organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Neoirietriol

aGraduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan, bGraduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan, cThe Hokkaido University Museum, Sapporo 060-0810, Japan, and dDivision of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
*Correspondence e-mail: takahashi.hiroki.2x@kyoto-u.ac.jp

(Received 8 June 2010; accepted 10 June 2010; online 26 June 2010)

The title compound {systematic name: (1R,4S,4aS,7R,8aR)-4-bromo-7-[(1S,3R)-3-bromo-1,2,2-trimethyl­cyclo­pent­yl]-1,4a-dimethyl­deca­hydro­naphthalene-1,7,8a-triol}, C20H34Br2O3, is a neoirieane-type bromo­diterpenoid isolated from Laurencia yonaguniensis Masuda et Abe, species inedita. The absolute stereochemistry was established as (1S,4R,5R,7R,10S,11S,14R). The structure displays inter- and intra­molecular O—H⋯O hydrogen bonding.

Related literature

For background to neoirieane-type structures, see: Suzuki et al. (2002[Suzuki, M., Nakano, S., Takahashi, Y., Abe, T., Masuda, M., Takahashi, H. & Kobayashi, K. (2002). J. Nat. Prod. 65, 801-804.]); Takahashi et al. (2002[Takahashi, Y., Daitoh, M., Suzuki, M., Abe, T. & Masuda, M. (2002). J. Nat. Prod. 65, 395-398.]). For the related absolute configuration, see: Takahashi et al. (2007[Takahashi, H., Takahashi, Y., Suzuki, M., Abe, T. & Masuda, M. (2007). Anal. Sci. 23, x103-x1044.]).

[Scheme 1]

Experimental

Crystal data
  • C20H34Br2O3

  • Mr = 482.29

  • Monoclinic, P 21

  • a = 7.5026 (2) Å

  • b = 11.3985 (3) Å

  • c = 12.1498 (5) Å

  • β = 94.9780 (3)°

  • V = 1035.11 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.94 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.402, Tmax = 0.454

  • 43586 measured reflections

  • 6129 independent reflections

  • 4774 reflections with F2 > 2σ(F2)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.151

  • S = 1.14

  • 6129 reflections

  • 227 parameters

  • All H-atom parameters refined

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: −0.014 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H32⋯O3i 0.82 2.02 2.797 (4) 158
O3—H34⋯O2 0.82 1.96 2.691 (4) 148
Symmetry code: (i) x+1, y, z.

Data collection: KappaCCD Server Software (Nonius, 1998[Nonius (1998). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

As part of our continuing chemotaxonomical studies on Japanese species of the red algal genus Laurencia (Rhodomelaceae, Ceramiales), we reported previously the structure of neoirietetraol (Takahashi et al., 2002, Takahashi et al., 2007), including the relative configuration and X-ray crystal structure, isolated from Laurencia yonaguniensis Masuda et Abe, species inedita (Masuda, M.; unpublished results), which was collected at Yonaguni Island, Okinawa, Japan. Further investigation of the related metabolites from this alga has led to the isolation of a new bromoditerpene, named neoirietriol, having a molecular formula of C20H34Br2O3, which was established by FD-LRMS (m/z 466, 464, 462 (1:2:1); M–H2O) and FAB-HRMS (m/z 479.0813; calcd for C20H3379Br2O3, 479.0796; M–H).

During the course of refinement of the structure, the Flack parameter converged to a value of -0.014 (12) within the derived limits as required for the correct enantiomorph of the structure. The absolute configuration of the title compound was established as (1S, 4R, 5R, 7S, 10R, 11S, 14R) (Fig. 1).

In the crystal, an intramolecular hydrogen bond was observed between O3···O2[distance 2.691 (4) Å] and an intermolecular hydrogen bond between O1···O3 (x + 1, y, z; distance 2.797 (4) Å) forming an infinite chain structure along the a axis (Fig. 2).

Related literature top

For background to neoirieane-type structures, see: Suzuki et al. (2002); Takahashi et al. (2002). For the related absolute configuration, see: Takahashi et al. (2007).

Experimental top

Isolation

The partially dried alga (40 g) was soaked in MeOH for 3 days. The MeOH solution was concentrated in vacuo and partitioned between Et2O and H2O. The Et2O solution was washed with water, dried over anhydrous Na2SO4, and evaporated to leave a dark-green oil (523 mg). The extract was fractionated by column chromatography on Si gel with a step gradient (hexane and ethyl acetate). The fraction (144 mg) eluted with hexane-EtOAc (3:1) was further subjected to preparative TLC with toluene-EtOAc (4:1) gave neoiretriol (40.8 mg, 7.8% based on the weight of MeOH extract).

Neoirietriol: mp 132–133 oC (from CH2Cl2/hexane (2:1)); [a]D28 -61¯ (c 0.53; CHCl3); 1H NMR (400 MHz; C6D6), d 0.28 (1H, br s, OH: D2O exchangeable), 0.50 (3H, s, H3-18), 0.54 (1H, m, Ha-8), 0.60 (1H, ddd, J = 13.2, 10.3, 5.4 Hz, Ha-12), 0.75 (1H, d, J = 2.4 Hz, OH: D2O exchangeable), 0.93 (1H, ddd, J = 13.7, 4.9, 2.4 Hz, Ha-3), 0.97 (3H, s, H3-20), 1.20 (3H, s, H3-19), 1.38 (3H, s, H3-17), 1.21 (1H, ddd, J = 13.2, 13.2, 4.4 Hz, Hb-12), 1.56 (1H, m, Ha-9), 1.67 (1H, ddd, J = 13.2, 13.2, 3.9 Hz, Hb-8), 1.76 (1H, dd, J = 14.2, 2.4 Hz, Ha-6), 1.83 (1H, m, Hb-9), 1.86 (1H, m, Ha-13), 1.95 (1H, ddd, ddd, J = 13.7, 9.3, 4.9 Hz, Hb-13), 2.03 (1H, m, Ha-2), 2.13 (1H, ddd, J = 13.7, 13.7, 4.9 Hz, Hb-3), 2.07 (1H, dd, J = 14.2, 2.4 Hz, Hb-6), 2.48 (1H, dddd, J = 13.8, 13.2, 12.7, 4.4 Hz, Hb-2), 4.01 (1H, dd, J = 10.3, 8.8 Hz, H14), 4.88 (1H, dd, J = 12.7, 4.4 Hz, H-1), 5.20 (1H, s, OH: D2O exchangeable); 13C NMR (100 MHz, DEPT; C6D6) d 18.8 (C, C17), 23.4 (CH3, C18), 23.5 (CH3, C19), 23.7 (CH3, C20), 26.7 (CH3, C16), 30.3 (CH2 x 2, C8 and C12), 31.4 (CH2, C2), 32.2 (C, C9), 31.6 (CH2, C13), 31.7 (CH2, C6), 32.2 (CH2, C2), 38.3 (CH2, C3), 43.7 (C, C10), 48.5 (C, C15), 51.8 (C, C11), 65.2 (CH, C14), 65.7 (CH, C1), 75.3 (C, C4), 78.5 (C, C5), 81.7 (C, C7).

Refinement top

Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). Non-H atoms were refined anisotropically. H atoms were treated as riding models.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with ellipsoids at the 50% probability level and the atom numbering scheme.
[Figure 2] Fig. 2. The packing diagram of the title compound. Inter and intramolecular hydrogen bonds are shown as dashed line.
(1R,4S,4aS,7R,8aR)-4-bromo-7- [(1S,3R)-3-bromo-1,2,2-trimethylcyclopentyl]-1,4a- dimethyldecahydronaphthalene-1,7,8a-triol top
Crystal data top
C20H34Br2O3F(000) = 496.00
Mr = 482.29Dx = 1.547 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 1225 reflections
a = 7.5026 (2) Åθ = 1.8–28.1°
b = 11.3985 (3) ŵ = 3.94 mm1
c = 12.1498 (5) ÅT = 296 K
β = 94.9780 (3)°Prism, colorless
V = 1035.11 (6) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
6129 independent reflections
Radiation source: Mo Kα4774 reflections with F2 > 2σ(F2)
Horizonally mounted graphite crystal monochromatorRint = 0.110
Detector resolution: 9 pixels mm-1θmax = 30.5°
ω scansh = 1010
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
k = 1616
Tmin = 0.402, Tmax = 0.454l = 1717
43586 measured reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0612P)2 + 1.0272P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.062(Δ/σ)max < 0.001
wR(F2) = 0.151Δρmax = 0.66 e Å3
S = 1.14Δρmin = 0.44 e Å3
6129 reflectionsAbsolute structure: Flack (1983)
227 parametersAbsolute structure parameter: 0.014 (12)
All H-atom parameters refined
Crystal data top
C20H34Br2O3V = 1035.11 (6) Å3
Mr = 482.29Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.5026 (2) ŵ = 3.94 mm1
b = 11.3985 (3) ÅT = 296 K
c = 12.1498 (5) Å0.30 × 0.20 × 0.20 mm
β = 94.9780 (3)°
Data collection top
Nonius KappaCCD
diffractometer
6129 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
4774 reflections with F2 > 2σ(F2)
Tmin = 0.402, Tmax = 0.454Rint = 0.110
43586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062All H-atom parameters refined
wR(F2) = 0.151Δρmax = 0.66 e Å3
S = 1.14Δρmin = 0.44 e Å3
6129 reflectionsAbsolute structure: Flack (1983)
227 parametersAbsolute structure parameter: 0.014 (12)
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ (F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.82169 (9)0.64485 (5)0.41310 (5)0.05902 (18)
Br20.45713 (9)0.27536 (5)0.13400 (6)0.05993 (18)
O11.1510 (4)0.3045 (3)0.2533 (3)0.0471 (8)
O20.7088 (4)0.3800 (3)0.1271 (2)0.0381 (7)
O30.4700 (3)0.2183 (3)0.1812 (2)0.0357 (6)
C10.8500 (7)0.5365 (4)0.2880 (4)0.0421 (10)
C21.0332 (8)0.5566 (5)0.2479 (5)0.0552 (14)
C31.0585 (8)0.4788 (5)0.1477 (5)0.0522 (13)
C41.0244 (6)0.3474 (4)0.1691 (4)0.0378 (9)
C50.8363 (5)0.3340 (3)0.2131 (3)0.0299 (8)
C60.7899 (5)0.2032 (3)0.2322 (3)0.0286 (8)
C70.6015 (5)0.1830 (3)0.2705 (3)0.0298 (8)
C80.5726 (6)0.2635 (4)0.3683 (4)0.0381 (10)
C90.6148 (6)0.3931 (4)0.3459 (4)0.0355 (9)
C100.8119 (6)0.4086 (3)0.3189 (3)0.0316 (8)
C110.5662 (6)0.0505 (3)0.2964 (3)0.0310 (8)
C120.3623 (7)0.0296 (4)0.3094 (5)0.0463 (11)
C130.3165 (9)0.0954 (5)0.2707 (7)0.0631 (17)
C140.4932 (7)0.1454 (4)0.2415 (4)0.0395 (10)
C150.6091 (6)0.0428 (4)0.2044 (4)0.0338 (9)
C161.0421 (8)0.2773 (6)0.0629 (4)0.0538 (14)
C170.9349 (6)0.3707 (4)0.4209 (4)0.0404 (10)
C180.6753 (8)0.0176 (4)0.4068 (4)0.0445 (11)
C190.8045 (7)0.0813 (4)0.2069 (5)0.0460 (11)
C200.5443 (7)0.0058 (4)0.0862 (4)0.0419 (11)
H10.76100.55880.22790.051*
H21.12480.53870.30680.066*
H31.04550.63840.22780.066*
H41.17970.48830.12710.063*
H50.97750.50480.08600.063*
H60.79940.16040.16390.034*
H70.87770.17080.28720.034*
H80.64810.23700.43240.046*
H90.44910.25710.38560.046*
H100.59390.43970.41030.043*
H110.53540.42130.28430.043*
H120.33820.03920.38600.056*
H130.29030.08570.26510.056*
H140.26890.14060.32910.076*
H150.22960.09480.20680.076*
H160.55410.17800.30940.047*
H171.15390.29580.03410.065*
H180.94530.29710.00920.065*
H191.03810.19490.07890.065*
H201.05250.40230.41590.048*
H210.94140.28660.42360.048*
H220.88740.39940.48660.048*
H230.79810.03960.40330.053*
H240.66790.06550.41860.053*
H250.62720.05830.46680.053*
H260.87410.01950.17830.055*
H270.81290.15030.16230.055*
H280.84930.09830.28160.055*
H290.41860.01120.08220.050*
H300.56540.06840.03600.050*
H310.60840.06290.06640.050*
H321.22650.26500.22530.057*
H330.73500.35670.06670.046*
H340.51320.26910.14380.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0831 (4)0.0325 (2)0.0605 (3)0.0029 (2)0.0009 (2)0.0086 (2)
Br20.0686 (3)0.0386 (2)0.0705 (3)0.0076 (2)0.0061 (2)0.0147 (2)
O10.0255 (16)0.063 (2)0.053 (2)0.0083 (15)0.0065 (14)0.0017 (18)
O20.0400 (17)0.0439 (18)0.0292 (14)0.0058 (14)0.0033 (12)0.0043 (13)
O30.0261 (13)0.0377 (15)0.0425 (15)0.0037 (13)0.0013 (11)0.0025 (15)
C10.050 (2)0.032 (2)0.044 (2)0.000 (2)0.000 (2)0.0004 (19)
C20.058 (3)0.036 (2)0.073 (3)0.013 (2)0.012 (2)0.001 (2)
C30.050 (3)0.052 (3)0.056 (3)0.012 (2)0.017 (2)0.014 (2)
C40.032 (2)0.041 (2)0.041 (2)0.0017 (18)0.0067 (18)0.0063 (19)
C50.0233 (19)0.034 (2)0.032 (2)0.0022 (16)0.0020 (15)0.0026 (16)
C60.0237 (18)0.029 (2)0.0336 (19)0.0022 (14)0.0040 (14)0.0009 (15)
C70.027 (2)0.0292 (17)0.0326 (19)0.0031 (16)0.0006 (17)0.0006 (15)
C80.035 (2)0.040 (2)0.042 (2)0.0044 (18)0.0175 (19)0.0039 (19)
C90.036 (2)0.031 (2)0.041 (2)0.0022 (18)0.0081 (19)0.0057 (18)
C100.031 (2)0.0289 (19)0.034 (2)0.0022 (16)0.0024 (16)0.0005 (16)
C110.033 (2)0.031 (2)0.0299 (19)0.0013 (17)0.0071 (16)0.0020 (16)
C120.041 (2)0.038 (2)0.062 (3)0.001 (2)0.017 (2)0.001 (2)
C130.047 (3)0.048 (3)0.097 (5)0.008 (2)0.018 (3)0.014 (3)
C140.044 (2)0.032 (2)0.042 (2)0.0083 (19)0.001 (2)0.0053 (18)
C150.030 (2)0.030 (2)0.041 (2)0.0017 (17)0.0012 (18)0.0043 (17)
C160.047 (3)0.072 (3)0.046 (2)0.004 (2)0.023 (2)0.005 (2)
C170.042 (2)0.043 (2)0.035 (2)0.002 (2)0.0061 (18)0.0006 (19)
C180.065 (3)0.037 (2)0.031 (2)0.008 (2)0.000 (2)0.0044 (19)
C190.044 (2)0.036 (2)0.058 (3)0.006 (2)0.009 (2)0.003 (2)
C200.052 (3)0.037 (2)0.036 (2)0.001 (2)0.000 (2)0.0084 (19)
Geometric parameters (Å, º) top
Br1—C11.984 (5)C2—H30.970
Br2—C141.978 (4)C3—H40.970
O1—C41.421 (6)C3—H50.970
O2—C51.452 (5)C6—H60.970
O3—C71.458 (5)C6—H70.970
C1—C21.515 (9)C8—H80.970
C1—C101.539 (6)C8—H90.970
C2—C31.531 (9)C9—H100.970
C3—C41.545 (8)C9—H110.970
C4—C51.559 (6)C12—H120.970
C4—C161.533 (8)C12—H130.970
C5—C61.553 (5)C13—H140.970
C5—C101.565 (6)C13—H150.970
C6—C71.543 (6)C14—H160.980
C7—C81.532 (6)C16—H170.960
C7—C111.570 (6)C16—H180.960
C8—C91.541 (6)C16—H190.960
C9—C101.552 (6)C17—H200.960
C10—C171.541 (6)C17—H210.960
C11—C121.569 (7)C17—H220.960
C11—C151.597 (6)C18—H230.960
C11—C181.556 (6)C18—H240.960
C12—C131.530 (8)C18—H250.960
C13—C141.513 (8)C19—H260.960
C14—C151.547 (6)C19—H270.960
C15—C191.528 (7)C19—H280.960
C15—C201.534 (6)C20—H290.960
O1—H320.820C20—H300.960
C1—H10.980C20—H310.960
C2—H20.970
O1···O3i2.797 (4)H15···H27iii3.189
O1···C8i3.378 (5)H15···H28iii3.069
O1···C12i3.551 (6)H15···H33iv3.401
O2···C20ii3.341 (5)H16···Br1viii3.043
O3···O1iii2.797 (4)H16···H1viii3.558
O3···C16iii3.468 (6)H17···O3i2.977
C8···O1iii3.378 (5)H17···C19xii3.285
C12···O1iii3.551 (6)H17···C20xii3.599
C16···O3i3.468 (6)H17···H26xii3.323
C20···O2iv3.341 (6)H17···H27xii2.498
Br1···H9v3.551H17···H30xii2.805
Br1···H12v3.058H17···H333.276
Br1···H16vi3.043H17···H34i2.917
Br1···H21vii3.015H18)···Br2ii3.452
Br1···H24vi3.500H18)···H3xi3.407
Br1···H28vi3.350H18···H5xi3.591
Br2···H1viii3.101H18···H15ii3.087
Br2···H3ix3.523H18···H26xii3.454
Br2···H4ix3.401H18···H27xii2.941
Br2···H18iv3.452H18···H331.905
Br2···H31iv3.060H19···O3i3.379
Br2···H33iv3.111H19···H5xi2.946
Br2···H34iv3.439H19···H13i3.083
O1···H9)i2.694H19···H29i3.538
O1···H11i3.169H19···H332.922
O1···H13i2.703H20···C18vii3.126
O1···H34i3.153H20···H9i3.453
O2···H29ii3.032H20···H23vii2.847
O2···H30ii2.792H20···H24vii2.802
O2···H330.820H20···H25vii3.221
O2···H341.960H21···Br1xiii3.015
O3···H17iii2.977H22···C12v3.558
O3···H19iii3.379H22···C13v3.438
O3···H30ii3.581H22···H12v2.873
O3···H32iii2.020H22···H14v2.656
O3···H332.976H22···H23vii3.060
O3···H340.820H22···H24vii3.458
C1···H333.432H22···H28vii3.297
C3···H332.895H23···C17xiii3.398
C4···H332.410H23···H2xiii3.520
C5···H331.891H23···H20xiii2.847
C5···H342.604H23···H22xiii3.060
C6···H332.671H24···Br1viii3.500
C6···H342.376H24···C17xiii3.494
C7···H32iii2.970H24···H9x3.299
C7···H333.389H24···H10x2.982
C7···H341.896H24···H20xiii2.802
C8···H32iii2.996H24···H22xiii3.458
C8···H342.727H25···C9x3.569
C9···H25v3.569H25···H2xiii3.193
C9···H32iii3.468H25···H10x2.690
C9···H342.878H25···H20xiii3.221
C10···H333.125H26···C13i3.518
C10···H343.354H26···H5xi3.500
C11···H32iii3.582H26···H13i3.424
C11···H343.111H26···H15i2.794
C12···H10x3.544H26···H17xi3.323
C12···H22x3.558H26···H18xi3.454
C12···H32iii3.017H27···C16xi3.142
C13···H22x3.438H27···H1viii3.440
C13···H26iii3.518H27···H3viii3.039
C13···H28iii3.519H27···H15i3.189
C16···H5xi3.591H27···H17xi2.498
C16···H27xii3.142H27···H18xi2.941
C16···H332.480H28···Br1viii3.350
C16···H34i3.587H28···C13i3.519
C17···H14v3.520H28···H3viii3.431
C17···H23vii3.398H28···H14i3.188
C17···H24vii3.494H28···H15i3.069
C18···H10x3.253H28···H22xiii3.297
C18···H20xiii3.126H29···O2iv3.032
C19···H15i3.193H29···H5iv3.458
C19···H17xi3.285H29···H19iii3.538
C20···H4xi3.455H29···H33iv2.709
C20···H17xi3.599H29···H343.101
C20···H33iv3.101H30···O2iv2.792
C20···H343.224H30···O3iv3.581
H1···Br2vi3.101H30···H4xi2.943
H1···H16vi3.558H30···H17xi2.805
H1···H27vi3.440H30···H33iv2.622
H1···H333.019H30···H34iv2.886
H2···H11i3.391H31···Br2ii3.060
H2···H23vii3.520H31···H4xi3.070
H2···H25vii3.193H31···H333.482
H3···Br2xiv3.523H31···H342.653
H3···H14xiv3.212H32···O3i2.020
H3···H15xiv3.359H32···C7i2.970
H3···H18xii3.407H32···C8i2.996
H3···H27vi3.039H32···C9i3.468
H3···H28vi3.431H32···C11i3.582
H4···Br2xiv3.401H32···C12i3.017
H4···C20xii3.455H32···H9i2.454
H4···H11i3.235H32···H11i2.961
H4···H30xii2.943H32···H12i3.295
H4···H31xii3.070H32···H13i2.145
H4···H34i3.528H32···H34i2.445
H5···C16xii3.591H33···Br2ii3.111
H5···H18xii3.591H33···O20.820
H5···H19xii2.946H33···O32.976
H5···H26xii3.500H33···C13.432
H5···H29ii3.458H33···C32.895
H5···H332.478H33···C42.410
H6···H332.557H33···C51.891
H6···H342.473H33···C62.671
H7···H13i3.277H33···C73.389
H7···H333.510H33···C103.125
H7···H343.309H33···C162.480
H8···H14v3.227H33···C20ii3.101
H8···H343.583H33···H13.019
H9···Br1x3.551H33···H52.478
H9···O1iii2.694H33···H62.557
H9···H20iii3.453H33···H73.510
H9···H24v3.299H33···H113.235
H9···H32iii2.454H33···H15ii3.401
H9···H343.021H33···H173.276
H10···C12v3.544H33···H181.905
H10···C18v3.253H33···H192.922
H10···H12v2.729H33···H29ii2.709
H10···H14v3.370H33···H30ii2.622
H10···H24v2.982H33···H313.482
H10···H25v2.690H33···H342.217
H11···O1iii3.169H34···Br2ii3.439
H11···H2iii3.391H34···O1iii3.153
H11···H4iii3.235H34···O21.960
H11···H32iii2.961H34···O30.820
H11···H333.235H34···C52.604
H11···H342.430H34···C62.376
H12···Br1x3.058H34···C71.896
H12···H10x2.729H34···C82.727
H12···H22x2.873H34···C92.878
H12···H32iii3.295H34···C103.354
H13···O1iii2.703H34···C113.111
H13···H7iii3.277H34···C16iii3.587
H13···H19iii3.083H34···C203.224
H13···H26iii3.424H34···H4iii3.528
H13···H32iii2.145H34···H62.473
H13···H343.125H34···H73.309
H14···C17x3.520H34···H83.583
H14···H3ix3.212H34···H93.021
H14···H8x3.227H34···H112.430
H14···H10x3.370H34···H133.125
H14···H22x2.656H34···H17iii2.917
H14···H28iii3.188H34···H293.101
H15···C19iii3.193H34···H30ii2.886
H15···H3ix3.359H34···H312.653
H15···H18iv3.087H34···H32iii2.445
H15···H26iii2.794H34···H332.217
Br1—C1—C2108.2 (3)C4—C3—H4108.9
Br1—C1—C10111.7 (3)C4—C3—H5108.9
C2—C1—C10114.5 (4)H4—C3—H5107.8
C1—C2—C3110.3 (4)C5—C6—H6108.7
C2—C3—C4113.2 (5)C5—C6—H7108.7
O1—C4—C3110.2 (4)C7—C6—H6108.7
O1—C4—C5106.7 (3)C7—C6—H7108.7
O1—C4—C16109.0 (4)H6—C6—H7107.6
C3—C4—C5108.7 (4)C7—C8—H8109.0
C3—C4—C16109.7 (4)C7—C8—H9109.0
C5—C4—C16112.6 (4)C9—C8—H8109.0
O2—C5—C4106.1 (3)C9—C8—H9109.0
O2—C5—C6108.2 (3)H8—C8—H9107.8
O2—C5—C10106.2 (3)C8—C9—H10109.4
C4—C5—C6111.5 (3)C8—C9—H11109.4
C4—C5—C10113.7 (3)C10—C9—H10109.4
C6—C5—C10110.8 (3)C10—C9—H11109.4
C5—C6—C7114.3 (3)H10—C9—H11108.0
O3—C7—C6108.2 (3)C11—C12—H12110.1
O3—C7—C8106.3 (3)C11—C12—H13110.1
O3—C7—C11107.4 (3)C13—C12—H12110.1
C6—C7—C8109.9 (3)C13—C12—H13110.1
C6—C7—C11112.3 (3)H12—C12—H13108.5
C8—C7—C11112.5 (3)C12—C13—H14110.9
C7—C8—C9113.0 (4)C12—C13—H15110.9
C8—C9—C10111.1 (3)C14—C13—H14110.9
C1—C10—C5106.1 (3)C14—C13—H15110.9
C1—C10—C9111.1 (3)H14—C13—H15108.9
C1—C10—C17110.5 (3)Br2—C14—H16107.4
C5—C10—C9107.1 (3)C13—C14—H16107.4
C5—C10—C17113.8 (3)C15—C14—H16107.4
C9—C10—C17108.3 (3)C4—C16—H17109.5
C7—C11—C12110.5 (3)C4—C16—H18109.5
C7—C11—C15116.9 (3)C4—C16—H19109.5
C7—C11—C18108.6 (3)H17—C16—H18109.5
C12—C11—C15103.1 (3)H17—C16—H19109.5
C12—C11—C18108.7 (4)H18—C16—H19109.5
C15—C11—C18108.7 (3)C10—C17—H20109.5
C11—C12—C13107.8 (4)C10—C17—H21109.5
C12—C13—C14104.2 (4)C10—C17—H22109.5
Br2—C14—C13111.4 (3)H20—C17—H21109.5
Br2—C14—C15114.9 (3)H20—C17—H22109.5
C13—C14—C15108.0 (4)H21—C17—H22109.5
C11—C15—C1498.4 (3)C11—C18—H23109.5
C11—C15—C19115.4 (3)C11—C18—H24109.5
C11—C15—C20113.9 (3)C11—C18—H25109.5
C14—C15—C19109.9 (4)H23—C18—H24109.5
C14—C15—C20109.9 (3)H23—C18—H25109.5
C19—C15—C20108.9 (4)H24—C18—H25109.5
C4—O1—H32109.5C15—C19—H26109.5
C5—O2—H33109.5C15—C19—H27109.5
C7—O3—H34109.5C15—C19—H28109.5
Br1—C1—H1107.4H26—C19—H27109.5
C2—C1—H1107.4H26—C19—H28109.5
C10—C1—H1107.4H27—C19—H28109.5
C1—C2—H2109.6C15—C20—H29109.5
C1—C2—H3109.6C15—C20—H30109.5
C3—C2—H2109.6C15—C20—H31109.5
C3—C2—H3109.6H29—C20—H30109.5
H2—C2—H3108.1H29—C20—H31109.5
C2—C3—H4108.9H30—C20—H31109.5
C2—C3—H5108.9
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z; (iii) x1, y, z; (iv) x+1, y1/2, z; (v) x+1, y+1/2, z+1; (vi) x, y+1, z; (vii) x+2, y+1/2, z+1; (viii) x, y1, z; (ix) x1, y1, z; (x) x+1, y1/2, z+1; (xi) x+2, y1/2, z; (xii) x+2, y+1/2, z; (xiii) x+2, y1/2, z+1; (xiv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H32···O3i0.822.022.797 (4)158
O3—H34···O20.821.962.691 (4)148
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H34Br2O3
Mr482.29
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.5026 (2), 11.3985 (3), 12.1498 (5)
β (°) 94.9780 (3)
V3)1035.11 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.94
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.402, 0.454
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
43586, 6129, 4774
Rint0.110
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.151, 1.14
No. of reflections6129
No. of parameters227
No. of restraints?
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.66, 0.44
Absolute structureFlack (1983)
Absolute structure parameter0.014 (12)

Computer programs: KappaCCD Server Software (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), CrystalStructure (Rigaku, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H32···O3i0.8202.0202.797 (4)158
O3—H34···O20.8201.9602.691 (4)148
Symmetry code: (i) x+1, y, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1998). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, M., Nakano, S., Takahashi, Y., Abe, T., Masuda, M., Takahashi, H. & Kobayashi, K. (2002). J. Nat. Prod. 65, 801–804.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTakahashi, Y., Daitoh, M., Suzuki, M., Abe, T. & Masuda, M. (2002). J. Nat. Prod. 65, 395–398.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTakahashi, H., Takahashi, Y., Suzuki, M., Abe, T. & Masuda, M. (2007). Anal. Sci. 23, x103–x1044.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds