A—C15A—H15A119.7C10B—C15B—H15B119.6
N3A—C16A—C17A111.85 (14)N3B—C16B—C17B113.76 (13)
N3A—C16A—H16A109.2N3B—C16B—H16B108.8
C17A—C16A—H16A109.2C17B—C16B—H16B108.8
N3A—C16A—H16C109.2N3B—C16B—H16D108.8
C17A—C16A—H16C109.2C17B—C16B—H16D108.8
H16A—C16A—H16C107.9H16B—C16B—H16D107.7
C18A—C17A—C22A118.84 (19)C22B—C17B—C18B118.39 (16)
C18A—C17A—C16A121.02 (17)C22B—C17B—C16B120.26 (16)
C22A—C17A—C16A120.13 (19)C18B—C17B—C16B121.31 (16)
C19A—C18A—C17A120.79 (19)C19B—C18B—C17B121.10 (18)
C19A—C18A—H18A119.6C19B—C18B—H18B119.5
C17A—C18A—H18A119.6C17B—C18B—H18B119.5
C20A—C19A—C18A119.7 (2)C20B—C19B—C18B119.9 (2)
C20A—C19A—H19A120.1C20B—C19B—H19B120.0
C18A—C19A—H19A120.1C18B—C19B—H19B120.0
C21A—C20A—C19A120.2 (2)C19B—C20B—C21B119.68 (18)
C21A—C20A—H20A119.9C19B—C20B—H20B120.2
C19A—C20A—H20A119.9C21B—C20B—H20B120.2
C20A—C21A—C22A120.1 (2)C20B—C21B—C22B120.58 (19)
C20A—C21A—H21A120.0C20B—C21B—H21B119.7
C22A—C21A—H21A120.0C22B—C21B—H21B119.7
C21A—C22A—C17A120.4 (2)C17B—C22B—C21B120.34 (18)
C21A—C22A—H22A119.8C17B—C22B—H22B119.8
C17A—C22A—H22A119.8C21B—C22B—H22B119.8
C8AA—N1A—C2A—O1A175.32 (16)C8AB—N1B—C2B—O1B177.61 (15)
C9A—N1A—C2A—O1A10.7 (3)C9B—N1B—C2B—O1B1.9 (2)
C8AA—N1A—C2A—N3A5.7 (3)C8AB—N1B—C2B—N3B1.8 (2)
C9A—N1A—C2A—N3A168.28 (14)C9B—N1B—C2B—N3B178.73 (13)
C4A—N3A—C2A—O1A179.83 (17)C4B—N3B—C2B—O1B179.24 (16)
C16A—N3A—C2A—O1A3.4 (3)C16B—N3B—C2B—O1B2.5 (2)
C4A—N3A—C2A—N1A0.8 (3)C4B—N3B—C2B—N1B1.4 (2)
C16A—N3A—C2A—N1A175.60 (15)C16B—N3B—C2B—N1B176.87 (13)
C2A—N3A—C4A—O2A177.49 (17)C2B—N3B—C4B—O2B178.43 (16)
C16A—N3A—C4A—O2A1.1 (3)C16B—N3B—C4B—O2B3.4 (2)
C2A—N3A—C4A—C4AA3.4 (3)C2B—N3B—C4B—C4AB2.9 (2)
C16A—N3A—C4A—C4AA179.81 (14)C16B—N3B—C4B—C4AB175.28 (13)
O2A—C4A—C4AA—C8AA177.75 (17)C8AB—C4AB—C4B—O2B179.88 (16)
N3A—C4A—C4AA—C8AA3.2 (2)C5B—C4AB—C4B—O2B0.7 (3)
O2A—C4A—C4AA—C5A1.8 (3)C8AB—C4AB—C4B—N3B1.5 (2)
N3A—C4A—C4AA—C5A177.27 (15)C5B—C4AB—C4B—N3B177.94 (15)
C8AA—C4AA—C5A—C6A0.2 (3)C8AB—C4AB—C5B—C6B1.3 (3)
C4A—C4AA—C5A—C6A179.71 (17)C4B—C4AB—C5B—C6B178.20 (16)
C4AA—C5A—C6A—C7A1.2 (3)C4AB—C5B—C6B—C7B0.9 (3)
C5A—C6A—C7A—C8A1.1 (3)C5B—C6B—C7B—C8B0.2 (3)
C6A—C7A—C8A—C8AA0.3 (3)C5B—C4AB—C8AB—C8B0.5 (2)
C5A—C4AA—C8AA—N1A178.40 (15)C4B—C4AB—C8AB—C8B178.98 (15)
C4A—C4AA—C8AA—N1A1.1 (2)C5B—C4AB—C8AB—N1B179.26 (15)
C5A—C4AA—C8AA—C8A1.6 (3)C4B—C4AB—C8AB—N1B1.3 (2)
C4A—C4AA—C8AA—C8A178.84 (16)C2B—N1B—C8AB—C4AB3.1 (2)
C2A—N1A—C8AA—C4AA5.9 (2)C9B—N1B—C8AB—C4AB177.48 (14)
C9A—N1A—C8AA—C4AA167.91 (15)C2B—N1B—C8AB—C8B177.20 (15)
C2A—N1A—C8AA—C8A174.10 (16)C9B—N1B—C8AB—C8B2.3 (2)
C9A—N1A—C8AA—C8A12.1 (2)C6B—C7B—C8B—C8AB0.9 (3)
C7A—C8A—C8AA—C4AA1.7 (3)C4AB—C8AB—C8B—C7B0.6 (2)
C7A—C8A—C8AA—N1A178.33 (16)N1B—C8AB—C8B—C7B179.66 (15)
C2A—N1A—C9A—C10A99.51 (18)C2B—N1B—C9B—C10B102.55 (18)
C8AA—N1A—C9A—C10A86.33 (19)C8AB—N1B—C9B—C10B76.95 (19)
N1A—C9A—C10A—C11A38.0 (2)N1B—C9B—C10B—C11B60.1 (2)
N1A—C9A—C10A—C15A147.14 (17)N1B—C9B—C10B—C15B120.61 (18)
C15A—C10A—C11A—C12A0.1 (3)C15B—C10B—C11B—C12B0.2 (3)
C9A—C10A—C11A—C12A174.99 (16)C9B—C10B—C11B—C12B179.58 (17)
C10A—C11A—C12A—C13A0.0 (3)C10B—C11B—C12B—C13B1.5 (3)
C11A—C12A—C13A—C14A0.5 (3)C11B—C12B—C13B—C14B1.8 (3)
C12A—C13A—C14A—C15A0.9 (3)C12B—C13B—C14B—C15B0.4 (3)
C13A—C14A—C15A—C10A0.8 (3)C13B—C14B—C15B—C10B1.4 (3)
C11A—C10A—C15A—C14A0.3 (3)C11B—C10B—C15B—C14B1.7 (3)
C9A—C10A—C15A—C14A174.73 (18)C9B—C10B—C15B—C14B178.98 (17)
C4A—N3A—C16A—C17A88.4 (2)C4B—N3B—C16B—C17B97.31 (18)
C2A—N3A—C16A—C17A88.3 (2)C2B—N3B—C16B—C17B84.33 (18)
N3A—C16A—C17A—C18A81.3 (2)N3B—C16B—C17B—C22B76.8 (2)
N3A—C16A—C17A—C22A97.6 (2)N3B—C16B—C17B—C18B105.44 (19)
C22A—C17A—C18A—C19A2.4 (3)C22B—C17B—C18B—C19B0.2 (3)
C16A—C17A—C18A—C19A176.51 (17)C16B—C17B—C18B—C19B177.63 (17)
C17A—C18A—C19A—C20A2.0 (3)C17B—C18B—C19B—C20B0.8 (3)
C18A—C19A—C20A—C21A0.1 (3)C18B—C19B—C20B—C21B0.7 (3)
C19A—C20A—C21A—C22A1.4 (4)C19B—C20B—C21B—C22B0.0 (3)
C20A—C21A—C22A—C17A0.9 (3)C18B—C17B—C22B—C21B0.5 (3)
C18A—C17A—C22A—C21A1.0 (3)C16B—C17B—C22B—C21B178.34 (16)
C16A—C17A—C22A—C21A177.99 (18)C20B—C21B—C22B—C17B0.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg8 are the centroids of the C17A–C22A and C10B–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19A—H19A···O2bi0.932.703.419 (3)134
C6B—H6B···C11aii0.932.893.604 (3)134
C21B—H21B···C11aiii0.932.803.600 (3)145
C19A—H19A···O2bi0.932.703.419 (3)134
C7B—H7B···Cg40.932.783.586 (2)146
C5A—H5A···Cg8ii0.932.903.641 (2)138
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+3/2, y1/2, z; (iii) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H18N2O2
Mr342.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)17.8989 (4), 14.0071 (4), 27.7222 (6)
V3)6950.3 (3)
Z16
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.5 × 0.4 × 0.35
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.804, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18947, 7088, 4141
Rint0.030
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 0.90
No. of reflections7088
No. of parameters470
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected torsion angles (º) top
C8AA—N1A—C9A—C10A86.33 (19)C8AB—N1B—C9B—C10B76.95 (19)
N1A—C9A—C10A—C11A38.0 (2)N1B—C9B—C10B—C11B60.1 (2)
C2A—N3A—C16A—C17A88.3 (2)C2B—N3B—C16B—C17B84.33 (18)
N3A—C16A—C17A—C18A81.3 (2)N3B—C16B—C17B—C18B105.44 (19)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg8 are the centroids of the C17A–C22A and C10B–C15B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19A—H19A···O2bi0.932.703.419 (3)134
C6B—H6B···C11aii0.932.893.604 (3)134
C21B—H21B···C11aiii0.932.803.600 (3)145
C19A—H19A···O2bi0.932.703.419 (3)134
C7B—H7B···Cg40.932.783.586 (2)146
C5A—H5A···Cg8ii0.932.903.641 (2)138
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+3/2, y1/2, z; (iii) x1/2, y, z+3/2.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA–F3–T047).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationColottaa, V., Catarzia, D., Varanoa, F., Calabria, F. R., Filacchionia, G., Costaglib, C. & Gallib, A. (2004). Bioorg. Med. Chem. Lett. 14, 2345–2349.  Web of Science CrossRef PubMed Google Scholar
First citationHedayatullah, M. (1981). J. Heterocycl. Chem. 18, 339–342.  CrossRef CAS Google Scholar
First citationKuryazov, R. Sh., Mukhamedov, N. S. & Shakhidoyatov, Kh. M. (2008). Chem. Heterocycl. Compd, 44, 324–329.  Web of Science CrossRef CAS Google Scholar
First citationMazza, F., Pochetti, G., Pinnen, F. & Lucente, G. (1988). Acta Cryst. C44, 1014–1017.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D.-Q., Dou, G.-L., Li, Z.-Y., Ni, S.-N., Li, X.-Y., Wang, X.-S., Wu, H. & Ji, S.-J. (2007). Tetrahedron, 63, 9764–9773.  Web of Science CSD CrossRef CAS Google Scholar
First citationYakhontov, L. N., Liberman, S. S., Zhikhareva, G. P. & Kuzmina, K. K. (1977). Pharm. Chem. J. 11, 598–612.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds