metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m826-m827

Bis(2-amino-4-methyl­pyridinium) trans-di­aqua­bis­­(pyrazine-2,3-di­carboxyl­ato)cuprate(II) hexa­hydrate

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and bDepartment of Chemistry, University of Fribourg, Chemin Du Musée 9, 1700 Fribourg, Switzerland
*Correspondence e-mail: heshtiagh@ferdowsi.um.ac.ir

(Received 27 May 2010; accepted 15 June 2010; online 23 June 2010)

The title compound, (C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O, consists of a mononuclear trans-[Cu(pzdc)2(H2O)2]2− dianion (pzdc is pyrazine-2,3-dicarboxyl­ate) and two [ampyH]+ cations (ampy is 2-amino-4-methyl­pyridine) with six water mol­ecules of solvation. The CuII atom is hexa­coordinated by two pzdc groups and two water mol­ecules. The coordinated water mol­ecules are in trans-diaxial positions and the pzdc dianion acts as a bidentate ligand through an O atom of the carboxyl­ate group and the N atom of the pyrazine ring. There are diverse hydrogen-bonding inter­actions, such as N—H⋯O and O—H⋯O contacts, which lead to the formation of a three-dimensional supra­molecular architecture.

Related literature

For the crystal structure of pyrazine-2,3-dicarb­oxy­lic acid (pzdcH2), see: Takusagawa & Shimada (1973[Takusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121-1123.]). For complexes of pzdcH2 with manganese and zinc, see: Eshtiagh-Hosseini et al. (2010a[Eshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010a). Acta Cryst. E66. Submitted. [XU2784]],b[Eshtiagh-Hosseini, H., Hassanpoor, A., Alfi, N., Mirzaei, M., Fromm, K. M., Shokrollahi, A., Gschwind, F. & Karami, E. (2010b). J. Coord. Chem. In the press.]). For the structure of bis­(2,4,6-triamino-1,3,5-triazin-1-ium) pyrazine-2,3-dicarboxyl­ate tetra­hydrate, see: Eshtiagh-Hosseini et al. (2010c[Eshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010c). Acta Cryst. E66, o1368-o1369.]). For a review articleon water cluster chemistry, see: Aghabozorg et al. (2010[Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289-300.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O

  • Mr = 758.17

  • Triclinic, [P \overline 1]

  • a = 6.9075 (14) Å

  • b = 8.4710 (17) Å

  • c = 14.505 (3) Å

  • α = 78.28 (3)°

  • β = 83.62 (3)°

  • γ = 85.81 (3)°

  • V = 824.8 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: for a sphere [modified Dwiggins (1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) interpolation procedure] Tmin = 0.743, Tmax = 0.745

  • 17015 measured reflections

  • 4684 independent reflections

  • 4282 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.04

  • 4684 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H13⋯O4i 0.82 1.91 2.7221 (19) 169
N4—H14A⋯O8ii 0.77 2.12 2.8879 (19) 177
N4—H14B⋯O3i 0.84 (2) 2.07 (2) 2.903 (2) 168 (2)
O5—H5B⋯O7i 0.79 (3) 1.92 (3) 2.703 (2) 173 (3)
O5—H5A⋯O4i 0.82 (3) 2.09 (3) 2.8556 (18) 157 (3)
O8—H8B⋯O1iii 0.76 (3) 2.03 (3) 2.7838 (18) 173 (3)
O6—H6B⋯O4iii 0.81 (4) 2.06 (4) 2.839 (2) 162 (3)
O7—H17B⋯O8iv 0.76 (4) 2.04 (4) 2.797 (2) 172 (4)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z; (iii) x+1, y, z; (iv) x, y+1, z.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.]); data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2009[Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Dicarboxylate ligands are widely used to assemble supramolecular network organized by coordination bonds, hydrogen bonds and ππ stacking interaction. Due to the manifold N- and O-donors of pyridine or pyrazine-(di)carboxylic ligands, metal pyridine- or pyrazine dicarboxylates can contrast versatile structural motifs, which finally aggregate to generate various supramolecular architectures with interesting properties. As ones of the dicarboxylate ligands, pzdcH2 have drawn extensive attentions. For the first time, Takusagawa & Shimada (1973) by single crystal X-ray diffraction, determined the structure of pzdcH2. Continuing with our previous works on synthesizing coordination compounds via proton transfer mechanism including zinc atom (Eshtiagh-Hosseini et al., 2010a), manganese atom (Eshtiagh-Hosseini et al., 2010b), Bis(2,4,6-triamino-1,3,5-triazin-1-ium) pyrazine-2,3-dicarboxylate tetrahydrate (Eshtiagh-Hosseini et al., 2010c), herein, we planned the reaction between pzdcH2, ampy, and copper(II) choloride which resulted in the formation of (ampy)2[Cu(pzdc)2(H2O)2]. 6H2O (Fig. 1). Crystal packing diagram related to the title compound is also rendered in the Fig. 2. As you can see, the equatorial plane is occupied by two (pzdc)2- ligands coordinating through the pyridine nitrogen and one oxygen of the deprotonated carboxylate groups. The two coordinated water molecules occupy axial plane. This compound consists of an anionic moiety, trans-[Cu(pzdc)2(H2O)2]2- complex, counter-ions, (ampy)+, and six uncoordinated water molecules. The Cu—O and Cu—N bond distances related to (pzdc)2- ligand in herein presented compound are in the category of 1.9644 (13) Å , and 1.9840 (14) Å, respectively. These observerd bond lenghts are comprable with Zn(II) polymeric coordination compound which recently reported by our research group (Eshtiagh-Hosseini et al., 2010a ). In this polymeric compound which consist of only (pzdc)2- coordinative ligand, {(C3H12N2)2[Zn(C10H2O8)2]}n, Zn—O and Zn—N bond distances are 2.0317 (15) to 2.2437 (15) Å, and 2.0901 (18) Å, respectively. These data show in this polymeric compound Zn—O bond distance is longer than herein presented compound. The intermolecular forces between the anionic and cationic parts in the title compound consist of hydrogen bonding and ion pairing interactions. Indeed, six uncoordinated water molecules increase the number of hydrogen bonds in the crystalline network and lead to the formation of (H2O)n clusters throughout the crystalline network (see Review article by Aghabozorg et al. 2010).

Related literature top

For the crystal structure of pyrazine-2,3-dicarboxylic acid (pzdcH2), see: Takusagawa & Shimada (1973). For complexes of pzdcH2 with manganese and zinc see: Eshtiagh-Hosseini et al. (2010a,b). For the structure of bis(2,4,6-triamino-1,3,5-triazin-1-ium) pyrazine-2,3-dicarboxylate tetrahydrate, see: Eshtiagh-Hosseini et al. (2010c). For a review article [on what subject?], see: Aghabozorg et al. 2010).

For related literature

Experimental top

A solution of pzdcH2 (0.18 mmol, 0.03 mg) in water (10 ml) refluxed for 1 hr, then a solution of CuCl2.6H2O (0.02 mmol, 0.01 g) was added dropwise and continued refluxing for 6 hrs at 60°C. The obtained blue solution gave blue block like crystals of title compound after slow evaporation of solvent at room temperatur.

Refinement top

The space group was confirmed by using PLATON software package. The structure was solved by direct methods using SHELXS-97 and refined using full matrix least-squares on F2 with the SHELX-97 package. H-Atoms were constrained to the parent site using a rigid model. A final verification of possible voids was performed using the VOID routine on PLATON software.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-RED (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (ampy)2[Cu(pzdc)2(H2O)2].6H2O. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for further clarity.
[Figure 2] Fig. 2. Packing diagram of (ampy)2[Cu(pzdc)2(H2O)2].6H2O.
Bis(2-amino-4-methylpyridinium) trans-diaquabis(pyrazine-2,3-dicarboxylato)cuprate(II) hexahydrate top
Crystal data top
(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2OZ = 1
Mr = 758.17F(000) = 395.0
Triclinic, P1Dx = 1.526 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9075 (14) ÅCell parameters from 34097 reflections
b = 8.4710 (17) Åθ = 3,8–59,7°
c = 14.505 (3) ŵ = 0.75 mm1
α = 78.28 (3)°T = 293 K
β = 83.62 (3)°Block, blue
γ = 85.81 (3)°0.3 × 0.2 × 0.1 mm
V = 824.8 (3) Å3
Data collection top
Stoe IPDS 2
diffractometer
4684 independent reflections
Radiation source: fine-focus sealed tube4282 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 6.67 pixels mm-1θmax = 29.8°, θmin = 2.5°
rotation method scansh = 99
Absorption correction: for a sphere
modified Dwiggins (1975) interpolation procedure
k = 1111
Tmin = 0.743, Tmax = 0.745l = 2020
17015 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.5453P]
where P = (Fo2 + 2Fc2)/3
4684 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2Oγ = 85.81 (3)°
Mr = 758.17V = 824.8 (3) Å3
Triclinic, P1Z = 1
a = 6.9075 (14) ÅMo Kα radiation
b = 8.4710 (17) ŵ = 0.75 mm1
c = 14.505 (3) ÅT = 293 K
α = 78.28 (3)°0.3 × 0.2 × 0.1 mm
β = 83.62 (3)°
Data collection top
Stoe IPDS 2
diffractometer
4684 independent reflections
Absorption correction: for a sphere
modified Dwiggins (1975) interpolation procedure
4282 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.745Rint = 0.046
17015 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.36 e Å3
4684 reflectionsΔρmin = 0.52 e Å3
268 parameters
Special details top

Experimental. Absorption correction: Interpolation using Int. Tab. Vol. C (1992) p. 523, Tab. 6.3.3.3 for values of muR in the range 0-2.5, and Int. Tab. Vol. II (1959) p. 302; Table 5.3.6 B for muR in the range 2.6-10.0. The interpolation procedure of C. W. Dwiggins Jr is used with some modification.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.50000.01658 (8)
O30.30782 (17)0.49841 (13)0.17617 (8)0.0195 (2)
O40.11843 (16)0.64677 (13)0.26546 (8)0.0180 (2)
O10.09643 (16)0.33706 (13)0.27415 (8)0.0190 (2)
O50.1806 (2)0.17345 (17)0.40519 (9)0.0258 (3)
O20.12649 (16)0.11778 (13)0.38957 (8)0.0189 (2)
N10.19550 (18)0.16670 (15)0.45776 (8)0.0147 (2)
N20.43093 (18)0.41844 (16)0.37769 (9)0.0173 (2)
C10.0415 (2)0.24286 (17)0.34432 (10)0.0144 (2)
C20.1458 (2)0.27423 (16)0.38093 (9)0.0134 (2)
C50.2651 (2)0.40007 (17)0.34084 (10)0.0139 (2)
C40.4760 (2)0.31081 (19)0.45398 (11)0.0187 (3)
H40.58970.32120.48060.022*
C30.3583 (2)0.18338 (18)0.49501 (10)0.0171 (3)
H30.39360.11030.54830.021*
C60.2244 (2)0.52402 (17)0.25287 (10)0.0148 (2)
N30.17729 (19)0.08982 (15)0.12469 (9)0.0175 (2)
H130.16340.17650.16140.021*
N40.2985 (2)0.23942 (16)0.01280 (10)0.0200 (3)
H14A0.32170.24500.03940.024*
C100.2467 (2)0.09571 (18)0.03481 (10)0.0160 (3)
C90.2613 (2)0.05143 (19)0.03132 (11)0.0184 (3)
C80.2056 (2)0.19545 (18)0.00370 (11)0.0197 (3)
C110.1206 (2)0.05082 (19)0.15352 (11)0.0212 (3)
H110.07280.04890.21620.025*
C120.1332 (3)0.19396 (19)0.09169 (12)0.0223 (3)
C70.2186 (3)0.3528 (2)0.07308 (14)0.0288 (4)
H7A0.26980.43140.04430.043*
H7B0.09110.38980.09120.043*
H7C0.30340.33790.12810.043*
O60.7121 (2)0.67499 (18)0.32078 (13)0.0381 (4)
O70.4817 (2)0.9530 (2)0.28417 (12)0.0385 (3)
O80.60159 (18)0.25375 (14)0.18411 (8)0.0203 (2)
H120.097 (4)0.287 (3)0.1154 (19)0.040 (7)*
H14B0.289 (3)0.322 (3)0.0565 (17)0.024 (5)*
H90.311 (3)0.045 (2)0.0939 (15)0.017 (5)*
H5B0.267 (4)0.130 (3)0.372 (2)0.040 (7)*
H5A0.138 (4)0.236 (3)0.377 (2)0.040 (7)*
H8A0.516 (4)0.326 (3)0.1824 (19)0.039 (7)*
H8B0.677 (4)0.279 (3)0.2116 (19)0.034 (6)*
H6B0.823 (5)0.645 (4)0.306 (2)0.057 (9)*
H6A0.632 (6)0.606 (5)0.333 (3)0.076 (11)*
H17A0.570 (5)0.885 (4)0.288 (2)0.049 (8)*
H17B0.524 (5)1.032 (4)0.259 (3)0.062 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01841 (13)0.01479 (13)0.01464 (12)0.00519 (9)0.00398 (9)0.00436 (9)
O30.0237 (5)0.0173 (5)0.0150 (5)0.0014 (4)0.0007 (4)0.0003 (4)
O40.0203 (5)0.0131 (5)0.0190 (5)0.0006 (4)0.0017 (4)0.0002 (4)
O10.0208 (5)0.0176 (5)0.0172 (5)0.0032 (4)0.0062 (4)0.0032 (4)
O50.0265 (6)0.0295 (6)0.0239 (6)0.0017 (5)0.0016 (5)0.0116 (5)
O20.0193 (5)0.0175 (5)0.0185 (5)0.0068 (4)0.0056 (4)0.0037 (4)
N10.0172 (5)0.0131 (5)0.0129 (5)0.0012 (4)0.0023 (4)0.0003 (4)
N20.0158 (5)0.0174 (6)0.0179 (6)0.0020 (4)0.0023 (4)0.0007 (5)
C10.0154 (6)0.0140 (6)0.0134 (6)0.0015 (5)0.0013 (5)0.0014 (5)
C20.0149 (6)0.0124 (6)0.0121 (6)0.0004 (5)0.0013 (5)0.0006 (5)
C50.0149 (6)0.0125 (6)0.0133 (6)0.0006 (5)0.0005 (5)0.0014 (5)
C40.0165 (6)0.0196 (7)0.0196 (7)0.0020 (5)0.0051 (5)0.0009 (5)
C30.0193 (6)0.0165 (6)0.0148 (6)0.0005 (5)0.0044 (5)0.0006 (5)
C60.0154 (6)0.0127 (6)0.0154 (6)0.0035 (5)0.0015 (5)0.0004 (5)
N30.0221 (6)0.0146 (5)0.0143 (5)0.0001 (4)0.0021 (4)0.0007 (4)
N40.0262 (6)0.0161 (6)0.0162 (6)0.0006 (5)0.0010 (5)0.0009 (5)
C100.0155 (6)0.0175 (6)0.0149 (6)0.0022 (5)0.0036 (5)0.0010 (5)
C90.0185 (6)0.0192 (7)0.0156 (6)0.0020 (5)0.0021 (5)0.0014 (5)
C80.0194 (7)0.0159 (7)0.0223 (7)0.0034 (5)0.0057 (5)0.0022 (5)
C110.0277 (8)0.0199 (7)0.0161 (6)0.0016 (6)0.0033 (6)0.0043 (6)
C120.0282 (8)0.0164 (7)0.0232 (7)0.0002 (6)0.0067 (6)0.0044 (6)
C70.0340 (9)0.0173 (7)0.0308 (9)0.0031 (6)0.0035 (7)0.0058 (6)
O60.0263 (7)0.0240 (7)0.0620 (10)0.0045 (5)0.0142 (7)0.0127 (7)
O70.0273 (7)0.0304 (7)0.0498 (9)0.0033 (6)0.0024 (6)0.0108 (7)
O80.0208 (5)0.0204 (5)0.0203 (5)0.0013 (4)0.0044 (4)0.0051 (4)
Geometric parameters (Å, º) top
Cu1—O21.9644 (13)N3—C111.358 (2)
Cu1—O2i1.9644 (12)N3—H130.8202
Cu1—N11.9840 (14)N4—C101.335 (2)
Cu1—N1i1.9840 (14)N4—H14A0.7669
Cu1—O52.4038 (15)N4—H14B0.84 (2)
Cu1—O5i2.4038 (15)C10—C91.412 (2)
O3—C61.2467 (18)C9—C81.376 (2)
O4—C61.2597 (18)C9—H90.95 (2)
O1—C11.2364 (18)C8—C121.416 (2)
O5—H5B0.79 (3)C8—C71.500 (2)
O5—H5A0.82 (3)C11—C121.356 (2)
O2—C11.2732 (18)C11—H110.9300
N1—C31.3291 (19)C12—H120.93 (3)
N1—C21.3477 (18)C7—H7A0.9600
N2—C41.333 (2)C7—H7B0.9600
N2—C51.3486 (18)C7—H7C0.9600
C1—C21.5119 (19)O6—H6B0.81 (4)
C2—C51.387 (2)O6—H6A0.81 (4)
C5—C61.517 (2)O7—H17A0.80 (3)
C4—C31.393 (2)O7—H17B0.76 (4)
C4—H40.9300O8—H8A0.81 (3)
C3—H30.9300O8—H8B0.76 (3)
N3—C101.3475 (19)
O2—Cu1—O2i180.00 (4)N1—C3—H3120.1
O2—Cu1—N183.31 (5)C4—C3—H3120.1
O2i—Cu1—N196.69 (5)O3—C6—O4126.59 (14)
O2—Cu1—N1i96.69 (5)O3—C6—C5116.73 (13)
O2i—Cu1—N1i83.31 (5)O4—C6—C5116.56 (13)
N1—Cu1—N1i180.00 (7)C10—N3—C11122.73 (14)
O2—Cu1—O590.70 (5)C10—N3—H13116.8
O2i—Cu1—O589.30 (5)C11—N3—H13120.3
N1—Cu1—O590.80 (6)C10—N4—H14A119.0
N1i—Cu1—O589.20 (6)C10—N4—H14B117.9 (15)
O2—Cu1—O5i89.30 (5)H14A—N4—H14B122.6
O2i—Cu1—O5i90.70 (5)N4—C10—N3118.61 (14)
N1—Cu1—O5i89.20 (6)N4—C10—C9123.36 (14)
N1i—Cu1—O5i90.80 (6)N3—C10—C9118.02 (14)
O5—Cu1—O5i180.00 (5)C8—C9—C10120.30 (14)
Cu1—O5—H5B113 (2)C8—C9—H9123.0 (12)
Cu1—O5—H5A127.8 (19)C10—C9—H9116.7 (12)
H5B—O5—H5A107 (3)C9—C8—C12119.11 (14)
C1—O2—Cu1114.87 (9)C9—C8—C7121.06 (15)
C3—N1—C2119.43 (13)C12—C8—C7119.83 (15)
C3—N1—Cu1129.00 (10)C12—C11—N3120.60 (15)
C2—N1—Cu1111.57 (10)C12—C11—H11119.7
C4—N2—C5117.45 (13)N3—C11—H11119.7
O1—C1—O2126.27 (13)C11—C12—C8119.24 (15)
O1—C1—C2118.40 (13)C11—C12—H12117.2 (17)
O2—C1—C2115.33 (12)C8—C12—H12123.5 (17)
N1—C2—C5120.04 (13)C8—C7—H7A109.5
N1—C2—C1114.86 (12)C8—C7—H7B109.5
C5—C2—C1125.09 (12)H7A—C7—H7B109.5
N2—C5—C2121.23 (13)C8—C7—H7C109.5
N2—C5—C6114.89 (13)H7A—C7—H7C109.5
C2—C5—C6123.87 (13)H7B—C7—H7C109.5
N2—C4—C3122.10 (14)H6B—O6—H6A117 (3)
N2—C4—H4118.9H17A—O7—H17B107 (3)
C3—C4—H4118.9H8A—O8—H8B105 (3)
N1—C3—C4119.74 (14)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H13···O4ii0.821.912.7221 (19)169
N4—H14A···O8iii0.772.122.8879 (19)177
N4—H14B···O3ii0.84 (2)2.07 (2)2.903 (2)168 (2)
O5—H5B···O7ii0.79 (3)1.92 (3)2.703 (2)173 (3)
O5—H5A···O4ii0.82 (3)2.09 (3)2.8556 (18)157 (3)
O8—H8B···O1iv0.76 (3)2.03 (3)2.7838 (18)173 (3)
O6—H6B···O4iv0.81 (4)2.06 (4)2.839 (2)162 (3)
O7—H17B···O8v0.76 (4)2.04 (4)2.797 (2)172 (4)
Symmetry codes: (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H9N2)2[Cu(C6H2N2O4)2(H2O)2]·6H2O
Mr758.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9075 (14), 8.4710 (17), 14.505 (3)
α, β, γ (°)78.28 (3), 83.62 (3), 85.81 (3)
V3)824.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionFor a sphere
modified Dwiggins (1975) interpolation procedure
Tmin, Tmax0.743, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
17015, 4684, 4282
Rint0.046
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.04
No. of reflections4684
No. of parameters268
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.52

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H13···O4i0.821.912.7221 (19)169
N4—H14A···O8ii0.772.122.8879 (19)177
N4—H14B···O3i0.84 (2)2.07 (2)2.903 (2)168 (2)
O5—H5B···O7i0.79 (3)1.92 (3)2.703 (2)173 (3)
O5—H5A···O4i0.82 (3)2.09 (3)2.8556 (18)157 (3)
O8—H8B···O1iii0.76 (3)2.03 (3)2.7838 (18)173 (3)
O6—H6B···O4iii0.81 (4)2.06 (4)2.839 (2)162 (3)
O7—H17B···O8iv0.76 (4)2.04 (4)2.797 (2)172 (4)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x, y+1, z.
 

Acknowledgements

Ferdowsi University of Mashhad is gratefully acknowledged for financial support.

References

First citationAghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289–300.  CrossRef CAS Google Scholar
First citationCrystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010a). Acta Cryst. E66. Submitted. [XU2784]  Google Scholar
First citationEshtiagh-Hosseini, H., Hassanpoor, A., Alfi, N., Mirzaei, M., Fromm, K. M., Shokrollahi, A., Gschwind, F. & Karami, E. (2010b). J. Coord. Chem. In the press.  Google Scholar
First citationEshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010c). Acta Cryst. E66, o1368–o1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTakusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121–1123.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m826-m827
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds