organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­anilinium p-toluene­sulfonate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: youyoubanzhen@126.com

(Received 18 May 2010; accepted 6 June 2010; online 26 June 2010)

The crystal structure of the title compound, C7H10N+·C7H7O3S, displays strong N—H⋯O and N—H⋯S hydrogen bonding between the ammonium group and the p-toluene­sulfonate anion, linking the cations and anions into chains along the b axis.

Related literature

For background to dielectric–ferroelectric materials, see: Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026-2029.]); Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·C7H7O3S

  • Mr = 279.35

  • Monoclinic, P 21

  • a = 5.775 (4) Å

  • b = 9.026 (5) Å

  • c = 13.350 (8) Å

  • β = 96.344 (9)°

  • V = 691.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.929, Tmax = 1.000

  • 6641 measured reflections

  • 3136 independent reflections

  • 2876 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.093

  • S = 0.99

  • 3136 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1448 Friedel pairs

  • Flack parameter: 0.05 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O1i 0.89 2.31 3.170 (3) 164
N1—H1D⋯O2i 0.89 2.33 2.824 (3) 115
N1—H1D⋯S1i 0.89 2.81 3.570 (3) 144
N1—H1E⋯O1ii 0.89 1.96 2.829 (3) 165
N1—H1F⋯O3iii 0.89 2.02 2.785 (3) 143
Symmetry codes: (i) [-x-1, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y-1, z; (iii) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Dielectric-ferroelectric as an interesting class of materials, there are organic ligands (Li et al., 2008), metal-organic coordination compounds (Hang et al., 2009) and organic-inorganic hybrid. In this article, the preparation and crystal structure of the title compound have been presented. It should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (477 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed.

The asymmetric unit of the title compound contains a (CH3—C6H4—NH3+) cation and an (CH3—C6H4—SO3-) anion (Fig.1). The strong N—H···S, N—H···O hydrogen bonds involving H1D and H1E (N1···S1 3.570 (3) Å and N1···O1 2.829 (3) Å) are beneficial to the stability of the crystal structure and link the cations and anions to chains along the b axis (Fig. 2 and Tab. 1).

Related literature top

For background to dielectric–ferroelectric materials, see: Hang et al. (2009); Li et al. (2008)

Experimental top

The title compound was obtained by the addition of p-toluenesulfonic acid (3.78 g, 0.022 mol) to a solution of 4-methylaniline (2.14 g, 0.02 mol) in ethanol, in the stoichiometric ratio 1.1:1. After two weeks, good quality single crystals were obtained by slow evaporation.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and the H atoms were set to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXXL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
4-Methylanilinium p-toluenesulfonate top
Crystal data top
C7H10N+·C7H7O3SF(000) = 296
Mr = 279.35Dx = 1.341 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3136 reflections
a = 5.775 (4) Åθ = 3.6–27.5°
b = 9.026 (5) ŵ = 0.24 mm1
c = 13.350 (8) ÅT = 293 K
β = 96.344 (9)°Prism, colorless
V = 691.6 (7) Å30.2 × 0.2 × 0.2 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
3136 independent reflections
Radiation source: fine-focus sealed tube2876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.6°
CCD_Profile_fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.929, Tmax = 1.000l = 1717
6641 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.128P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3136 reflectionsΔρmax = 0.18 e Å3
174 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1448 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (8)
Crystal data top
C7H10N+·C7H7O3SV = 691.6 (7) Å3
Mr = 279.35Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.775 (4) ŵ = 0.24 mm1
b = 9.026 (5) ÅT = 293 K
c = 13.350 (8) Å0.2 × 0.2 × 0.2 mm
β = 96.344 (9)°
Data collection top
Rigaku Mercury2
diffractometer
3136 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2876 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 1.000Rint = 0.029
6641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.18 e Å3
S = 0.99Δρmin = 0.23 e Å3
3136 reflectionsAbsolute structure: Flack (1983), 1448 Friedel pairs
174 parametersAbsolute structure parameter: 0.05 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14320 (9)0.16236 (6)0.34803 (4)0.03362 (14)
O10.0753 (3)0.0673 (2)0.42886 (12)0.0456 (4)
O20.0234 (3)0.30349 (19)0.34704 (14)0.0481 (4)
O30.3936 (2)0.1756 (2)0.34883 (12)0.0485 (4)
C80.0436 (3)0.0720 (2)0.23353 (15)0.0302 (4)
C90.1872 (4)0.0278 (3)0.19156 (17)0.0363 (5)
H9A0.33720.04500.22230.044*
C100.1071 (4)0.1023 (3)0.10348 (19)0.0420 (6)
H10A0.20380.17010.07610.050*
C110.1161 (4)0.0769 (3)0.05557 (17)0.0394 (5)
C120.2047 (5)0.1588 (4)0.0397 (2)0.0589 (8)
H12A0.37180.15460.04910.071*
H12B0.14340.11340.09620.071*
H12C0.15530.26030.03430.071*
C130.2562 (4)0.0238 (3)0.09898 (18)0.0405 (6)
H13A0.40560.04200.06790.049*
C140.1806 (4)0.0981 (3)0.18702 (18)0.0368 (5)
H14A0.27830.16470.21490.044*
N10.7130 (4)0.8010 (3)0.50369 (16)0.0513 (5)
H1D0.83460.74370.51250.062*
H1E0.76210.89250.48850.062*
H1F0.61540.80260.56020.062*
C10.2340 (5)0.5599 (4)0.1861 (2)0.0590 (7)
H1A0.23240.45380.19110.071*
H1B0.31200.58890.12180.071*
H1C0.07680.59630.19260.071*
C20.3611 (4)0.6242 (2)0.26934 (18)0.0408 (6)
C30.2853 (4)0.7531 (3)0.31786 (18)0.0400 (5)
H3A0.15480.80100.29850.048*
C40.3986 (4)0.8132 (3)0.39495 (18)0.0392 (5)
H4A0.34480.89960.42750.047*
C50.5937 (4)0.7409 (3)0.42196 (17)0.0385 (5)
C60.6736 (4)0.6122 (3)0.3749 (2)0.0485 (7)
H6A0.80470.56450.39390.058*
C70.5565 (5)0.5552 (3)0.2994 (2)0.0508 (6)
H7A0.60970.46800.26770.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0322 (2)0.0360 (3)0.0334 (3)0.0060 (3)0.00711 (18)0.0046 (2)
O10.0537 (10)0.0513 (11)0.0326 (9)0.0096 (9)0.0085 (7)0.0025 (8)
O20.0532 (11)0.0334 (9)0.0589 (11)0.0011 (8)0.0121 (8)0.0090 (8)
O30.0311 (7)0.0656 (11)0.0489 (9)0.0115 (9)0.0046 (6)0.0178 (9)
C80.0276 (10)0.0320 (11)0.0315 (10)0.0028 (9)0.0058 (8)0.0017 (9)
C90.0309 (11)0.0432 (13)0.0349 (12)0.0018 (10)0.0044 (9)0.0023 (10)
C100.0416 (13)0.0448 (14)0.0409 (13)0.0050 (11)0.0101 (10)0.0068 (11)
C110.0438 (12)0.0443 (13)0.0303 (11)0.0072 (11)0.0042 (10)0.0023 (10)
C120.0641 (18)0.074 (2)0.0371 (14)0.0073 (16)0.0010 (12)0.0134 (14)
C130.0295 (11)0.0532 (15)0.0380 (12)0.0016 (11)0.0004 (9)0.0003 (11)
C140.0305 (11)0.0392 (12)0.0415 (13)0.0011 (10)0.0071 (9)0.0019 (10)
N10.0401 (11)0.0737 (14)0.0412 (11)0.0133 (11)0.0088 (9)0.0154 (11)
C10.0736 (19)0.0558 (17)0.0486 (16)0.0024 (16)0.0105 (14)0.0017 (14)
C20.0469 (13)0.0390 (14)0.0362 (12)0.0028 (10)0.0027 (10)0.0083 (9)
C30.0349 (12)0.0416 (14)0.0444 (13)0.0025 (10)0.0085 (10)0.0099 (11)
C40.0392 (12)0.0377 (12)0.0402 (12)0.0013 (10)0.0026 (9)0.0019 (10)
C50.0310 (11)0.0513 (14)0.0333 (11)0.0057 (10)0.0047 (9)0.0119 (11)
C60.0385 (13)0.0572 (16)0.0494 (15)0.0153 (11)0.0032 (11)0.0145 (12)
C70.0583 (16)0.0456 (15)0.0474 (14)0.0186 (13)0.0012 (12)0.0013 (12)
Geometric parameters (Å, º) top
S1—O21.449 (2)N1—C51.458 (3)
S1—O31.4500 (18)N1—H1D0.8903
S1—O11.4655 (18)N1—H1E0.8893
S1—C81.772 (2)N1—H1F0.8904
C8—C91.384 (3)C1—C21.514 (4)
C8—C141.393 (3)C1—H1A0.9600
C9—C101.389 (3)C1—H1B0.9600
C9—H9A0.9300C1—H1C0.9600
C10—C111.393 (4)C2—C31.379 (3)
C10—H10A0.9300C2—C71.387 (4)
C11—C131.386 (3)C3—C41.389 (3)
C11—C121.510 (3)C3—H3A0.9300
C12—H12A0.9600C4—C51.384 (3)
C12—H12B0.9600C4—H4A0.9300
C12—H12C0.9600C5—C61.376 (4)
C13—C141.381 (3)C6—C71.374 (4)
C13—H13A0.9300C6—H6A0.9300
C14—H14A0.9300C7—H7A0.9300
O2—S1—O3113.73 (12)C5—N1—H1D109.1
O2—S1—O1110.78 (11)C5—N1—H1E109.9
O3—S1—O1113.02 (11)H1D—N1—H1E109.5
O2—S1—C8106.72 (11)C5—N1—H1F109.4
O3—S1—C8105.82 (10)H1D—N1—H1F109.4
O1—S1—C8106.15 (11)H1E—N1—H1F109.5
C9—C8—C14119.9 (2)C2—C1—H1A109.5
C9—C8—S1119.82 (16)C2—C1—H1B109.5
C14—C8—S1120.26 (17)H1A—C1—H1B109.5
C8—C9—C10120.0 (2)C2—C1—H1C109.5
C8—C9—H9A120.0H1A—C1—H1C109.5
C10—C9—H9A120.0H1B—C1—H1C109.5
C9—C10—C11120.9 (2)C3—C2—C7118.0 (2)
C9—C10—H10A119.5C3—C2—C1120.9 (2)
C11—C10—H10A119.5C7—C2—C1121.1 (2)
C13—C11—C10118.0 (2)C2—C3—C4121.8 (2)
C13—C11—C12120.9 (2)C2—C3—H3A119.1
C10—C11—C12121.1 (2)C4—C3—H3A119.1
C11—C12—H12A109.5C5—C4—C3118.2 (2)
C11—C12—H12B109.5C5—C4—H4A120.9
H12A—C12—H12B109.5C3—C4—H4A120.9
C11—C12—H12C109.5C6—C5—C4121.4 (2)
H12A—C12—H12C109.5C6—C5—N1119.6 (2)
H12B—C12—H12C109.5C4—C5—N1119.0 (2)
C14—C13—C11122.0 (2)C7—C6—C5118.9 (2)
C14—C13—H13A119.0C7—C6—H6A120.5
C11—C13—H13A119.0C5—C6—H6A120.5
C13—C14—C8119.2 (2)C6—C7—C2121.8 (2)
C13—C14—H14A120.4C6—C7—H7A119.1
C8—C14—H14A120.4C2—C7—H7A119.1
O2—S1—C8—C9151.80 (18)C11—C13—C14—C80.4 (4)
O3—S1—C8—C930.3 (2)C9—C8—C14—C130.3 (3)
O1—S1—C8—C990.00 (19)S1—C8—C14—C13178.57 (18)
O2—S1—C8—C1429.9 (2)C7—C2—C3—C40.2 (3)
O3—S1—C8—C14151.35 (19)C1—C2—C3—C4179.5 (2)
O1—S1—C8—C1488.3 (2)C2—C3—C4—C50.6 (3)
C14—C8—C9—C100.3 (3)C3—C4—C5—C60.6 (3)
S1—C8—C9—C10178.00 (19)C3—C4—C5—N1179.1 (2)
C8—C9—C10—C110.7 (4)C4—C5—C6—C70.2 (4)
C9—C10—C11—C130.6 (4)N1—C5—C6—C7178.6 (2)
C9—C10—C11—C12179.4 (2)C5—C6—C7—C20.3 (4)
C10—C11—C13—C140.0 (4)C3—C2—C7—C60.2 (4)
C12—C11—C13—C14178.8 (2)C1—C2—C7—C6179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O1i0.892.313.170 (3)164
N1—H1D···O2i0.892.332.824 (3)115
N1—H1D···S1i0.892.813.570 (3)144
N1—H1E···O1ii0.891.962.829 (3)165
N1—H1F···O3iii0.892.022.785 (3)143
Symmetry codes: (i) x1, y1/2, z+1; (ii) x1, y1, z; (iii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC7H10N+·C7H7O3S
Mr279.35
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.775 (4), 9.026 (5), 13.350 (8)
β (°) 96.344 (9)
V3)691.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.929, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6641, 3136, 2876
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.093, 0.99
No. of reflections3136
No. of parameters174
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23
Absolute structureFlack (1983), 1448 Friedel pairs
Absolute structure parameter0.05 (8)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXXL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O1i0.892.313.170 (3)164
N1—H1D···O2i0.892.332.824 (3)115
N1—H1D···S1i0.892.813.570 (3)144
N1—H1E···O1ii0.891.962.829 (3)165
N1—H1F···O3iii0.892.022.785 (3)143
Symmetry codes: (i) x1, y1/2, z+1; (ii) x1, y1, z; (iii) x, y1/2, z+1.
 

Acknowledgements

The author thanks Southeast University for financial support of this research and is grateful for the guidance of Professor Wen Zhang.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.  Web of Science CSD CrossRef Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds