metal-organic compounds
Bis(2-amino-4-methylpyridinium) trans-diaquabis(pyrazine-2,3-dicarboxylato)cuprate(II) hexahydrate
aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and bDepartment of Chemistry, University of Fribourg, Chemin Du Musée 9, 1700 Fribourg, Switzerland
*Correspondence e-mail: heshtiagh@ferdowsi.um.ac.ir
The title compound, (C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O, consists of a mononuclear trans-[Cu(pzdc)2(H2O)2]2− dianion (pzdc is pyrazine-2,3-dicarboxylate) and two [ampyH]+ cations (ampy is 2-amino-4-methylpyridine) with six water molecules of solvation. The CuII atom is hexacoordinated by two pzdc groups and two water molecules. The coordinated water molecules are in trans-diaxial positions and the pzdc dianion acts as a bidentate ligand through an O atom of the carboxylate group and the N atom of the pyrazine ring. There are diverse hydrogen-bonding interactions, such as N—H⋯O and O—H⋯O contacts, which lead to the formation of a three-dimensional supramolecular architecture.
Related literature
For the 2), see: Takusagawa & Shimada (1973). For complexes of pzdcH2 with manganese and zinc, see: Eshtiagh-Hosseini et al. (2010a,b). For the structure of bis(2,4,6-triamino-1,3,5-triazin-1-ium) pyrazine-2,3-dicarboxylate tetrahydrate, see: Eshtiagh-Hosseini et al. (2010c). For a review articleon water cluster chemistry, see: Aghabozorg et al. (2010).
of pyrazine-2,3-dicarboxylic acid (pzdcHExperimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2009); cell X-RED (Stoe & Cie, 2009); data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810023081/fj2310sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810023081/fj2310Isup2.hkl
A solution of pzdcH2 (0.18 mmol, 0.03 mg) in water (10 ml) refluxed for 1 hr, then a solution of CuCl2.6H2O (0.02 mmol, 0.01 g) was added dropwise and continued refluxing for 6 hrs at 60°C. The obtained blue solution gave blue block like crystals of title compound after slow evaporation of solvent at room temperatur.
The
was confirmed by using PLATON software package. The structure was solved by using SHELXS-97 and refined using full matrix least-squares on F2 with the SHELX-97 package. H-Atoms were constrained to the parent site using a rigid model. A final verification of possible voids was performed using the VOID routine on PLATON software.Data collection: X-AREA (Stoe & Cie, 2009); cell
X-RED (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Molecular structure of (ampy)2[Cu(pzdc)2(H2O)2].6H2O. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for further clarity. | |
Fig. 2. Packing diagram of (ampy)2[Cu(pzdc)2(H2O)2].6H2O. |
(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O | Z = 1 |
Mr = 758.17 | F(000) = 395.0 |
Triclinic, P1 | Dx = 1.526 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9075 (14) Å | Cell parameters from 34097 reflections |
b = 8.4710 (17) Å | θ = 3,8–59,7° |
c = 14.505 (3) Å | µ = 0.75 mm−1 |
α = 78.28 (3)° | T = 293 K |
β = 83.62 (3)° | Block, blue |
γ = 85.81 (3)° | 0.3 × 0.2 × 0.1 mm |
V = 824.8 (3) Å3 |
Stoe IPDS 2 diffractometer | 4684 independent reflections |
Radiation source: fine-focus sealed tube | 4282 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.8°, θmin = 2.5° |
rotation method scans | h = −9→9 |
Absorption correction: for a sphere modified Dwiggins (1975) interpolation procedure | k = −11→11 |
Tmin = 0.743, Tmax = 0.745 | l = −20→20 |
17015 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0453P)2 + 0.5453P] where P = (Fo2 + 2Fc2)/3 |
4684 reflections | (Δ/σ)max = 0.001 |
268 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O | γ = 85.81 (3)° |
Mr = 758.17 | V = 824.8 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.9075 (14) Å | Mo Kα radiation |
b = 8.4710 (17) Å | µ = 0.75 mm−1 |
c = 14.505 (3) Å | T = 293 K |
α = 78.28 (3)° | 0.3 × 0.2 × 0.1 mm |
β = 83.62 (3)° |
Stoe IPDS 2 diffractometer | 4684 independent reflections |
Absorption correction: for a sphere modified Dwiggins (1975) interpolation procedure | 4282 reflections with I > 2σ(I) |
Tmin = 0.743, Tmax = 0.745 | Rint = 0.046 |
17015 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.36 e Å−3 |
4684 reflections | Δρmin = −0.52 e Å−3 |
268 parameters |
Experimental. Absorption correction: Interpolation using Int. Tab. Vol. C (1992) p. 523, Tab. 6.3.3.3 for values of muR in the range 0-2.5, and Int. Tab. Vol. II (1959) p. 302; Table 5.3.6 B for muR in the range 2.6-10.0. The interpolation procedure of C. W. Dwiggins Jr is used with some modification. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.0000 | 0.5000 | 0.01658 (8) | |
O3 | 0.30782 (17) | 0.49841 (13) | 0.17617 (8) | 0.0195 (2) | |
O4 | 0.11843 (16) | 0.64677 (13) | 0.26546 (8) | 0.0180 (2) | |
O1 | −0.09643 (16) | 0.33706 (13) | 0.27415 (8) | 0.0190 (2) | |
O5 | 0.1806 (2) | −0.17345 (17) | 0.40519 (9) | 0.0258 (3) | |
O2 | −0.12649 (16) | 0.11778 (13) | 0.38957 (8) | 0.0189 (2) | |
N1 | 0.19550 (18) | 0.16670 (15) | 0.45776 (8) | 0.0147 (2) | |
N2 | 0.43093 (18) | 0.41844 (16) | 0.37769 (9) | 0.0173 (2) | |
C1 | −0.0415 (2) | 0.24286 (17) | 0.34432 (10) | 0.0144 (2) | |
C2 | 0.1458 (2) | 0.27423 (16) | 0.38093 (9) | 0.0134 (2) | |
C5 | 0.2651 (2) | 0.40007 (17) | 0.34084 (10) | 0.0139 (2) | |
C4 | 0.4760 (2) | 0.31081 (19) | 0.45398 (11) | 0.0187 (3) | |
H4 | 0.5897 | 0.3212 | 0.4806 | 0.022* | |
C3 | 0.3583 (2) | 0.18338 (18) | 0.49501 (10) | 0.0171 (3) | |
H3 | 0.3936 | 0.1103 | 0.5483 | 0.021* | |
C6 | 0.2244 (2) | 0.52402 (17) | 0.25287 (10) | 0.0148 (2) | |
N3 | 0.17729 (19) | −0.08982 (15) | 0.12469 (9) | 0.0175 (2) | |
H13 | 0.1634 | −0.1765 | 0.1614 | 0.021* | |
N4 | 0.2985 (2) | −0.23942 (16) | 0.01280 (10) | 0.0200 (3) | |
H14A | 0.3217 | −0.2450 | −0.0394 | 0.024* | |
C10 | 0.2467 (2) | −0.09571 (18) | 0.03481 (10) | 0.0160 (3) | |
C9 | 0.2613 (2) | 0.05143 (19) | −0.03132 (11) | 0.0184 (3) | |
C8 | 0.2056 (2) | 0.19545 (18) | −0.00370 (11) | 0.0197 (3) | |
C11 | 0.1206 (2) | 0.05082 (19) | 0.15352 (11) | 0.0212 (3) | |
H11 | 0.0728 | 0.0489 | 0.2162 | 0.025* | |
C12 | 0.1332 (3) | 0.19396 (19) | 0.09169 (12) | 0.0223 (3) | |
C7 | 0.2186 (3) | 0.3528 (2) | −0.07308 (14) | 0.0288 (4) | |
H7A | 0.2698 | 0.4314 | −0.0443 | 0.043* | |
H7B | 0.0911 | 0.3898 | −0.0912 | 0.043* | |
H7C | 0.3034 | 0.3379 | −0.1281 | 0.043* | |
O6 | 0.7121 (2) | 0.67499 (18) | 0.32078 (13) | 0.0381 (4) | |
O7 | 0.4817 (2) | 0.9530 (2) | 0.28417 (12) | 0.0385 (3) | |
O8 | 0.60159 (18) | 0.25375 (14) | 0.18411 (8) | 0.0203 (2) | |
H12 | 0.097 (4) | 0.287 (3) | 0.1154 (19) | 0.040 (7)* | |
H14B | 0.289 (3) | −0.322 (3) | 0.0565 (17) | 0.024 (5)* | |
H9 | 0.311 (3) | 0.045 (2) | −0.0939 (15) | 0.017 (5)* | |
H5B | 0.267 (4) | −0.130 (3) | 0.372 (2) | 0.040 (7)* | |
H5A | 0.138 (4) | −0.236 (3) | 0.377 (2) | 0.040 (7)* | |
H8A | 0.516 (4) | 0.326 (3) | 0.1824 (19) | 0.039 (7)* | |
H8B | 0.677 (4) | 0.279 (3) | 0.2116 (19) | 0.034 (6)* | |
H6B | 0.823 (5) | 0.645 (4) | 0.306 (2) | 0.057 (9)* | |
H6A | 0.632 (6) | 0.606 (5) | 0.333 (3) | 0.076 (11)* | |
H17A | 0.570 (5) | 0.885 (4) | 0.288 (2) | 0.049 (8)* | |
H17B | 0.524 (5) | 1.032 (4) | 0.259 (3) | 0.062 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01841 (13) | 0.01479 (13) | 0.01464 (12) | −0.00519 (9) | −0.00398 (9) | 0.00436 (9) |
O3 | 0.0237 (5) | 0.0173 (5) | 0.0150 (5) | 0.0014 (4) | 0.0007 (4) | 0.0003 (4) |
O4 | 0.0203 (5) | 0.0131 (5) | 0.0190 (5) | 0.0006 (4) | −0.0017 (4) | −0.0002 (4) |
O1 | 0.0208 (5) | 0.0176 (5) | 0.0172 (5) | −0.0032 (4) | −0.0062 (4) | 0.0032 (4) |
O5 | 0.0265 (6) | 0.0295 (6) | 0.0239 (6) | −0.0017 (5) | −0.0016 (5) | −0.0116 (5) |
O2 | 0.0193 (5) | 0.0175 (5) | 0.0185 (5) | −0.0068 (4) | −0.0056 (4) | 0.0037 (4) |
N1 | 0.0172 (5) | 0.0131 (5) | 0.0129 (5) | −0.0012 (4) | −0.0023 (4) | 0.0003 (4) |
N2 | 0.0158 (5) | 0.0174 (6) | 0.0179 (6) | −0.0020 (4) | −0.0023 (4) | −0.0007 (5) |
C1 | 0.0154 (6) | 0.0140 (6) | 0.0134 (6) | −0.0015 (5) | −0.0013 (5) | −0.0014 (5) |
C2 | 0.0149 (6) | 0.0124 (6) | 0.0121 (6) | −0.0004 (5) | −0.0013 (5) | −0.0006 (5) |
C5 | 0.0149 (6) | 0.0125 (6) | 0.0133 (6) | 0.0006 (5) | −0.0005 (5) | −0.0014 (5) |
C4 | 0.0165 (6) | 0.0196 (7) | 0.0196 (7) | −0.0020 (5) | −0.0051 (5) | −0.0009 (5) |
C3 | 0.0193 (6) | 0.0165 (6) | 0.0148 (6) | 0.0005 (5) | −0.0044 (5) | −0.0006 (5) |
C6 | 0.0154 (6) | 0.0127 (6) | 0.0154 (6) | −0.0035 (5) | −0.0015 (5) | 0.0004 (5) |
N3 | 0.0221 (6) | 0.0146 (5) | 0.0143 (5) | −0.0001 (4) | −0.0021 (4) | 0.0007 (4) |
N4 | 0.0262 (6) | 0.0161 (6) | 0.0162 (6) | 0.0006 (5) | −0.0010 (5) | −0.0009 (5) |
C10 | 0.0155 (6) | 0.0175 (6) | 0.0149 (6) | −0.0022 (5) | −0.0036 (5) | −0.0010 (5) |
C9 | 0.0185 (6) | 0.0192 (7) | 0.0156 (6) | −0.0020 (5) | −0.0021 (5) | 0.0014 (5) |
C8 | 0.0194 (7) | 0.0159 (7) | 0.0223 (7) | −0.0034 (5) | −0.0057 (5) | 0.0022 (5) |
C11 | 0.0277 (8) | 0.0199 (7) | 0.0161 (6) | 0.0016 (6) | −0.0033 (6) | −0.0043 (6) |
C12 | 0.0282 (8) | 0.0164 (7) | 0.0232 (7) | −0.0002 (6) | −0.0067 (6) | −0.0044 (6) |
C7 | 0.0340 (9) | 0.0173 (7) | 0.0308 (9) | −0.0031 (6) | −0.0035 (7) | 0.0058 (6) |
O6 | 0.0263 (7) | 0.0240 (7) | 0.0620 (10) | −0.0045 (5) | 0.0142 (7) | −0.0127 (7) |
O7 | 0.0273 (7) | 0.0304 (7) | 0.0498 (9) | −0.0033 (6) | −0.0024 (6) | 0.0108 (7) |
O8 | 0.0208 (5) | 0.0204 (5) | 0.0203 (5) | 0.0013 (4) | −0.0044 (4) | −0.0051 (4) |
Cu1—O2 | 1.9644 (13) | N3—C11 | 1.358 (2) |
Cu1—O2i | 1.9644 (12) | N3—H13 | 0.8202 |
Cu1—N1 | 1.9840 (14) | N4—C10 | 1.335 (2) |
Cu1—N1i | 1.9840 (14) | N4—H14A | 0.7669 |
Cu1—O5 | 2.4038 (15) | N4—H14B | 0.84 (2) |
Cu1—O5i | 2.4038 (15) | C10—C9 | 1.412 (2) |
O3—C6 | 1.2467 (18) | C9—C8 | 1.376 (2) |
O4—C6 | 1.2597 (18) | C9—H9 | 0.95 (2) |
O1—C1 | 1.2364 (18) | C8—C12 | 1.416 (2) |
O5—H5B | 0.79 (3) | C8—C7 | 1.500 (2) |
O5—H5A | 0.82 (3) | C11—C12 | 1.356 (2) |
O2—C1 | 1.2732 (18) | C11—H11 | 0.9300 |
N1—C3 | 1.3291 (19) | C12—H12 | 0.93 (3) |
N1—C2 | 1.3477 (18) | C7—H7A | 0.9600 |
N2—C4 | 1.333 (2) | C7—H7B | 0.9600 |
N2—C5 | 1.3486 (18) | C7—H7C | 0.9600 |
C1—C2 | 1.5119 (19) | O6—H6B | 0.81 (4) |
C2—C5 | 1.387 (2) | O6—H6A | 0.81 (4) |
C5—C6 | 1.517 (2) | O7—H17A | 0.80 (3) |
C4—C3 | 1.393 (2) | O7—H17B | 0.76 (4) |
C4—H4 | 0.9300 | O8—H8A | 0.81 (3) |
C3—H3 | 0.9300 | O8—H8B | 0.76 (3) |
N3—C10 | 1.3475 (19) | ||
O2—Cu1—O2i | 180.00 (4) | N1—C3—H3 | 120.1 |
O2—Cu1—N1 | 83.31 (5) | C4—C3—H3 | 120.1 |
O2i—Cu1—N1 | 96.69 (5) | O3—C6—O4 | 126.59 (14) |
O2—Cu1—N1i | 96.69 (5) | O3—C6—C5 | 116.73 (13) |
O2i—Cu1—N1i | 83.31 (5) | O4—C6—C5 | 116.56 (13) |
N1—Cu1—N1i | 180.00 (7) | C10—N3—C11 | 122.73 (14) |
O2—Cu1—O5 | 90.70 (5) | C10—N3—H13 | 116.8 |
O2i—Cu1—O5 | 89.30 (5) | C11—N3—H13 | 120.3 |
N1—Cu1—O5 | 90.80 (6) | C10—N4—H14A | 119.0 |
N1i—Cu1—O5 | 89.20 (6) | C10—N4—H14B | 117.9 (15) |
O2—Cu1—O5i | 89.30 (5) | H14A—N4—H14B | 122.6 |
O2i—Cu1—O5i | 90.70 (5) | N4—C10—N3 | 118.61 (14) |
N1—Cu1—O5i | 89.20 (6) | N4—C10—C9 | 123.36 (14) |
N1i—Cu1—O5i | 90.80 (6) | N3—C10—C9 | 118.02 (14) |
O5—Cu1—O5i | 180.00 (5) | C8—C9—C10 | 120.30 (14) |
Cu1—O5—H5B | 113 (2) | C8—C9—H9 | 123.0 (12) |
Cu1—O5—H5A | 127.8 (19) | C10—C9—H9 | 116.7 (12) |
H5B—O5—H5A | 107 (3) | C9—C8—C12 | 119.11 (14) |
C1—O2—Cu1 | 114.87 (9) | C9—C8—C7 | 121.06 (15) |
C3—N1—C2 | 119.43 (13) | C12—C8—C7 | 119.83 (15) |
C3—N1—Cu1 | 129.00 (10) | C12—C11—N3 | 120.60 (15) |
C2—N1—Cu1 | 111.57 (10) | C12—C11—H11 | 119.7 |
C4—N2—C5 | 117.45 (13) | N3—C11—H11 | 119.7 |
O1—C1—O2 | 126.27 (13) | C11—C12—C8 | 119.24 (15) |
O1—C1—C2 | 118.40 (13) | C11—C12—H12 | 117.2 (17) |
O2—C1—C2 | 115.33 (12) | C8—C12—H12 | 123.5 (17) |
N1—C2—C5 | 120.04 (13) | C8—C7—H7A | 109.5 |
N1—C2—C1 | 114.86 (12) | C8—C7—H7B | 109.5 |
C5—C2—C1 | 125.09 (12) | H7A—C7—H7B | 109.5 |
N2—C5—C2 | 121.23 (13) | C8—C7—H7C | 109.5 |
N2—C5—C6 | 114.89 (13) | H7A—C7—H7C | 109.5 |
C2—C5—C6 | 123.87 (13) | H7B—C7—H7C | 109.5 |
N2—C4—C3 | 122.10 (14) | H6B—O6—H6A | 117 (3) |
N2—C4—H4 | 118.9 | H17A—O7—H17B | 107 (3) |
C3—C4—H4 | 118.9 | H8A—O8—H8B | 105 (3) |
N1—C3—C4 | 119.74 (14) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H13···O4ii | 0.82 | 1.91 | 2.7221 (19) | 169 |
N4—H14A···O8iii | 0.77 | 2.12 | 2.8879 (19) | 177 |
N4—H14B···O3ii | 0.84 (2) | 2.07 (2) | 2.903 (2) | 168 (2) |
O5—H5B···O7ii | 0.79 (3) | 1.92 (3) | 2.703 (2) | 173 (3) |
O5—H5A···O4ii | 0.82 (3) | 2.09 (3) | 2.8556 (18) | 157 (3) |
O8—H8B···O1iv | 0.76 (3) | 2.03 (3) | 2.7838 (18) | 173 (3) |
O6—H6B···O4iv | 0.81 (4) | 2.06 (4) | 2.839 (2) | 162 (3) |
O7—H17B···O8v | 0.76 (4) | 2.04 (4) | 2.797 (2) | 172 (4) |
Symmetry codes: (ii) x, y−1, z; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O |
Mr | 758.17 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.9075 (14), 8.4710 (17), 14.505 (3) |
α, β, γ (°) | 78.28 (3), 83.62 (3), 85.81 (3) |
V (Å3) | 824.8 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.75 |
Crystal size (mm) | 0.3 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Stoe IPDS 2 diffractometer |
Absorption correction | For a sphere modified Dwiggins (1975) interpolation procedure |
Tmin, Tmax | 0.743, 0.745 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17015, 4684, 4282 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.699 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.092, 1.04 |
No. of reflections | 4684 |
No. of parameters | 268 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.52 |
Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H13···O4i | 0.82 | 1.91 | 2.7221 (19) | 169 |
N4—H14A···O8ii | 0.77 | 2.12 | 2.8879 (19) | 177 |
N4—H14B···O3i | 0.84 (2) | 2.07 (2) | 2.903 (2) | 168 (2) |
O5—H5B···O7i | 0.79 (3) | 1.92 (3) | 2.703 (2) | 173 (3) |
O5—H5A···O4i | 0.82 (3) | 2.09 (3) | 2.8556 (18) | 157 (3) |
O8—H8B···O1iii | 0.76 (3) | 2.03 (3) | 2.7838 (18) | 173 (3) |
O6—H6B···O4iii | 0.81 (4) | 2.06 (4) | 2.839 (2) | 162 (3) |
O7—H17B···O8iv | 0.76 (4) | 2.04 (4) | 2.797 (2) | 172 (4) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z; (iii) x+1, y, z; (iv) x, y+1, z. |
Acknowledgements
Ferdowsi University of Mashhad is gratefully acknowledged for financial support.
References
Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289–300. CrossRef CAS Google Scholar
Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dwiggins, C. W. (1975). Acta Cryst. A31, 146–148. CrossRef IUCr Journals Web of Science Google Scholar
Eshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010a). Acta Cryst. E66. Submitted. [XU2784] Google Scholar
Eshtiagh-Hosseini, H., Hassanpoor, A., Alfi, N., Mirzaei, M., Fromm, K. M., Shokrollahi, A., Gschwind, F. & Karami, E. (2010b). J. Coord. Chem. In the press. Google Scholar
Eshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010c). Acta Cryst. E66, o1368–o1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2009). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany. Google Scholar
Takusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121–1123. CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dicarboxylate ligands are widely used to assemble supramolecular network organized by coordination bonds, hydrogen bonds and π –π stacking interaction. Due to the manifold N- and O-donors of pyridine or pyrazine-(di)carboxylic ligands, metal pyridine- or pyrazine dicarboxylates can contrast versatile structural motifs, which finally aggregate to generate various supramolecular architectures with interesting properties. As ones of the dicarboxylate ligands, pzdcH2 have drawn extensive attentions. For the first time, Takusagawa & Shimada (1973) by single crystal X-ray diffraction, determined the structure of pzdcH2. Continuing with our previous works on synthesizing coordination compounds via proton transfer mechanism including zinc atom (Eshtiagh-Hosseini et al., 2010a), manganese atom (Eshtiagh-Hosseini et al., 2010b), Bis(2,4,6-triamino-1,3,5-triazin-1-ium) pyrazine-2,3-dicarboxylate tetrahydrate (Eshtiagh-Hosseini et al., 2010c), herein, we planned the reaction between pzdcH2, ampy, and copper(II) choloride which resulted in the formation of (ampy)2[Cu(pzdc)2(H2O)2]. 6H2O (Fig. 1). Crystal packing diagram related to the title compound is also rendered in the Fig. 2. As you can see, the equatorial plane is occupied by two (pzdc)2- ligands coordinating through the pyridine nitrogen and one oxygen of the deprotonated carboxylate groups. The two coordinated water molecules occupy axial plane. This compound consists of an anionic moiety, trans-[Cu(pzdc)2(H2O)2]2- complex, counter-ions, (ampy)+, and six uncoordinated water molecules. The Cu—O and Cu—N bond distances related to (pzdc)2- ligand in herein presented compound are in the category of 1.9644 (13) Å , and 1.9840 (14) Å, respectively. These observerd bond lenghts are comprable with Zn(II) polymeric coordination compound which recently reported by our research group (Eshtiagh-Hosseini et al., 2010a ). In this polymeric compound which consist of only (pzdc)2- coordinative ligand, {(C3H12N2)2[Zn(C10H2O8)2]}n, Zn—O and Zn—N bond distances are 2.0317 (15) to 2.2437 (15) Å, and 2.0901 (18) Å, respectively. These data show in this polymeric compound Zn—O bond distance is longer than herein presented compound. The intermolecular forces between the anionic and cationic parts in the title compound consist of hydrogen bonding and ion pairing interactions. Indeed, six uncoordinated water molecules increase the number of hydrogen bonds in the crystalline network and lead to the formation of (H2O)n clusters throughout the crystalline network (see Review article by Aghabozorg et al. 2010).