organic compounds
(2E)-1-(2-Bromophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India, dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and eDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu
In the chalcone title compound, C18H17BrO4, the dihedral angle between the mean planes of the 2-bromo- and 3,4,5-trimethoxy-substituted benzene rings is 89.3 (1)°. The angles between the mean plane of the prop-2-en-1-one group and the 2-bromophenyl and 3,4,5-trimethoxyphenyl ring planes are 59.7 (1) and 40.5 (8)°, respectively. While no classical hydrogen bonds are present, three weak intermolecular C—H⋯O interactions and weak C—H⋯Br and C—H⋯Cg π-ring stacking interactions [C—H⋯Cg distance = 3.377 (2) Å] are observed, which contribute to the stability of crystal packing.
Related literature
For the radical quenching properties of included phenol groups, see: Dhar (1981). For the anticancer activity of see: Dimmock et al. (1999). For related structures, see: Chantrapromma et al. (2009); Patil et al. (2006); Suwunwong et al. (2009). For bond distances and angles, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681002235X/fj2317sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681002235X/fj2317Isup2.hkl
A 50% KOH solution was added to a mixture of 2-bromo acetophenone (0.01 mol, 1.99 g) and 3,4,5-trimethoxy benzaldehyde (0.01 mol, 1.96 g) in 25 ml of ethanol (Fig. 1). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from ethyl acetate by slow evaporation method and yield of the compound was 45% (m.p.325–327 K). Analytical data: Found (Calculated) for C18H17BrO4: C %: 57.26 (57.31%); H%: 4.49 (4.54%).
The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances = 0.95–0.96Å and with Uiso(H) = 1.18–1.50 Ueq(C).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H17BrO4 | F(000) = 1536 |
Mr = 377.23 | Dx = 1.515 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 4251 reflections |
a = 9.9616 (4) Å | θ = 4.4–74.1° |
b = 13.6020 (13) Å | µ = 2.50 mm−1 |
c = 24.4162 (17) Å | T = 110 K |
V = 3308.4 (4) Å3 | Chunk, colorless |
Z = 8 | 0.47 × 0.42 × 0.31 mm |
Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector | 3296 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2940 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 26.3°, θmin = 2.6° |
ω scans | h = −12→7 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −16→15 |
Tmin = 0.499, Tmax = 1.000 | l = −30→28 |
8122 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0769P)2 + 1.9413P] where P = (Fo2 + 2Fc2)/3 |
3296 reflections | (Δ/σ)max = 0.003 |
211 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
C18H17BrO4 | V = 3308.4 (4) Å3 |
Mr = 377.23 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 9.9616 (4) Å | µ = 2.50 mm−1 |
b = 13.6020 (13) Å | T = 110 K |
c = 24.4162 (17) Å | 0.47 × 0.42 × 0.31 mm |
Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector | 3296 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 2940 reflections with I > 2σ(I) |
Tmin = 0.499, Tmax = 1.000 | Rint = 0.022 |
8122 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.46 e Å−3 |
3296 reflections | Δρmin = −0.67 e Å−3 |
211 parameters |
Experimental. IR data (KBr) \v cm-1: 2998 cm-1, 2937 cm-1, 2839 cm-1 (C—H al. str), 3058 cm-1 (C—H ar.str) 1646 cm-1 (C=O), 1580 cm-1 (C=C); 1245 cm-1 (C—O—C). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.74430 (2) | 0.76760 (2) | 0.612337 (10) | 0.02659 (13) | |
O1 | 0.74217 (17) | 0.57654 (14) | 0.69518 (10) | 0.0340 (5) | |
O2 | 0.31902 (16) | 0.16171 (11) | 0.60595 (6) | 0.0191 (3) | |
O3 | 0.17918 (15) | 0.20383 (11) | 0.51830 (6) | 0.0180 (3) | |
O4 | 0.14169 (16) | 0.39311 (11) | 0.48455 (6) | 0.0203 (3) | |
C1 | 0.5557 (2) | 0.68349 (15) | 0.68770 (8) | 0.0159 (4) | |
C2 | 0.6035 (2) | 0.77077 (15) | 0.66443 (8) | 0.0169 (4) | |
C3 | 0.5453 (2) | 0.86108 (16) | 0.67668 (9) | 0.0219 (4) | |
H3A | 0.5798 | 0.9198 | 0.6610 | 0.026* | |
C4 | 0.4364 (2) | 0.86455 (17) | 0.71200 (9) | 0.0255 (5) | |
H4A | 0.3966 | 0.9260 | 0.7208 | 0.031* | |
C5 | 0.3854 (2) | 0.77852 (17) | 0.73449 (9) | 0.0254 (5) | |
H5A | 0.3101 | 0.7811 | 0.7584 | 0.031* | |
C6 | 0.4441 (2) | 0.68889 (16) | 0.72215 (9) | 0.0203 (4) | |
H6A | 0.4079 | 0.6303 | 0.7373 | 0.024* | |
C7 | 0.6256 (2) | 0.58607 (16) | 0.68075 (9) | 0.0196 (4) | |
C8 | 0.5507 (2) | 0.50263 (15) | 0.65798 (9) | 0.0183 (4) | |
H8A | 0.5862 | 0.4384 | 0.6630 | 0.022* | |
C9 | 0.4355 (2) | 0.51190 (14) | 0.63061 (9) | 0.0157 (4) | |
H9A | 0.3975 | 0.5758 | 0.6282 | 0.019* | |
C10 | 0.3627 (2) | 0.43154 (15) | 0.60391 (8) | 0.0149 (4) | |
C11 | 0.3777 (2) | 0.33362 (15) | 0.62149 (8) | 0.0157 (4) | |
H11A | 0.4324 | 0.3185 | 0.6522 | 0.019* | |
C12 | 0.3114 (2) | 0.25927 (15) | 0.59324 (9) | 0.0151 (4) | |
C13 | 0.2319 (2) | 0.28097 (16) | 0.54734 (9) | 0.0144 (4) | |
C14 | 0.2176 (2) | 0.37893 (15) | 0.53031 (9) | 0.0158 (4) | |
C15 | 0.2808 (2) | 0.45419 (15) | 0.55925 (9) | 0.0157 (4) | |
H15A | 0.2681 | 0.5207 | 0.5486 | 0.019* | |
C16 | 0.3980 (2) | 0.13512 (16) | 0.65246 (10) | 0.0242 (5) | |
H16A | 0.3929 | 0.0639 | 0.6581 | 0.036* | |
H16B | 0.3637 | 0.1690 | 0.6850 | 0.036* | |
H16C | 0.4916 | 0.1542 | 0.6462 | 0.036* | |
C17 | 0.0357 (2) | 0.19852 (18) | 0.51743 (10) | 0.0249 (5) | |
H17A | 0.0077 | 0.1400 | 0.4970 | 0.037* | |
H17B | −0.0005 | 0.2574 | 0.4997 | 0.037* | |
H17C | 0.0018 | 0.1945 | 0.5550 | 0.037* | |
C18 | 0.1511 (3) | 0.48850 (18) | 0.45889 (11) | 0.0319 (6) | |
H18A | 0.0980 | 0.4887 | 0.4251 | 0.048* | |
H18B | 0.2452 | 0.5027 | 0.4502 | 0.048* | |
H18C | 0.1165 | 0.5388 | 0.4839 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02410 (18) | 0.0327 (2) | 0.02294 (19) | −0.00535 (9) | 0.00684 (8) | −0.00220 (9) |
O1 | 0.0244 (9) | 0.0223 (9) | 0.0552 (13) | 0.0010 (6) | −0.0201 (8) | −0.0062 (9) |
O2 | 0.0224 (8) | 0.0124 (7) | 0.0226 (8) | −0.0033 (6) | −0.0055 (6) | 0.0007 (6) |
O3 | 0.0159 (7) | 0.0188 (7) | 0.0194 (7) | −0.0023 (6) | −0.0009 (6) | −0.0073 (6) |
O4 | 0.0254 (8) | 0.0187 (7) | 0.0169 (7) | −0.0003 (6) | −0.0078 (6) | 0.0006 (6) |
C1 | 0.0177 (9) | 0.0161 (10) | 0.0138 (9) | −0.0046 (8) | −0.0051 (8) | −0.0020 (7) |
C2 | 0.0177 (10) | 0.0213 (11) | 0.0117 (9) | −0.0025 (8) | 0.0008 (8) | −0.0023 (7) |
C3 | 0.0317 (12) | 0.0159 (10) | 0.0180 (10) | −0.0011 (9) | −0.0002 (9) | 0.0020 (8) |
C4 | 0.0342 (13) | 0.0220 (11) | 0.0204 (10) | 0.0057 (10) | 0.0026 (10) | −0.0045 (8) |
C5 | 0.0251 (11) | 0.0334 (13) | 0.0178 (10) | −0.0009 (10) | 0.0052 (9) | −0.0040 (9) |
C6 | 0.0247 (10) | 0.0207 (10) | 0.0157 (10) | −0.0063 (9) | −0.0027 (8) | 0.0007 (8) |
C7 | 0.0208 (10) | 0.0183 (10) | 0.0197 (10) | −0.0017 (8) | −0.0051 (8) | 0.0001 (8) |
C8 | 0.0204 (10) | 0.0117 (8) | 0.0229 (11) | −0.0009 (8) | −0.0033 (9) | −0.0015 (8) |
C9 | 0.0184 (10) | 0.0126 (9) | 0.0160 (10) | 0.0005 (8) | 0.0010 (8) | −0.0011 (7) |
C10 | 0.0142 (9) | 0.0141 (9) | 0.0164 (9) | −0.0010 (8) | 0.0018 (8) | −0.0034 (7) |
C11 | 0.0152 (9) | 0.0154 (9) | 0.0163 (9) | 0.0005 (8) | −0.0024 (8) | −0.0015 (8) |
C12 | 0.0122 (9) | 0.0150 (9) | 0.0180 (10) | 0.0000 (7) | 0.0021 (8) | 0.0008 (8) |
C13 | 0.0116 (9) | 0.0171 (10) | 0.0144 (10) | −0.0023 (7) | 0.0020 (7) | −0.0038 (8) |
C14 | 0.0134 (8) | 0.0194 (10) | 0.0145 (9) | 0.0019 (8) | 0.0010 (8) | −0.0029 (8) |
C15 | 0.0156 (8) | 0.0133 (9) | 0.0182 (10) | 0.0028 (8) | 0.0021 (8) | −0.0019 (8) |
C16 | 0.0263 (11) | 0.0166 (9) | 0.0296 (12) | −0.0004 (9) | −0.0076 (10) | 0.0053 (8) |
C17 | 0.0171 (10) | 0.0285 (12) | 0.0290 (12) | −0.0073 (9) | −0.0057 (9) | 0.0013 (9) |
C18 | 0.0448 (15) | 0.0260 (12) | 0.0251 (12) | −0.0022 (11) | −0.0135 (11) | 0.0079 (9) |
Br1—C2 | 1.894 (2) | C8—H8A | 0.9500 |
O1—C7 | 1.221 (3) | C9—C10 | 1.465 (3) |
O2—C12 | 1.365 (2) | C9—H9A | 0.9500 |
O2—C16 | 1.428 (3) | C10—C15 | 1.396 (3) |
O3—C13 | 1.371 (2) | C10—C11 | 1.407 (3) |
O3—C17 | 1.431 (3) | C11—C12 | 1.391 (3) |
O4—C14 | 1.363 (3) | C11—H11A | 0.9500 |
O4—C18 | 1.444 (3) | C12—C13 | 1.404 (3) |
C1—C6 | 1.396 (3) | C13—C14 | 1.403 (3) |
C1—C2 | 1.400 (3) | C14—C15 | 1.394 (3) |
C1—C7 | 1.506 (3) | C15—H15A | 0.9500 |
C2—C3 | 1.391 (3) | C16—H16A | 0.9800 |
C3—C4 | 1.386 (3) | C16—H16B | 0.9800 |
C3—H3A | 0.9500 | C16—H16C | 0.9800 |
C4—C5 | 1.389 (3) | C17—H17A | 0.9800 |
C4—H4A | 0.9500 | C17—H17B | 0.9800 |
C5—C6 | 1.385 (3) | C17—H17C | 0.9800 |
C5—H5A | 0.9500 | C18—H18A | 0.9800 |
C6—H6A | 0.9500 | C18—H18B | 0.9800 |
C7—C8 | 1.468 (3) | C18—H18C | 0.9800 |
C8—C9 | 1.334 (3) | ||
C12—O2—C16 | 117.25 (16) | C12—C11—C10 | 119.09 (19) |
C13—O3—C17 | 115.38 (17) | C12—C11—H11A | 120.5 |
C14—O4—C18 | 116.55 (17) | C10—C11—H11A | 120.5 |
C6—C1—C2 | 118.09 (19) | O2—C12—C11 | 124.57 (19) |
C6—C1—C7 | 118.82 (18) | O2—C12—C13 | 114.68 (18) |
C2—C1—C7 | 122.91 (19) | C11—C12—C13 | 120.74 (19) |
C3—C2—C1 | 121.3 (2) | O3—C13—C14 | 122.3 (2) |
C3—C2—Br1 | 118.25 (16) | O3—C13—C12 | 117.91 (19) |
C1—C2—Br1 | 120.35 (15) | C14—C13—C12 | 119.56 (19) |
C4—C3—C2 | 119.3 (2) | O4—C14—C15 | 124.20 (19) |
C4—C3—H3A | 120.3 | O4—C14—C13 | 115.69 (18) |
C2—C3—H3A | 120.3 | C15—C14—C13 | 120.1 (2) |
C3—C4—C5 | 120.3 (2) | C14—C15—C10 | 119.83 (19) |
C3—C4—H4A | 119.9 | C14—C15—H15A | 120.1 |
C5—C4—H4A | 119.9 | C10—C15—H15A | 120.1 |
C6—C5—C4 | 120.0 (2) | O2—C16—H16A | 109.5 |
C6—C5—H5A | 120.0 | O2—C16—H16B | 109.5 |
C4—C5—H5A | 120.0 | H16A—C16—H16B | 109.5 |
C5—C6—C1 | 120.9 (2) | O2—C16—H16C | 109.5 |
C5—C6—H6A | 119.5 | H16A—C16—H16C | 109.5 |
C1—C6—H6A | 119.5 | H16B—C16—H16C | 109.5 |
O1—C7—C8 | 120.7 (2) | O3—C17—H17A | 109.5 |
O1—C7—C1 | 120.0 (2) | O3—C17—H17B | 109.5 |
C8—C7—C1 | 119.23 (18) | H17A—C17—H17B | 109.5 |
C9—C8—C7 | 123.64 (19) | O3—C17—H17C | 109.5 |
C9—C8—H8A | 118.2 | H17A—C17—H17C | 109.5 |
C7—C8—H8A | 118.2 | H17B—C17—H17C | 109.5 |
C8—C9—C10 | 125.33 (18) | O4—C18—H18A | 109.5 |
C8—C9—H9A | 117.3 | O4—C18—H18B | 109.5 |
C10—C9—H9A | 117.3 | H18A—C18—H18B | 109.5 |
C15—C10—C11 | 120.61 (19) | O4—C18—H18C | 109.5 |
C15—C10—C9 | 118.17 (18) | H18A—C18—H18C | 109.5 |
C11—C10—C9 | 121.18 (19) | H18B—C18—H18C | 109.5 |
C6—C1—C2—C3 | 2.4 (3) | C9—C10—C11—C12 | −177.03 (19) |
C7—C1—C2—C3 | −172.66 (19) | C16—O2—C12—C11 | 1.8 (3) |
C6—C1—C2—Br1 | −174.42 (15) | C16—O2—C12—C13 | −179.68 (19) |
C7—C1—C2—Br1 | 10.5 (3) | C10—C11—C12—O2 | 179.33 (19) |
C1—C2—C3—C4 | −1.0 (3) | C10—C11—C12—C13 | 0.9 (3) |
Br1—C2—C3—C4 | 175.89 (17) | C17—O3—C13—C14 | −68.0 (3) |
C2—C3—C4—C5 | −0.6 (3) | C17—O3—C13—C12 | 117.1 (2) |
C3—C4—C5—C6 | 0.7 (4) | O2—C12—C13—O3 | −4.5 (3) |
C4—C5—C6—C1 | 0.8 (3) | C11—C12—C13—O3 | 174.12 (18) |
C2—C1—C6—C5 | −2.3 (3) | O2—C12—C13—C14 | −179.56 (18) |
C7—C1—C6—C5 | 173.0 (2) | C11—C12—C13—C14 | −1.0 (3) |
C6—C1—C7—O1 | −117.3 (3) | C18—O4—C14—C15 | 13.2 (3) |
C2—C1—C7—O1 | 57.7 (3) | C18—O4—C14—C13 | −165.9 (2) |
C6—C1—C7—C8 | 60.9 (3) | O3—C13—C14—O4 | 3.4 (3) |
C2—C1—C7—C8 | −124.0 (2) | C12—C13—C14—O4 | 178.29 (18) |
O1—C7—C8—C9 | −164.7 (2) | O3—C13—C14—C15 | −175.64 (18) |
C1—C7—C8—C9 | 17.1 (3) | C12—C13—C14—C15 | −0.8 (3) |
C7—C8—C9—C10 | 175.4 (2) | O4—C14—C15—C10 | −176.39 (19) |
C8—C9—C10—C15 | −153.2 (2) | C13—C14—C15—C10 | 2.6 (3) |
C8—C9—C10—C11 | 24.9 (3) | C11—C10—C15—C14 | −2.7 (3) |
C15—C10—C11—C12 | 1.0 (3) | C9—C10—C15—C14 | 175.34 (19) |
Cg2 is the centroid of the C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O1i | 0.95 | 2.44 | 3.233 (3) | 140 |
C9—H9A···O2ii | 0.95 | 2.51 | 3.308 (3) | 141 |
C15—H15A···O2ii | 0.95 | 2.53 | 3.202 (2) | 128 |
C17—H17C···Br1iii | 0.98 | 2.99 | 3.746 (2) | 135 |
C17—H17A···Cg2iv | 0.98 | 2.83 | 3.379 (2) | 125 |
Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) −x+1/2, y+1/2, z; (iii) −x+1/2, y−1/2, z; (iv) x−1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C18H17BrO4 |
Mr | 377.23 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 110 |
a, b, c (Å) | 9.9616 (4), 13.6020 (13), 24.4162 (17) |
V (Å3) | 3308.4 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.50 |
Crystal size (mm) | 0.47 × 0.42 × 0.31 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.499, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8122, 3296, 2940 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.112, 1.04 |
No. of reflections | 3296 |
No. of parameters | 211 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.67 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cg2 is the centroid of the C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O1i | 0.95 | 2.44 | 3.233 (3) | 140 |
C9—H9A···O2ii | 0.95 | 2.51 | 3.308 (3) | 141 |
C15—H15A···O2ii | 0.95 | 2.53 | 3.202 (2) | 128 |
C17—H17C···Br1iii | 0.98 | 2.99 | 3.746 (2) | 135 |
C17—H17A···Cg2iv | 0.98 | 2.83 | 3.379 (2) | 125 |
Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) −x+1/2, y+1/2, z; (iii) −x+1/2, y−1/2, z; (iv) x−1/2, −y+1/2, −z+1. |
Acknowledgements
KV thanks UGC for a Junior Research Fellowship and for an SAP chemical grant. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley. Google Scholar
Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. Web of Science PubMed CAS Google Scholar
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4644–o4645. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones, or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenol groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar, 1981). Chalcones have been reported to possess many useful biological properties, including anti-inflammatory,antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). The crystal structures of some closely related chalcones, viz., (E)-1-(4-bromophenyl)-3-(3,4,5-trimethoxy-phenyl)prop-2-en-1-one (Suwunwong et al., 2009), (E)-1-(4-bromophenyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (Chantrapromma et al., 2009) and 1-(4-bromophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (Patil et al., 2006) have been reported. Hence in continuation with the synthesis and crystal structure determination and also owing to the importance of these flavanoid analogs, this new bromo-trimethoxy substituted chalcone, (I), C18H17BrO4, is synthesized and its crystal structure is reported.
The title compound, (I), C18H17BrO4,is a chalcone with 2-bromophenyl and 3,4,5-trimethoxyphenyl rings bonded at opposite sides of a propene group (Fig. 2). The dihedral angle between mean planes of the benzene rings in the ortho-bromo and meta- para-trimethoxy substituted rings is 89.3 (1)°. The angles between the mean plane of the prop-2-ene-1-one group (C1/C7/O1/C8) and the mean planes of the benzene rings in the 2-bromophenyl (C1–C6)and 3,4,5-trimethoxyphenyl rings (C10—C15) are 59.7 (1)° and 40.5 (8)°, respectively. Bond distances and angles are in normal ranges (Allen, 2002). While no classical hydrogen bonds are present, three weak intermolecular C—H···O interactions (Fig. 3) and weak C—H···Br (Table 1) and C17—H17A···Cg2 π-ring stacking interactions (H17A···Cg2 = 2.83 Å; H17A–Perp = 2.82 Å; C17—H17A···Cg2 = 125°; C17···Cg2—H17A = 3.379 (2) Å; Cg2 = C10–C15) are observed which contribute to the stability of crystal packing.