metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m814-m815

Chloridotris[μ2-2-(di­methyl­amino)­ethano­lato]-μ3-hydroxido-tri-μ2-tri­fluoro­acetato-tetra­copper(II) tetra­hydro­furan solvate

aNational Center for Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603-Kuala Lumpur, Malaysia, and cSTaRBURSTT Cyber Instrumentation Consortium, Youngstown State Unversity, Department of Chemistry, One University Plaza, Youngstown, Ohio 44555-3663, USA
*Correspondence e-mail: dr_tajammul@yahoo.ca, mzeller@ysu.edu

(Received 10 May 2010; accepted 14 June 2010; online 18 June 2010)

The title compound, [Cu4(C2F3O2)3(C4H10NO)3Cl(OH)]·C4H8O or [Cu4(TFA)3(dmae)3Cl(OH)]·THF (dmae is dimeth­yl­amino­ethano­late, TFA is trifluoro­acetate and THF is tetra­hydro­furan), has an approximate mol­ecular threefold symmetry with three equivalent {Cu(dmae)(TFA)} units bridging between a Cu—Cl and a hydroxide unit, with the latter two lying on the mol­ecular threefold axis. However, in the solid state, the tetranuclear complex has Ci symmetry. The Cu atom bonded to the Cl atom has a distorted tetra­hedral geometry. The other three Cu atoms have distorted square-pyramidal geometries with an NO4 coordination environment. The bonds within the CuNO3 base of the pyramid range from 1.953 (2) to 2.033 (3) Å, while the apical Cu—O bonds are significantly longer, ranging from 2.286 (2) to 2.377 (2) Å. The square-pyramidal geometries are augmented by weak inter­actions towards a sixth O atom, forming a highly distorted octa­hedral coordination environment [long Cu—O distances = 2.712 (2)–2.824 (2) Å]. The hydroxide group is hydrogen bonded to the tetra­hydro­furan solvent mol­ecule. One of the –CF3 groups shows minor disorder over two positions, with a refined occupancy ratio of 0.894 (4):0.106 (5).

Related literature

For the synthesis of [Cu(dmae)Cl]4, used as starting material for title compound, see: Anwander et al. (1997[Anwander, R., Munck, F. C., Priermeier, T., Scherer, W., Runte, O. & Herrmann, W. A. (1997). Inorg. Chem. 36, 3545-3552.]). For general background to copper(II) complexes, see: Coastamagna et al. (1992[Coastamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev. 119, 67-88.]). For related structures, see: Tahir et al. (2008[Tahir, A. A., Hamid, M., Mazhar, M., Zeller, M., Hunter, A. D., Nadeem, M. & Akhtar, M. J. (2008). Dalton Trans. pp. 1224-1232.]); Shahid et al. (2009[Shahid, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2009). Acta Cryst. E65, m345-m346.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4(C2F3O2)3(C4H10NO)3Cl(OH)]·C4H8O

  • Mr = 982.21

  • Monoclinic, C 2/c

  • a = 16.4353 (14) Å

  • b = 12.1893 (12) Å

  • c = 35.547 (3) Å

  • β = 94.678 (2)°

  • V = 7097.7 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 100 K

  • 0.41 × 0.38 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.746

  • 20465 measured reflections

  • 10267 independent reflections

  • 7515 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.103

  • S = 1.01

  • 10267 reflections

  • 467 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O11 1.00 1.73 2.723 (3) 174

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

In recent years, there has been a considerable interest towards the synthesis of copper complexes; these complexes are extensively used in catalysis, enzymatic reactions, magnetism and molecular architecture (Coastamagna, Vargas et al., 1992). The present work is a continuation of earlier studies for the preparation and structure eludication of copper (II) complexes (Shahid et al., 2009). The motivation behind the synthesis of the title compound was to use it as a starting material for the synthesis of single source precursors for the deposition of thin films of copper oxides using aerosol assisted chemical vapor deposition (AACVD). We present here the synthesis and crystal structure of the title compound, [Cu4((CH3)2NCH2CH2O)3(F3CCOO)3(OH)Cl] or [Cu4(dmae)3(TFA)3(OH)Cl] (dmae = dimethylaminoethanolate, TFA = trifluoroacetate), which crystallized from THF as the mono solvate with the THF molecule tightly hydrogen bonded to the hydroxyl group.

The title compound has a slightly distorted molecular three fold symmetry with three equivalent Cu(dmae)(TFA) units bridging via their alcoholate oxygen atoms between a Cu—Cl and an hydroxyl unit with the latter two lying on a molecular pseudo threefold axis. The Cu atom bonded to the chlorine has a distorted tetrahedral geometry. The other three copper atoms have distorted square pyramidal geometries with a CNO4 coordination environment from the dmae O and N atoms, the hydroxyl O atom and two TFA anions. The TFA anions are bridging between two neighboring copper ions with one of the oxygen atoms being part of the base of the pyramid of one copper ion, and the other being in the apical position of the neighboring copper ion. The bonds within the CuNO3 bases of the pyramids are strong and quite similar in length with distances between 1.953 (2) and 2.033 (3) Å. The apical Cu—O bonds are significantly longer and between 2.286 (2) and 2.377 (2) Å, thus rendering the µ2-bridge of the TFA ions asymmetric. The square pyramidal geometries are augmented by weak interactions towards a fifth oxygen atom to form a highly distorted octahedral coordination environment (Cu—O distances: O3—Cu3 = 2.712 (2), O2—Cu2 = 2.780 (2), O1—Cu4 = 2.8240 (2) Å).

A similar motif as in the title compound was previously observed for two mixed metal copper-titanium complexes (Tahir et al., 2008). In these complexes the TFA anions were replaced by benzoate or 2-methyl-benzoate ligands, and the Cu—Cl unit was replaced by a titanium atom, which in turn was bonded to another larger Cu—Ti cluster. The [Cu3(dmae)3(TFA)3(OH)] unit in the title compound and the [Cu3((CH3)2NCH2CH2O)3(O2C—C6H5R)3(OH)] units in the Cu—Ti complexes (R = H, Me) are quite similar. In the 2-methyl-benzoate complexes the [Cu3((CH3)2NCH2CH2O)3(O2C—C6H5Me)3(OH)] unit is located on an actual crystallographic three fold axis. The carboxylate anions show coordination modes differing slightly from those observed in the title compound with some of the oxygen atoms being detached from the copper ions and interactions to the fifth oxygen atom, which are very weak in the title compound, being strengthened instead. The overall coordination environment - distorted square pyramidal CNO4 geometries with an additional weak interaction towards a fifth oxygen atom - is however the same in all three compounds, which shows the idiosyncracy commonly observed for copper(II) to form strongly distorted and highly flexible octahedral geometries with a set of four strong bonds in a square planar arrangement and two apical ligands at variable distances. Individual ligand atoms in these kinds of complexes can easily switch from tightly bound to only weakly coordinated as long as the overall coordination environment of the metal center is retained, and energy differences and activation barriers between the different arrangements that can be achieved that way are quite small. The difference in bonding arrangement in the three complexes in the solid state does thus probably not translate into a different chemical nature for the three complexes as the bonding environment around Cu(II) is very flexible and it can be assumed that in solution (i.e. upon release of packing effects) all complexes will attain the same connectivity pattern.

In the title compound the hydroxyl group is O—H···O hydrogen bonded to a tetrahydrofuran molecule (Table 1), which is embedded in a bowl shaped cleft of the complex formed by the three TFA ligands. No such host–guest behavior was observed for the other two related compounds (Tahir et al., 2008).

Related literature top

For the synthesis of [Cu(dmae)Cl]4, used as starting material for title compound, see: Anwander et al. (1997). For general background to copper(II) complexes, see: Coastamagna et al. (1992). For related structures, see: Tahir et al. (2008); Shahid et al. (2009).

Experimental top

Tetrameric N,N-dimethylaminoethanolato copper(II) chloride, [Cu(dmae)Cl]4 was prepared according to a literature method (Anwander et al., 1997). The title compound was prepared as follows: 1.25 g (1.67 mmole) of [Cu(dmae)Cl]4 in 20 ml THF were combined with 1.77 g (6.66 mmole) of Cu(F3CCOO)2 in 10 ml THF followed by the addition of 0.297 g (3.33 mmole) N,N-dimethylaminoethanol. The reaction mixture was stirred for 3 h and filtered through a cannula to remove any undissolved species. The filtrate was evaporated to dryness under vacuum, the solid was re-dissolved in 5 ml THF and placed in a vial with rubber seal at room temperature for one week to give blue crystals suitable for single-crystal X-ray diffraction analysis. Yield: 86% m.p. 393–394 K. Elemental Analysis for Cu4((CH3)2NCH2CH2O)3(F3CCOO)3(OH)Cl % calc: C, 21.99 H, 3.97 N, 4.27, % found: C, 22.10 H, 3.90 N, 4.53.

Refinement top

The fluorine atoms bonded to C14 were refined as disordered over two mutually exclusive positions with a refined occupancy ratio of 0.894 (4) to 0.106 (5). C—F bond distances within this CF3 group were restrained to be the same within a standard uncertaincy of 0.02 Å and ADPs of the minor F atoms were constrained to be identical to those of the major moiety F atom opposite their position.

All hydrogen atoms were added in calculated positions with a C—H bond distances of 0.97 (methylene), 0.96 (methyl) and 1.00 Å (OH). They were refined with isotropic displacement parameteres Uiso of 1.5 (methyl, OH) or 1.2 times Ueq (methylene) of the adjacent carbon or oxygen atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering scheme. The displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Perspective view of the title compound, view down the pseudo three fold axis. The displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
Chloridotris[µ2-2-(dimethylamino)ethanolato]-µ3-hydroxido-tri-µ2- trifluoroacetato-tetracopper(II) tetrahydrofuran solvate top
Crystal data top
[Cu4(C2F3O2)3(C4H10NO)3Cl(OH)]·C4H8OF(000) = 3952
Mr = 982.21Dx = 1.838 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1722 reflections
a = 16.4353 (14) Åθ = 2.4–30.1°
b = 12.1893 (12) ŵ = 2.54 mm1
c = 35.547 (3) ÅT = 100 K
β = 94.678 (2)°Block, blue
V = 7097.7 (11) Å30.41 × 0.38 × 0.28 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
10267 independent reflections
Radiation source: fine-focus sealed tube7515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 31.6°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1222
Tmin = 0.673, Tmax = 0.746k = 1517
20465 measured reflectionsl = 3750
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0396P)2 + 12.2423P]
where P = (Fo2 + 2Fc2)/3
10267 reflections(Δ/σ)max = 0.001
467 parametersΔρmax = 0.92 e Å3
15 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cu4(C2F3O2)3(C4H10NO)3Cl(OH)]·C4H8OV = 7097.7 (11) Å3
Mr = 982.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.4353 (14) ŵ = 2.54 mm1
b = 12.1893 (12) ÅT = 100 K
c = 35.547 (3) Å0.41 × 0.38 × 0.28 mm
β = 94.678 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
10267 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7515 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.746Rint = 0.035
20465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04315 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0396P)2 + 12.2423P]
where P = (Fo2 + 2Fc2)/3
10267 reflectionsΔρmax = 0.92 e Å3
467 parametersΔρmin = 0.69 e Å3
Special details top

Experimental. The fluorine atoms bonded to C14 were refined as disordered over two mutually exclusive positions with a refined occupancy ratio of 0.894 (4) to 0.106 (5). C-f bond distances within this CF3 group were restrained to be the same within a standard uncertaincy of 0.02 Angstrom and ADPs of the minor F atoms were constrained to be identical to those of the major moiety F atom opposite their position.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3487 (2)0.6333 (3)0.27202 (8)0.0213 (7)
H1A0.29550.66990.26590.026*
H1B0.36140.58840.25000.026*
C20.41488 (18)0.7186 (3)0.28039 (9)0.0188 (7)
H2A0.46930.68410.27960.023*
H2B0.40970.77710.26100.023*
C30.3331 (2)0.8365 (3)0.31874 (10)0.0253 (8)
H3A0.33580.89580.30030.038*
H3B0.33030.86790.34400.038*
H3C0.28430.79190.31230.038*
C40.4799 (2)0.8341 (3)0.32982 (10)0.0240 (7)
H4A0.48450.89380.31170.036*
H4B0.52890.78810.33050.036*
H4C0.47450.86490.35500.036*
C50.16045 (19)0.6242 (3)0.37865 (9)0.0203 (7)
H5A0.12700.66120.35800.024*
H5B0.17180.67720.39950.024*
C60.11552 (19)0.5262 (3)0.39231 (10)0.0234 (7)
H6A0.06660.55080.40450.028*
H6B0.09740.47870.37060.028*
C70.1697 (2)0.5093 (3)0.45818 (10)0.0283 (8)
H7A0.11470.50270.46680.042*
H7B0.18530.58680.45780.042*
H7C0.20850.46900.47540.042*
C80.1435 (2)0.3471 (3)0.42013 (11)0.0274 (8)
H8A0.08610.34370.42560.041*
H8B0.17690.30670.43960.041*
H8C0.14980.31410.39540.041*
C90.24516 (18)0.2700 (3)0.31588 (9)0.0180 (6)
H9A0.22400.29150.29010.022*
H9B0.20000.23580.32850.022*
C100.31478 (18)0.1882 (3)0.31392 (9)0.0175 (6)
H10A0.32350.14820.33810.021*
H10B0.30080.13410.29370.021*
C110.3849 (2)0.2949 (3)0.26740 (9)0.0238 (7)
H11A0.37770.23550.24890.036*
H11B0.43500.33550.26340.036*
H11C0.33800.34480.26440.036*
C120.46108 (19)0.1720 (3)0.31080 (10)0.0237 (7)
H12A0.45240.11080.29300.036*
H12B0.46610.14370.33670.036*
H12C0.51120.21100.30580.036*
C130.37061 (18)0.7122 (3)0.42640 (9)0.0166 (6)
C140.3775 (2)0.8151 (3)0.45127 (10)0.0294 (8)
C150.36846 (19)0.2779 (3)0.42436 (9)0.0194 (6)
C160.3779 (2)0.1874 (3)0.45482 (10)0.0252 (7)
C170.55106 (18)0.4851 (3)0.34328 (8)0.0157 (6)
C180.6447 (2)0.4702 (3)0.34677 (10)0.0244 (7)
C190.5583 (2)0.3809 (3)0.44361 (11)0.0290 (8)
H19A0.56410.32550.42360.035*
H19B0.52650.34850.46330.035*
C200.6412 (2)0.4186 (4)0.46031 (11)0.0331 (9)
H20A0.66340.36840.48050.040*
H20B0.68050.42450.44070.040*
C210.6219 (2)0.5295 (4)0.47598 (13)0.0426 (11)
H21A0.67010.57850.47670.051*
H21B0.60360.52310.50170.051*
C220.5532 (2)0.5721 (3)0.44827 (11)0.0330 (9)
H22A0.51090.60910.46200.040*
H22B0.57470.62520.43050.040*
Cl10.13236 (5)0.50928 (7)0.27516 (2)0.02051 (16)
Cu10.23798 (2)0.50916 (3)0.317137 (10)0.01044 (8)
Cu20.39464 (2)0.63387 (3)0.350823 (10)0.01304 (8)
Cu30.28392 (2)0.48008 (3)0.401847 (10)0.01366 (9)
Cu40.39472 (2)0.37149 (3)0.343178 (10)0.01343 (8)
F10.38789 (19)0.2286 (2)0.48959 (7)0.0616 (8)
F20.44062 (16)0.1223 (2)0.45106 (7)0.0499 (7)
F30.31145 (16)0.1262 (2)0.45306 (9)0.0618 (8)
F40.45195 (17)0.8352 (4)0.46438 (13)0.0738 (15)0.894 (5)
F50.3505 (3)0.9028 (2)0.43088 (9)0.0678 (12)0.894 (5)
F60.3305 (2)0.8121 (3)0.47923 (9)0.0526 (10)0.894 (5)
F4B0.418 (2)0.8966 (17)0.4377 (8)0.0526 (10)0.106 (5)
F5B0.3162 (13)0.855 (3)0.4664 (11)0.0738 (15)0.106 (5)
F6B0.420 (2)0.788 (2)0.4834 (6)0.0678 (12)0.106 (5)
F70.68329 (13)0.5493 (2)0.36747 (8)0.0452 (7)
F80.67280 (13)0.4751 (2)0.31263 (7)0.0474 (7)
F90.66948 (11)0.37600 (18)0.36251 (6)0.0329 (5)
N10.40701 (15)0.7666 (2)0.31829 (7)0.0158 (5)
N20.17040 (16)0.4632 (2)0.41990 (7)0.0195 (6)
N30.39102 (15)0.2481 (2)0.30606 (7)0.0163 (5)
O10.34445 (12)0.56503 (18)0.30425 (6)0.0159 (4)
O20.23492 (12)0.58621 (18)0.36547 (6)0.0155 (4)
O30.27429 (12)0.36447 (17)0.33646 (6)0.0141 (4)
O40.40721 (13)0.72338 (18)0.39660 (6)0.0187 (5)
O50.33254 (13)0.6340 (2)0.43810 (6)0.0211 (5)
O60.32578 (13)0.35798 (19)0.43373 (6)0.0192 (5)
O70.40130 (13)0.25998 (19)0.39509 (6)0.0189 (5)
O80.51284 (12)0.39551 (19)0.34027 (6)0.0196 (5)
O90.52741 (13)0.58004 (19)0.34305 (7)0.0213 (5)
O100.38614 (12)0.49500 (16)0.37767 (6)0.0122 (4)
H100.43250.49050.39760.018*
O110.51928 (15)0.4780 (2)0.42819 (8)0.0318 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0238 (17)0.0301 (18)0.0103 (14)0.0031 (14)0.0035 (12)0.0015 (13)
C20.0169 (15)0.0227 (17)0.0180 (15)0.0011 (12)0.0087 (12)0.0044 (13)
C30.0224 (17)0.0220 (18)0.0321 (19)0.0076 (14)0.0060 (14)0.0069 (15)
C40.0229 (17)0.0194 (17)0.0296 (18)0.0061 (13)0.0021 (14)0.0040 (14)
C50.0201 (16)0.0214 (17)0.0199 (15)0.0065 (13)0.0046 (12)0.0013 (13)
C60.0168 (15)0.0282 (19)0.0250 (17)0.0009 (13)0.0007 (13)0.0003 (14)
C70.0271 (17)0.040 (2)0.0189 (17)0.0023 (16)0.0088 (14)0.0038 (15)
C80.0244 (18)0.028 (2)0.0312 (19)0.0064 (14)0.0074 (15)0.0034 (15)
C90.0167 (15)0.0161 (15)0.0212 (16)0.0021 (12)0.0008 (12)0.0019 (13)
C100.0178 (15)0.0175 (16)0.0171 (15)0.0017 (12)0.0009 (12)0.0018 (12)
C110.0274 (18)0.0251 (18)0.0197 (16)0.0027 (14)0.0075 (14)0.0045 (14)
C120.0168 (16)0.0243 (18)0.0297 (18)0.0062 (13)0.0010 (13)0.0089 (15)
C130.0161 (15)0.0173 (15)0.0156 (15)0.0034 (12)0.0033 (12)0.0047 (12)
C140.036 (2)0.0260 (19)0.0273 (19)0.0043 (16)0.0099 (16)0.0086 (16)
C150.0195 (16)0.0184 (16)0.0197 (16)0.0030 (13)0.0031 (12)0.0024 (13)
C160.035 (2)0.0217 (18)0.0199 (17)0.0028 (15)0.0053 (14)0.0050 (14)
C170.0125 (13)0.0211 (16)0.0139 (14)0.0018 (12)0.0036 (11)0.0025 (12)
C180.0166 (15)0.0246 (18)0.0324 (19)0.0038 (13)0.0054 (14)0.0113 (15)
C190.0284 (19)0.029 (2)0.0283 (19)0.0025 (15)0.0032 (15)0.0047 (16)
C200.0233 (18)0.048 (3)0.0270 (19)0.0037 (17)0.0060 (15)0.0058 (18)
C210.032 (2)0.049 (3)0.044 (3)0.0038 (19)0.0155 (19)0.007 (2)
C220.029 (2)0.030 (2)0.037 (2)0.0000 (16)0.0118 (16)0.0089 (17)
Cl10.0180 (3)0.0238 (4)0.0185 (4)0.0001 (3)0.0054 (3)0.0021 (3)
Cu10.01002 (16)0.01276 (18)0.00839 (16)0.00009 (13)0.00024 (12)0.00033 (13)
Cu20.01405 (18)0.01354 (18)0.01150 (17)0.00088 (14)0.00094 (13)0.00082 (14)
Cu30.01306 (17)0.01724 (19)0.01080 (17)0.00010 (14)0.00167 (13)0.00157 (14)
Cu40.01185 (18)0.01471 (18)0.01367 (17)0.00029 (14)0.00071 (13)0.00261 (14)
F10.115 (2)0.0484 (17)0.0214 (13)0.0182 (16)0.0036 (13)0.0092 (12)
F20.0589 (17)0.0486 (16)0.0429 (15)0.0237 (13)0.0085 (12)0.0191 (13)
F30.0555 (17)0.0442 (17)0.086 (2)0.0120 (13)0.0071 (15)0.0327 (16)
F40.0287 (16)0.099 (3)0.093 (3)0.0140 (17)0.0005 (16)0.075 (3)
F50.121 (4)0.0276 (16)0.056 (2)0.0143 (18)0.012 (2)0.0113 (15)
F60.061 (2)0.056 (2)0.0442 (19)0.0053 (16)0.0264 (16)0.0278 (16)
F4B0.061 (2)0.056 (2)0.0442 (19)0.0053 (16)0.0264 (16)0.0278 (16)
F5B0.0287 (16)0.099 (3)0.093 (3)0.0140 (17)0.0005 (16)0.075 (3)
F6B0.121 (4)0.0276 (16)0.056 (2)0.0143 (18)0.012 (2)0.0113 (15)
F70.0210 (11)0.0334 (13)0.0787 (19)0.0063 (10)0.0113 (11)0.0017 (13)
F80.0272 (12)0.075 (2)0.0427 (15)0.0169 (12)0.0203 (10)0.0258 (13)
F90.0180 (10)0.0303 (12)0.0505 (14)0.0051 (8)0.0039 (9)0.0172 (11)
N10.0137 (12)0.0168 (13)0.0173 (13)0.0012 (10)0.0034 (10)0.0015 (10)
N20.0181 (13)0.0260 (15)0.0148 (13)0.0005 (11)0.0039 (10)0.0009 (11)
N30.0154 (12)0.0155 (13)0.0180 (13)0.0011 (10)0.0011 (10)0.0029 (11)
O10.0160 (11)0.0204 (11)0.0114 (10)0.0034 (9)0.0026 (8)0.0016 (9)
O20.0151 (10)0.0186 (11)0.0128 (10)0.0018 (9)0.0018 (8)0.0002 (9)
O30.0128 (10)0.0139 (10)0.0153 (10)0.0000 (8)0.0006 (8)0.0019 (8)
O40.0204 (11)0.0191 (12)0.0168 (11)0.0024 (9)0.0022 (9)0.0016 (9)
O50.0227 (12)0.0260 (13)0.0147 (11)0.0046 (10)0.0018 (9)0.0039 (10)
O60.0211 (12)0.0200 (12)0.0165 (11)0.0013 (9)0.0021 (9)0.0037 (9)
O70.0222 (11)0.0179 (11)0.0167 (11)0.0023 (9)0.0020 (9)0.0009 (9)
O80.0138 (11)0.0213 (12)0.0242 (12)0.0000 (9)0.0048 (9)0.0032 (10)
O90.0155 (11)0.0201 (12)0.0285 (13)0.0027 (9)0.0030 (9)0.0045 (10)
O100.0122 (9)0.0135 (10)0.0109 (9)0.0005 (8)0.0002 (7)0.0007 (8)
O110.0296 (14)0.0249 (14)0.0373 (15)0.0007 (11)0.0193 (11)0.0005 (12)
Geometric parameters (Å, º) top
C1—O11.422 (4)C14—F61.308 (4)
C1—C21.516 (5)C14—F4B1.310 (14)
C1—H1A0.9900C14—F6B1.333 (15)
C1—H1B0.9900C14—F51.346 (5)
C2—N11.484 (4)C15—O71.230 (4)
C2—H2A0.9900C15—O61.263 (4)
C2—H2B0.9900C15—C161.545 (5)
C3—N11.485 (4)C16—F21.316 (4)
C3—H3A0.9800C16—F31.319 (4)
C3—H3B0.9800C16—F11.332 (4)
C3—H3C0.9800C17—O91.221 (4)
C4—N11.484 (4)C17—O81.260 (4)
C4—H4A0.9800C17—C181.545 (4)
C4—H4B0.9800C18—F91.326 (4)
C4—H4C0.9800C18—F81.334 (4)
C5—O21.423 (3)C18—F71.340 (4)
C5—C61.505 (5)C19—O111.434 (4)
C5—H5A0.9900C19—C201.512 (5)
C5—H5B0.9900C19—H19A0.9900
C6—N21.490 (4)C19—H19B0.9900
C6—H6A0.9900C20—C211.506 (6)
C6—H6B0.9900C20—H20A0.9900
C7—N21.473 (4)C20—H20B0.9900
C7—H7A0.9800C21—C221.528 (5)
C7—H7B0.9800C21—H21A0.9900
C7—H7C0.9800C21—H21B0.9900
C8—N21.483 (4)C22—O111.439 (4)
C8—H8A0.9800C22—H22A0.9900
C8—H8B0.9800C22—H22B0.9900
C8—H8C0.9800Cl1—Cu12.1948 (8)
C9—O31.426 (4)Cu1—O21.962 (2)
C9—C101.523 (4)Cu1—O11.966 (2)
C9—H9A0.9900Cu1—O31.968 (2)
C9—H9B0.9900Cu2—O101.954 (2)
C10—N31.496 (4)Cu2—O41.956 (2)
C10—H10A0.9900Cu2—O11.975 (2)
C10—H10B0.9900Cu2—N12.009 (3)
C11—N31.484 (4)Cu2—O92.317 (2)
C11—H11A0.9800Cu3—O21.956 (2)
C11—H11B0.9800Cu3—O101.957 (2)
C11—H11C0.9800Cu3—O61.961 (2)
C12—N31.478 (4)Cu3—N22.032 (3)
C12—H12A0.9800Cu3—O52.377 (2)
C12—H12B0.9800Cu4—O101.954 (2)
C12—H12C0.9800Cu4—O81.974 (2)
C13—O51.231 (4)Cu4—O31.976 (2)
C13—O41.267 (4)Cu4—N31.998 (3)
C13—C141.533 (5)Cu4—O72.287 (2)
C14—F5B1.278 (15)O10—H100.9990
C14—F41.296 (4)
O1—C1—C2109.0 (2)F8—C18—C17109.7 (3)
O1—C1—H1A109.9F7—C18—C17112.5 (3)
C2—C1—H1A109.9O11—C19—C20105.1 (3)
O1—C1—H1B109.9O11—C19—H19A110.7
C2—C1—H1B109.9C20—C19—H19A110.7
H1A—C1—H1B108.3O11—C19—H19B110.7
N1—C2—C1109.5 (2)C20—C19—H19B110.7
N1—C2—H2A109.8H19A—C19—H19B108.8
C1—C2—H2A109.8C21—C20—C19102.0 (3)
N1—C2—H2B109.8C21—C20—H20A111.4
C1—C2—H2B109.8C19—C20—H20A111.4
H2A—C2—H2B108.2C21—C20—H20B111.4
N1—C3—H3A109.5C19—C20—H20B111.4
N1—C3—H3B109.5H20A—C20—H20B109.2
H3A—C3—H3B109.5C20—C21—C22103.5 (3)
N1—C3—H3C109.5C20—C21—H21A111.1
H3A—C3—H3C109.5C22—C21—H21A111.1
H3B—C3—H3C109.5C20—C21—H21B111.1
N1—C4—H4A109.5C22—C21—H21B111.1
N1—C4—H4B109.5H21A—C21—H21B109.0
H4A—C4—H4B109.5O11—C22—C21106.5 (3)
N1—C4—H4C109.5O11—C22—H22A110.4
H4A—C4—H4C109.5C21—C22—H22A110.4
H4B—C4—H4C109.5O11—C22—H22B110.4
O2—C5—C6107.8 (3)C21—C22—H22B110.4
O2—C5—H5A110.1H22A—C22—H22B108.6
C6—C5—H5A110.1O2—Cu1—O197.18 (9)
O2—C5—H5B110.1O2—Cu1—O398.75 (9)
C6—C5—H5B110.1O1—Cu1—O398.13 (9)
H5A—C5—H5B108.5O2—Cu1—Cl1121.31 (6)
N2—C6—C5109.6 (3)O1—Cu1—Cl1120.73 (7)
N2—C6—H6A109.8O3—Cu1—Cl1116.00 (6)
C5—C6—H6A109.8O10—Cu2—O494.81 (9)
N2—C6—H6B109.8O10—Cu2—O189.98 (9)
C5—C6—H6B109.8O4—Cu2—O1160.49 (9)
H6A—C6—H6B108.2O10—Cu2—N1173.56 (9)
N2—C7—H7A109.5O4—Cu2—N191.20 (10)
N2—C7—H7B109.5O1—Cu2—N185.10 (10)
H7A—C7—H7B109.5O10—Cu2—O985.32 (8)
N2—C7—H7C109.5O4—Cu2—O9102.75 (9)
H7A—C7—H7C109.5O1—Cu2—O996.48 (8)
H7B—C7—H7C109.5N1—Cu2—O991.08 (9)
N2—C8—H8A109.5O2—Cu3—O1088.29 (8)
N2—C8—H8B109.5O2—Cu3—O6172.03 (9)
H8A—C8—H8B109.5O10—Cu3—O692.93 (9)
N2—C8—H8C109.5O2—Cu3—N286.38 (10)
H8A—C8—H8C109.5O10—Cu3—N2172.39 (10)
H8B—C8—H8C109.5O6—Cu3—N291.62 (10)
O3—C9—C10109.3 (2)O2—Cu3—O586.47 (9)
O3—C9—H9A109.8O10—Cu3—O584.38 (8)
C10—C9—H9A109.8O6—Cu3—O5101.48 (9)
O3—C9—H9B109.8N2—Cu3—O5100.69 (10)
C10—C9—H9B109.8O10—Cu4—O892.30 (9)
H9A—C9—H9B108.3O10—Cu4—O389.22 (8)
N3—C10—C9109.5 (3)O8—Cu4—O3168.40 (9)
N3—C10—H10A109.8O10—Cu4—N3173.88 (9)
C9—C10—H10A109.8O8—Cu4—N393.10 (10)
N3—C10—H10B109.8O3—Cu4—N384.91 (9)
C9—C10—H10B109.8O10—Cu4—O787.29 (8)
H10A—C10—H10B108.2O8—Cu4—O798.53 (9)
N3—C11—H11A109.5O3—Cu4—O793.03 (8)
N3—C11—H11B109.5N3—Cu4—O794.73 (9)
H11A—C11—H11B109.5C4—N1—C2110.0 (2)
N3—C11—H11C109.5C4—N1—C3108.8 (3)
H11A—C11—H11C109.5C2—N1—C3111.6 (2)
H11B—C11—H11C109.5C4—N1—Cu2113.88 (19)
N3—C12—H12A109.5C2—N1—Cu2103.03 (19)
N3—C12—H12B109.5C3—N1—Cu2109.54 (19)
H12A—C12—H12B109.5C7—N2—C8109.5 (3)
N3—C12—H12C109.5C7—N2—C6111.2 (3)
H12A—C12—H12C109.5C8—N2—C6109.3 (3)
H12B—C12—H12C109.5C7—N2—Cu3109.3 (2)
O5—C13—O4130.9 (3)C8—N2—Cu3112.3 (2)
O5—C13—C14117.0 (3)C6—N2—Cu3105.17 (19)
O4—C13—C14112.1 (3)C12—N3—C11109.9 (2)
F4—C14—F6109.3 (4)C12—N3—C10109.2 (3)
F5B—C14—F4B108 (2)C11—N3—C10111.5 (2)
F5B—C14—F6B96 (2)C12—N3—Cu4114.56 (19)
F4B—C14—F6B105 (2)C11—N3—Cu4108.6 (2)
F4—C14—F5107.6 (4)C10—N3—Cu4103.00 (18)
F6—C14—F5104.0 (3)C1—O1—Cu1119.59 (18)
F4—C14—C13112.7 (3)C1—O1—Cu2112.44 (19)
F6—C14—C13113.2 (3)Cu1—O1—Cu2105.70 (9)
F4B—C14—C13115.1 (10)C5—O2—Cu3108.43 (17)
F6B—C14—C13107.4 (12)C5—O2—Cu1121.87 (18)
F5—C14—C13109.4 (3)Cu3—O2—Cu1102.93 (10)
O7—C15—O6130.7 (3)C9—O3—Cu1117.73 (17)
O7—C15—C16116.1 (3)C9—O3—Cu4112.83 (17)
O6—C15—C16113.2 (3)Cu1—O3—Cu4106.00 (10)
F2—C16—F3107.9 (3)C13—O4—Cu2127.6 (2)
F2—C16—F1106.5 (3)C13—O5—Cu3125.9 (2)
F3—C16—F1107.2 (3)C15—O6—Cu3127.6 (2)
F2—C16—C15113.2 (3)C15—O7—Cu4125.6 (2)
F3—C16—C15109.6 (3)C17—O8—Cu4127.6 (2)
F1—C16—C15112.2 (3)C17—O9—Cu2124.8 (2)
O9—C17—O8131.7 (3)Cu2—O10—Cu4110.45 (10)
O9—C17—C18115.2 (3)Cu2—O10—Cu3113.15 (10)
O8—C17—C18113.1 (3)Cu4—O10—Cu3108.20 (9)
F9—C18—F8107.8 (3)Cu2—O10—H10108.2
F9—C18—F7106.0 (3)Cu4—O10—H10108.3
F8—C18—F7106.5 (3)Cu3—O10—H10108.4
F9—C18—C17113.9 (3)C19—O11—C22109.0 (3)
O1—C1—C2—N145.7 (3)O10—Cu3—O2—C5165.02 (19)
O2—C5—C6—N252.7 (3)N2—Cu3—O2—C520.4 (2)
O3—C9—C10—N342.2 (3)O5—Cu3—O2—C580.55 (19)
O5—C13—C14—F5B46 (3)O10—Cu3—O2—Cu164.62 (9)
O4—C13—C14—F5B135 (3)N2—Cu3—O2—Cu1109.95 (11)
O5—C13—C14—F4114.5 (4)O5—Cu3—O2—Cu1149.09 (9)
O4—C13—C14—F464.8 (5)O1—Cu1—O2—C5146.6 (2)
O5—C13—C14—F610.3 (5)O3—Cu1—O2—C5113.9 (2)
O4—C13—C14—F6170.4 (3)Cl1—Cu1—O2—C513.8 (2)
O5—C13—C14—F4B179.5 (19)O1—Cu1—O2—Cu391.71 (10)
O4—C13—C14—F4B1.2 (19)O3—Cu1—O2—Cu37.71 (10)
O5—C13—C14—F6B63.9 (19)Cl1—Cu1—O2—Cu3135.49 (6)
O4—C13—C14—F6B115.4 (19)C10—C9—O3—Cu1138.4 (2)
O5—C13—C14—F5125.8 (4)C10—C9—O3—Cu414.3 (3)
O4—C13—C14—F554.9 (4)O2—Cu1—O3—C9146.95 (19)
O7—C15—C16—F221.6 (4)O1—Cu1—O3—C9114.43 (19)
O6—C15—C16—F2160.1 (3)Cl1—Cu1—O3—C915.7 (2)
O7—C15—C16—F398.9 (4)O2—Cu1—O3—Cu485.68 (10)
O6—C15—C16—F379.5 (4)O1—Cu1—O3—Cu412.93 (11)
O7—C15—C16—F1142.1 (3)Cl1—Cu1—O3—Cu4143.02 (6)
O6—C15—C16—F139.5 (4)O10—Cu4—O3—C9171.33 (19)
O9—C17—C18—F9153.1 (3)O8—Cu4—O3—C991.0 (5)
O8—C17—C18—F928.5 (4)N3—Cu4—O3—C910.4 (2)
O9—C17—C18—F886.0 (4)O7—Cu4—O3—C984.08 (19)
O8—C17—C18—F892.4 (3)O10—Cu4—O3—Cu158.43 (10)
O9—C17—C18—F732.4 (4)O8—Cu4—O3—Cu139.2 (5)
O8—C17—C18—F7149.2 (3)N3—Cu4—O3—Cu1119.84 (11)
O11—C19—C20—C2136.9 (4)O7—Cu4—O3—Cu1145.67 (9)
C19—C20—C21—C2233.5 (4)O5—C13—O4—Cu217.2 (5)
C20—C21—C22—O1119.0 (4)C14—C13—O4—Cu2163.6 (2)
C1—C2—N1—C4169.3 (3)O10—Cu2—O4—C1339.4 (3)
C1—C2—N1—C369.9 (3)O1—Cu2—O4—C1364.3 (4)
C1—C2—N1—Cu247.6 (3)N1—Cu2—O4—C13142.9 (3)
O4—Cu2—N1—C451.0 (2)O9—Cu2—O4—C13125.7 (3)
O1—Cu2—N1—C4148.2 (2)O4—C13—O5—Cu315.7 (5)
O9—Cu2—N1—C451.8 (2)C14—C13—O5—Cu3165.1 (2)
O4—Cu2—N1—C2170.02 (17)O2—Cu3—O5—C1351.2 (3)
O1—Cu2—N1—C229.17 (17)O10—Cu3—O5—C1337.4 (3)
O9—Cu2—N1—C267.24 (17)O6—Cu3—O5—C13129.2 (3)
O4—Cu2—N1—C371.1 (2)N2—Cu3—O5—C13136.9 (3)
O1—Cu2—N1—C389.7 (2)O7—C15—O6—Cu38.0 (5)
O9—Cu2—N1—C3173.9 (2)C16—C15—O6—Cu3170.1 (2)
C5—C6—N2—C784.5 (3)O10—Cu3—O6—C1541.7 (3)
C5—C6—N2—C8154.5 (3)N2—Cu3—O6—C15132.2 (3)
C5—C6—N2—Cu333.7 (3)O5—Cu3—O6—C15126.6 (3)
O2—Cu3—N2—C7111.5 (2)O6—C15—O7—Cu41.2 (5)
O6—Cu3—N2—C776.2 (2)C16—C15—O7—Cu4176.9 (2)
O5—Cu3—N2—C725.8 (2)O10—Cu4—O7—C1530.6 (3)
O2—Cu3—N2—C8126.7 (2)O8—Cu4—O7—C15122.6 (3)
O6—Cu3—N2—C845.5 (2)O3—Cu4—O7—C1558.4 (3)
O5—Cu3—N2—C8147.5 (2)N3—Cu4—O7—C15143.6 (3)
O2—Cu3—N2—C67.9 (2)O9—C17—O8—Cu412.4 (5)
O6—Cu3—N2—C6164.4 (2)C18—C17—O8—Cu4169.5 (2)
O5—Cu3—N2—C693.6 (2)O10—Cu4—O8—C1730.2 (3)
C9—C10—N3—C12170.1 (3)O3—Cu4—O8—C1767.2 (6)
C9—C10—N3—C1168.2 (3)N3—Cu4—O8—C17146.9 (3)
C9—C10—N3—Cu448.0 (3)O7—Cu4—O8—C17117.8 (3)
O8—Cu4—N3—C1241.2 (2)O8—C17—O9—Cu215.4 (5)
O3—Cu4—N3—C12150.3 (2)C18—C17—O9—Cu2166.5 (2)
O7—Cu4—N3—C1257.7 (2)O10—Cu2—O9—C1724.9 (3)
O8—Cu4—N3—C1182.1 (2)O4—Cu2—O9—C17118.8 (3)
O3—Cu4—N3—C1186.44 (19)O1—Cu2—O9—C1764.6 (3)
O7—Cu4—N3—C11179.06 (19)N1—Cu2—O9—C17149.8 (3)
O8—Cu4—N3—C10159.62 (18)O4—Cu2—O10—Cu4168.32 (10)
O3—Cu4—N3—C1031.84 (18)O1—Cu2—O10—Cu430.61 (10)
O7—Cu4—N3—C1060.78 (18)O9—Cu2—O10—Cu465.89 (10)
C2—C1—O1—Cu1144.4 (2)O4—Cu2—O10—Cu370.20 (11)
C2—C1—O1—Cu219.6 (3)O1—Cu2—O10—Cu390.86 (11)
O2—Cu1—O1—C1115.4 (2)O9—Cu2—O10—Cu3172.64 (11)
O3—Cu1—O1—C1144.7 (2)O8—Cu4—O10—Cu272.73 (11)
Cl1—Cu1—O1—C117.8 (2)O3—Cu4—O10—Cu295.76 (10)
O2—Cu1—O1—Cu212.61 (11)O7—Cu4—O10—Cu2171.17 (10)
O3—Cu1—O1—Cu287.35 (10)O8—Cu4—O10—Cu3162.91 (10)
Cl1—Cu1—O1—Cu2145.78 (6)O3—Cu4—O10—Cu328.60 (10)
O10—Cu2—O1—C1170.14 (19)O7—Cu4—O10—Cu364.47 (10)
O4—Cu2—O1—C185.4 (3)O2—Cu3—O10—Cu223.58 (11)
N1—Cu2—O1—C15.7 (2)O6—Cu3—O10—Cu2164.31 (11)
O9—Cu2—O1—C184.9 (2)O5—Cu3—O10—Cu263.05 (10)
O10—Cu2—O1—Cu157.71 (10)O2—Cu3—O10—Cu499.15 (10)
O4—Cu2—O1—Cu146.8 (3)O6—Cu3—O10—Cu472.97 (11)
N1—Cu2—O1—Cu1126.46 (11)O5—Cu3—O10—Cu4174.22 (10)
O9—Cu2—O1—Cu1143.00 (10)C20—C19—O11—C2225.9 (4)
C6—C5—O2—Cu344.1 (3)C21—C22—O11—C194.2 (4)
C6—C5—O2—Cu174.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O111.001.732.723 (3)174

Experimental details

Crystal data
Chemical formula[Cu4(C2F3O2)3(C4H10NO)3Cl(OH)]·C4H8O
Mr982.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.4353 (14), 12.1893 (12), 35.547 (3)
β (°) 94.678 (2)
V3)7097.7 (11)
Z8
Radiation typeMo Kα
µ (mm1)2.54
Crystal size (mm)0.41 × 0.38 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.673, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
20465, 10267, 7515
Rint0.035
(sin θ/λ)max1)0.737
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.103, 1.01
No. of reflections10267
No. of parameters467
No. of restraints15
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0396P)2 + 12.2423P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.92, 0.69

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O111.001.732.723 (3)174
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU.

References

First citationAnwander, R., Munck, F. C., Priermeier, T., Scherer, W., Runte, O. & Herrmann, W. A. (1997). Inorg. Chem. 36, 3545–3552.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCoastamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev. 119, 67–88.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShahid, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2009). Acta Cryst. E65, m345–m346.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, A. A., Hamid, M., Mazhar, M., Zeller, M., Hunter, A. D., Nadeem, M. & Akhtar, M. J. (2008). Dalton Trans. pp. 1224–1232.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m814-m815
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds