organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3E)-3-[4-(Di­methyl­amino)­phen­yl]-1-(4-hy­dr­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bLaboratory of Natural Products, Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia, and cDepartment of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: kmlo@um.edu.my

(Received 7 June 2010; accepted 21 June 2010; online 26 June 2010)

The asymmetric unit of the title compound, C17H17NO2, contains two crystallographically independent mol­ecules. Both mol­ecules adopt a trans configuration about the C=C bond, with the C—C=C—C fragments in the two mol­ecules twisted in opposite directions [torsion angles of 174.2 (2) and −175.8 (2)°]. The two benzene rings in each of the mol­ecules make dihedral angles of 20.21 (6) and 48.64 (4)°. In the crystal, adjacent mol­ecules are linked by O—H⋯O hydrogen bonds into infinite polymeric chains.

Related literature

For the biological activity of chalcones, see: Sortino et al. (2007[Sortino, M., Delgado, P., Juarez, S., Quiroga, J., Abonia, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484-494.]); Katsori & Hadjipavlou-Litina (2009[Katsori, A. M. & Hadjipavlou-Litina, D. (2009). Curr. Med. Chem. 16, 1062-1081.]). For the use of chalcones as precursors in the preparation flavonoids, see: Avila et al. (2008[Avila, H. P., Smania, E. F., Monache, F. D. & Smania, A. Jr (2008). Bioorg. Med. Chem. 16, 9790-9794.]). For the crystal structures of related chalcone derivatives, see: Liu et al. (2002[Liu, Z.-Q., Fang, Q., Yu, W.-T., Xue, G., Cao, D.-X. & Jiang, M.-H. (2002). Acta Cryst. C58, o445-o446.]); Fronczek et al. (1987[Fronczek, F. R., Tanrisever, N. & Fischer, N. H. (1987). Acta Cryst. C43, 158-160.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO2

  • Mr = 267.32

  • Monoclinic, P 21

  • a = 6.3070 (1) Å

  • b = 29.5285 (6) Å

  • c = 7.3880 (2) Å

  • β = 95.056 (1)°

  • V = 1370.56 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.48 × 0.24 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.987

  • 8837 measured reflections

  • 2756 independent reflections

  • 2646 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.13

  • 2756 reflections

  • 367 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1i 0.82 1.85 2.670 (2) 173
O2—H2O⋯O3ii 0.82 1.85 2.659 (2) 169
Symmetry codes: (i) x-1, y, z; (ii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Chalcone is a unique template that is associated with several biological activities. The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives [Sortino, et al. (2007); Katsori, et al. (2009)]. Chalcones constitute an important group of natural product and serve as precursors for the synthesis of different classes of flavonoids, which are common substances in plants [Avila, et al. (2008)]. We report here a substituted chalcone derivative which is prepared from the condensation reaction of p-hydroxylacetophenone with 4-(N,N-dimethylamino)benzaldehyde. The crystal structure of this compound (common chemical name: 4-hydroxy-4'-dimethylaminochalcone) consists of two independent molecules which form polymeric chains as a result of intermolecular hydrogen bonding between the hydroxyl groups and carbonyl oxygen atoms of adjacent molecules (Fig. 2). In contrast, the related compounds, 2-hydroxy-4'-dimethylaminochalcone [Liu, et al. (2002)] and 2,4-dihydroxychalcone [Fronczek, et al. (1987)] are discrete molecules. In the title compound, the two asymmetric molecules adopt the trans configuration about the olefinic double bond with torsional angles of 174.2 (2)° and -175.8 (2)o . In addition, the two benzene rings in both molecules are not co-planar, but makes a dihedral angle of 20.21 (6)° and 48.64 (4)°, respectively.

Related literature top

For the biological activity of chalcones, see: Sortino et al. (2007); Katsori et al. (2009). For the use of chalcones as precursors in the preparation flavonoids, see: Avila et al. (2008). For the crystal structures of related chalcone derivatives, see: Liu et al. (2002); Fronczek et al. (1987).

Experimental top

To a stirred solution of KOH (2.0 g, 45.6 mmol) in distilled water (2 ml) cooled in an ice bath, was added 10 ml of methanoic solution containing p-hydroxyacetophenone (g, 1 mmol) and 4-(N,N-dimethylamino)benzaldehyde (g, 1 mmol). The reaction mixture was stirred at room temperature for 24 h. The mixture was poured into ice-water (10 ml), adjusted to pH 5 - 6 with 1M HCl, and then extracted with ethyl acetate. The organic layer was successively washed with distilled water and saturated brine, dried over anhydrous sodium sulfate. The resulting filtrate was evaporated slowly at room temperature to obtain the yellow crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.93 Å; O–H 0.82 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times U~eq~(C). The absolute structure could not be determined from the X-ray analysis. 2266 Friedel pairs were therefore merged before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of 3E-(4-dimethylaminophenyl)-1-(4'-hydroxyphenyl)-prop-2-en-1-one showing 70% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing showing the hydrogen bonding interactions in the molecules.
(3E)-3-[4-(Dimethylamino)phenyl]-1-(4-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C17H17NO2F(000) = 568
Mr = 267.32Dx = 1.295 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4618 reflections
a = 6.3070 (1) Åθ = 2.8–29.5°
b = 29.5285 (6) ŵ = 0.09 mm1
c = 7.3880 (2) ÅT = 100 K
β = 95.056 (1)°Block, yellow
V = 1370.56 (5) Å30.48 × 0.24 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2756 independent reflections
Radiation source: fine-focus sealed tube2646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 77
Tmin = 0.960, Tmax = 0.987k = 3536
8837 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.282P]
where P = (Fo2 + 2Fc2)/3
2756 reflections(Δ/σ)max = 0.044
367 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C17H17NO2V = 1370.56 (5) Å3
Mr = 267.32Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.3070 (1) ŵ = 0.09 mm1
b = 29.5285 (6) ÅT = 100 K
c = 7.3880 (2) Å0.48 × 0.24 × 0.16 mm
β = 95.056 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2756 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2646 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.987Rint = 0.020
8837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.078H-atom parameters constrained
S = 1.13Δρmax = 0.17 e Å3
2756 reflectionsΔρmin = 0.26 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.0711 (2)0.31769 (5)0.0870 (2)0.0206 (3)
H2O0.17270.31080.01540.031*
O10.6270 (2)0.17288 (6)0.3369 (2)0.0228 (4)
O40.0471 (2)0.14648 (5)0.5680 (2)0.0210 (3)
H4O0.15370.15400.50350.031*
O30.6359 (2)0.29454 (6)0.8222 (2)0.0217 (4)
C220.0250 (3)0.22737 (8)0.6122 (3)0.0178 (5)
H220.16390.23130.56140.021*
C180.3052 (3)0.25932 (7)0.7460 (3)0.0159 (4)
C40.0430 (3)0.27980 (8)0.1369 (3)0.0167 (4)
C50.0379 (3)0.23644 (8)0.1061 (3)0.0176 (5)
H50.17490.23230.05100.021*
C210.0628 (3)0.18403 (7)0.6272 (3)0.0166 (4)
C300.1868 (3)0.50908 (7)1.0211 (3)0.0165 (4)
C70.4345 (3)0.16614 (8)0.2975 (3)0.0178 (5)
C270.3502 (3)0.42371 (8)0.9189 (3)0.0161 (4)
C240.4395 (3)0.29859 (8)0.8066 (3)0.0161 (4)
C200.2715 (3)0.17818 (8)0.7049 (3)0.0182 (5)
H200.32920.14930.71880.022*
C10.2959 (3)0.20472 (8)0.2383 (3)0.0162 (4)
C260.4387 (3)0.38086 (8)0.8657 (3)0.0166 (4)
H260.58060.38090.84070.020*
C60.0875 (3)0.19938 (8)0.1583 (3)0.0178 (5)
H60.03240.17040.13990.021*
C80.3399 (3)0.12117 (8)0.3178 (3)0.0179 (5)
H80.19980.11600.27230.021*
C30.2483 (3)0.28595 (7)0.2200 (3)0.0179 (5)
H30.30070.31500.24280.021*
C250.3352 (3)0.34110 (7)0.8492 (3)0.0164 (4)
H250.19070.34050.86560.020*
C230.0940 (3)0.26418 (8)0.6726 (3)0.0164 (4)
H230.03320.29290.66460.020*
C290.0770 (3)0.46832 (8)1.0495 (3)0.0183 (4)
H290.05130.46931.10260.022*
C100.3791 (3)0.04249 (7)0.4464 (3)0.0165 (4)
C320.4583 (3)0.46418 (8)0.8915 (3)0.0183 (4)
H320.58730.46310.83970.022*
C190.3911 (3)0.21555 (8)0.7608 (3)0.0175 (5)
H190.53110.21160.80900.021*
C280.1567 (3)0.42723 (7)1.0000 (3)0.0164 (4)
H280.08080.40101.02060.020*
C20.3732 (3)0.24881 (8)0.2682 (3)0.0178 (5)
H20.51100.25310.32130.021*
C90.4533 (3)0.08742 (8)0.4012 (3)0.0176 (5)
H90.59630.09350.43390.021*
C130.2550 (3)0.04651 (7)0.5389 (3)0.0174 (5)
C110.1743 (3)0.02584 (8)0.3928 (3)0.0179 (4)
H110.07770.04440.32590.021*
C340.2379 (4)0.59098 (8)1.0528 (4)0.0260 (5)
H34A0.37970.58671.10870.039*
H34B0.17240.61601.10950.039*
H34C0.24340.59720.92570.039*
C120.1129 (3)0.01720 (7)0.4367 (3)0.0180 (5)
H120.02370.02720.39870.022*
C140.4592 (3)0.02979 (8)0.5949 (3)0.0189 (4)
H140.55560.04800.66410.023*
C310.3797 (3)0.50556 (8)0.9388 (3)0.0183 (4)
H310.45520.53170.91620.022*
C150.5175 (3)0.01333 (7)0.5481 (3)0.0182 (5)
H150.65410.02340.58570.022*
C170.3609 (4)0.12290 (8)0.6381 (3)0.0230 (5)
H17A0.45330.12630.54250.035*
H17B0.29550.15150.66070.035*
H17C0.44210.11280.74660.035*
C160.0076 (4)0.10756 (8)0.5120 (4)0.0268 (5)
H16A0.11880.08740.54200.040*
H16B0.02940.13680.56370.040*
H16C0.01010.11020.38230.040*
C330.0982 (4)0.55599 (8)1.1320 (4)0.0258 (5)
H33A0.20150.55081.03080.039*
H33B0.11380.58621.17660.039*
H33C0.12000.53471.22690.039*
N20.1144 (3)0.55029 (7)1.0744 (3)0.0235 (4)
N10.1970 (3)0.08973 (6)0.5844 (3)0.0206 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0188 (8)0.0162 (8)0.0260 (9)0.0006 (6)0.0025 (6)0.0001 (7)
O10.0165 (7)0.0225 (8)0.0289 (9)0.0018 (6)0.0013 (6)0.0043 (7)
O40.0201 (8)0.0171 (8)0.0248 (9)0.0012 (6)0.0036 (7)0.0010 (7)
O30.0156 (7)0.0207 (8)0.0282 (9)0.0017 (6)0.0018 (6)0.0032 (7)
C220.0146 (10)0.0223 (12)0.0160 (11)0.0010 (9)0.0016 (8)0.0000 (9)
C180.0157 (10)0.0183 (11)0.0136 (11)0.0007 (9)0.0011 (8)0.0000 (9)
C40.0175 (10)0.0184 (11)0.0143 (10)0.0009 (9)0.0029 (8)0.0013 (9)
C50.0153 (10)0.0192 (11)0.0180 (11)0.0032 (8)0.0005 (8)0.0018 (9)
C210.0195 (10)0.0166 (11)0.0139 (11)0.0027 (8)0.0035 (8)0.0004 (9)
C300.0179 (10)0.0152 (11)0.0156 (10)0.0017 (8)0.0033 (8)0.0015 (9)
C70.0189 (10)0.0219 (12)0.0126 (11)0.0020 (9)0.0015 (8)0.0025 (9)
C270.0165 (10)0.0171 (11)0.0141 (10)0.0011 (8)0.0018 (8)0.0001 (9)
C240.0173 (10)0.0174 (11)0.0132 (11)0.0001 (9)0.0003 (8)0.0006 (9)
C200.0206 (10)0.0163 (11)0.0174 (11)0.0048 (9)0.0004 (8)0.0002 (9)
C10.0186 (10)0.0170 (11)0.0132 (11)0.0002 (8)0.0020 (8)0.0014 (9)
C260.0167 (9)0.0192 (11)0.0136 (11)0.0028 (9)0.0008 (8)0.0011 (9)
C60.0198 (10)0.0167 (11)0.0168 (11)0.0040 (9)0.0003 (8)0.0007 (9)
C80.0167 (10)0.0169 (11)0.0199 (12)0.0015 (8)0.0000 (9)0.0020 (9)
C30.0199 (10)0.0155 (11)0.0183 (11)0.0046 (8)0.0020 (8)0.0015 (9)
C250.0155 (10)0.0176 (12)0.0158 (10)0.0013 (8)0.0003 (8)0.0006 (9)
C230.0179 (10)0.0143 (10)0.0170 (10)0.0029 (8)0.0023 (8)0.0002 (9)
C290.0151 (9)0.0227 (11)0.0170 (10)0.0006 (9)0.0005 (8)0.0004 (9)
C100.0179 (10)0.0163 (11)0.0153 (11)0.0007 (8)0.0010 (8)0.0028 (8)
C320.0168 (9)0.0208 (11)0.0174 (11)0.0008 (9)0.0019 (8)0.0010 (9)
C190.0149 (10)0.0209 (12)0.0165 (11)0.0024 (8)0.0005 (8)0.0007 (9)
C280.0170 (10)0.0149 (10)0.0172 (11)0.0033 (8)0.0004 (8)0.0001 (9)
C20.0157 (10)0.0226 (12)0.0149 (11)0.0020 (8)0.0006 (8)0.0010 (9)
C90.0153 (9)0.0198 (11)0.0175 (11)0.0021 (8)0.0007 (8)0.0043 (9)
C130.0198 (10)0.0176 (11)0.0151 (11)0.0005 (8)0.0031 (8)0.0015 (8)
C110.0166 (10)0.0190 (11)0.0178 (11)0.0034 (9)0.0001 (8)0.0004 (9)
C340.0308 (12)0.0149 (11)0.0330 (14)0.0005 (10)0.0069 (10)0.0025 (10)
C120.0144 (10)0.0196 (11)0.0196 (11)0.0009 (8)0.0007 (8)0.0019 (9)
C140.0201 (10)0.0198 (11)0.0164 (11)0.0039 (9)0.0015 (8)0.0012 (9)
C310.0189 (10)0.0172 (11)0.0186 (11)0.0027 (9)0.0005 (8)0.0000 (9)
C150.0169 (10)0.0199 (11)0.0174 (11)0.0010 (8)0.0006 (8)0.0025 (9)
C170.0265 (11)0.0183 (11)0.0237 (12)0.0008 (9)0.0007 (10)0.0043 (9)
C160.0235 (11)0.0207 (12)0.0352 (14)0.0044 (9)0.0025 (10)0.0053 (10)
C330.0250 (12)0.0219 (12)0.0310 (13)0.0032 (10)0.0053 (10)0.0032 (10)
N20.0196 (9)0.0182 (10)0.0333 (11)0.0004 (8)0.0048 (8)0.0041 (8)
N10.0178 (9)0.0173 (9)0.0262 (10)0.0007 (8)0.0011 (8)0.0037 (8)
Geometric parameters (Å, º) top
O2—C41.363 (3)C23—H230.9300
O2—H2O0.8200C29—C281.376 (3)
O1—C71.239 (3)C29—H290.9300
O4—C211.359 (3)C10—C151.398 (3)
O4—H4O0.8200C10—C111.406 (3)
O3—C241.239 (3)C10—C91.456 (3)
C22—C231.373 (3)C32—C311.375 (3)
C22—C211.395 (3)C32—H320.9300
C22—H220.9300C19—H190.9300
C18—C231.401 (3)C28—H280.9300
C18—C191.402 (3)C2—H20.9300
C18—C241.481 (3)C9—H90.9300
C4—C51.389 (3)C13—N11.378 (3)
C4—C31.395 (3)C13—C141.407 (3)
C5—C61.385 (3)C13—C121.415 (3)
C5—H50.9300C11—C121.376 (3)
C21—C201.400 (3)C11—H110.9300
C30—N21.370 (3)C34—N21.448 (3)
C30—C311.411 (3)C34—H34A0.9600
C30—C291.413 (3)C34—H34B0.9600
C7—C81.469 (3)C34—H34C0.9600
C7—C11.478 (3)C12—H120.9300
C27—C321.399 (3)C14—C151.378 (3)
C27—C281.410 (3)C14—H140.9300
C27—C261.451 (3)C31—H310.9300
C24—C251.464 (3)C15—H150.9300
C20—C191.379 (3)C17—N11.454 (3)
C20—H200.9300C17—H17A0.9600
C1—C21.401 (3)C17—H17B0.9600
C1—C61.402 (3)C17—H17C0.9600
C26—C251.344 (3)C16—N11.452 (3)
C26—H260.9300C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C8—C91.344 (3)C16—H16C0.9600
C8—H80.9300C33—N21.452 (3)
C3—C21.379 (3)C33—H33A0.9600
C3—H30.9300C33—H33B0.9600
C25—H250.9300C33—H33C0.9600
C4—O2—H2O109.5C27—C32—H32119.0
C21—O4—H4O109.5C20—C19—C18121.1 (2)
C23—C22—C21119.95 (19)C20—C19—H19119.4
C23—C22—H22120.0C18—C19—H19119.4
C21—C22—H22120.0C29—C28—C27121.9 (2)
C23—C18—C19118.2 (2)C29—C28—H28119.1
C23—C18—C24122.4 (2)C27—C28—H28119.1
C19—C18—C24119.43 (19)C3—C2—C1121.03 (19)
O2—C4—C5122.33 (18)C3—C2—H2119.5
O2—C4—C3117.3 (2)C1—C2—H2119.5
C5—C4—C3120.3 (2)C8—C9—C10127.8 (2)
C6—C5—C4119.37 (19)C8—C9—H9116.1
C6—C5—H5120.3C10—C9—H9116.1
C4—C5—H5120.3N1—C13—C14120.6 (2)
O4—C21—C22122.38 (19)N1—C13—C12121.82 (19)
O4—C21—C20117.75 (19)C14—C13—C12117.56 (19)
C22—C21—C20119.9 (2)C12—C11—C10121.8 (2)
N2—C30—C31120.7 (2)C12—C11—H11119.1
N2—C30—C29122.25 (19)C10—C11—H11119.1
C31—C30—C29116.99 (19)N2—C34—H34A109.5
O1—C7—C8121.3 (2)N2—C34—H34B109.5
O1—C7—C1119.2 (2)H34A—C34—H34B109.5
C8—C7—C1119.46 (18)N2—C34—H34C109.5
C32—C27—C28116.7 (2)H34A—C34—H34C109.5
C32—C27—C26120.11 (18)H34B—C34—H34C109.5
C28—C27—C26123.17 (19)C11—C12—C13120.82 (19)
O3—C24—C25121.8 (2)C11—C12—H12119.6
O3—C24—C18119.52 (19)C13—C12—H12119.6
C25—C24—C18118.70 (18)C15—C14—C13120.5 (2)
C19—C20—C21119.6 (2)C15—C14—H14119.7
C19—C20—H20120.2C13—C14—H14119.7
C21—C20—H20120.2C32—C31—C30121.2 (2)
C2—C1—C6118.1 (2)C32—C31—H31119.4
C2—C1—C7118.76 (19)C30—C31—H31119.4
C6—C1—C7123.1 (2)C14—C15—C10122.4 (2)
C25—C26—C27126.26 (19)C14—C15—H15118.8
C25—C26—H26116.9C10—C15—H15118.8
C27—C26—H26116.9N1—C17—H17A109.5
C5—C6—C1121.3 (2)N1—C17—H17B109.5
C5—C6—H6119.3H17A—C17—H17B109.5
C1—C6—H6119.3N1—C17—H17C109.5
C9—C8—C7120.84 (19)H17A—C17—H17C109.5
C9—C8—H8119.6H17B—C17—H17C109.5
C7—C8—H8119.6N1—C16—H16A109.5
C2—C3—C4119.8 (2)N1—C16—H16B109.5
C2—C3—H3120.1H16A—C16—H16B109.5
C4—C3—H3120.1N1—C16—H16C109.5
C26—C25—C24123.03 (19)H16A—C16—H16C109.5
C26—C25—H25118.5H16B—C16—H16C109.5
C24—C25—H25118.5N2—C33—H33A109.5
C22—C23—C18121.2 (2)N2—C33—H33B109.5
C22—C23—H23119.4H33A—C33—H33B109.5
C18—C23—H23119.4N2—C33—H33C109.5
C28—C29—C30121.08 (19)H33A—C33—H33C109.5
C28—C29—H29119.5H33B—C33—H33C109.5
C30—C29—H29119.5C30—N2—C34120.61 (18)
C15—C10—C11116.80 (19)C30—N2—C33121.81 (19)
C15—C10—C9119.14 (19)C34—N2—C33117.11 (19)
C11—C10—C9124.1 (2)C13—N1—C16119.52 (19)
C31—C32—C27122.06 (19)C13—N1—C17119.53 (18)
C31—C32—H32119.0C16—N1—C17116.36 (19)
O2—C4—C5—C6179.2 (2)C21—C20—C19—C181.9 (3)
C3—C4—C5—C60.2 (3)C23—C18—C19—C200.1 (3)
C23—C22—C21—O4179.3 (2)C24—C18—C19—C20179.62 (19)
C23—C22—C21—C200.4 (3)C30—C29—C28—C270.1 (3)
C23—C18—C24—O3160.0 (2)C32—C27—C28—C290.2 (3)
C19—C18—C24—O319.5 (3)C26—C27—C28—C29179.8 (2)
C23—C18—C24—C2521.0 (3)C4—C3—C2—C11.3 (3)
C19—C18—C24—C25159.5 (2)C6—C1—C2—C30.1 (3)
O4—C21—C20—C19177.69 (19)C7—C1—C2—C3178.3 (2)
C22—C21—C20—C192.1 (3)C7—C8—C9—C10174.2 (2)
O1—C7—C1—C214.6 (3)C15—C10—C9—C8174.3 (2)
C8—C7—C1—C2162.1 (2)C11—C10—C9—C86.1 (4)
O1—C7—C1—C6167.3 (2)C15—C10—C11—C120.6 (3)
C8—C7—C1—C616.0 (3)C9—C10—C11—C12179.0 (2)
C32—C27—C26—C25165.5 (2)C10—C11—C12—C130.2 (3)
C28—C27—C26—C2514.9 (4)N1—C13—C12—C11180.0 (2)
C4—C5—C6—C11.3 (3)C14—C13—C12—C110.7 (3)
C2—C1—C6—C51.4 (3)N1—C13—C14—C15179.5 (2)
C7—C1—C6—C5179.5 (2)C12—C13—C14—C151.1 (3)
O1—C7—C8—C98.5 (3)C27—C32—C31—C301.2 (3)
C1—C7—C8—C9168.1 (2)N2—C30—C31—C32177.3 (2)
O2—C4—C3—C2178.01 (19)C29—C30—C31—C321.0 (3)
C5—C4—C3—C21.4 (3)C13—C14—C15—C100.8 (3)
C27—C26—C25—C24175.8 (2)C11—C10—C15—C140.1 (3)
O3—C24—C25—C2616.2 (4)C9—C10—C15—C14179.5 (2)
C18—C24—C25—C26164.8 (2)C31—C30—N2—C342.0 (3)
C21—C22—C23—C181.4 (3)C29—C30—N2—C34176.3 (2)
C19—C18—C23—C221.6 (3)C31—C30—N2—C33169.9 (2)
C24—C18—C23—C22177.9 (2)C29—C30—N2—C3311.8 (3)
N2—C30—C29—C28177.9 (2)C14—C13—N1—C16174.7 (2)
C31—C30—C29—C280.5 (3)C12—C13—N1—C166.0 (3)
C28—C27—C32—C310.8 (3)C14—C13—N1—C1719.6 (3)
C26—C27—C32—C31179.6 (2)C12—C13—N1—C17161.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.821.852.670 (2)173
O2—H2O···O3ii0.821.852.659 (2)169
Symmetry codes: (i) x1, y, z; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC17H17NO2
Mr267.32
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.3070 (1), 29.5285 (6), 7.3880 (2)
β (°) 95.056 (1)
V3)1370.56 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.24 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.960, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8837, 2756, 2646
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.13
No. of reflections2756
No. of parameters367
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), X-SEED (Barbour, 2001), pubCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.821.852.670 (2)173
O2—H2O···O3ii0.821.852.659 (2)169
Symmetry codes: (i) x1, y, z; (ii) x1, y, z1.
 

Acknowledgements

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

References

First citationAvila, H. P., Smania, E. F., Monache, F. D. & Smania, A. Jr (2008). Bioorg. Med. Chem. 16, 9790–9794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFronczek, F. R., Tanrisever, N. & Fischer, N. H. (1987). Acta Cryst. C43, 158–160.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKatsori, A. M. & Hadjipavlou-Litina, D. (2009). Curr. Med. Chem. 16, 1062–1081.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Z.-Q., Fang, Q., Yu, W.-T., Xue, G., Cao, D.-X. & Jiang, M.-H. (2002). Acta Cryst. C58, o445–o446.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSortino, M., Delgado, P., Juarez, S., Quiroga, J., Abonia, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484–494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds