organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(2-Bromo­phen­yl)-3-(3,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India, dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and eDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 9 June 2010; accepted 10 June 2010; online 16 June 2010)

In the chalcone title compound, C18H17BrO4, the dihedral angle between the mean planes of the 2-bromo- and 3,4,5-trimethoxy-substituted benzene rings is 89.3 (1)°. The angles between the mean plane of the prop-2-en-1-one group and the 2-bromo­phenyl and 3,4,5-trimeth­oxy­phenyl ring planes are 59.7 (1) and 40.5 (8)°, respectively. While no classical hydrogen bonds are present, three weak inter­molecular C—H⋯O inter­actions and weak C—H⋯Br and C—H⋯Cg π-ring stacking inter­actions [C—H⋯Cg distance = 3.377 (2) Å] are observed, which contribute to the stability of crystal packing.

Related literature

For the radical quenching properties of included phenol groups, see: Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]). For the anti­cancer activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]). For related structures, see: Chantrapromma et al. (2009[Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893-o894.]); Patil et al. (2006[Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4644-o4645.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120.]). For bond distances and angles, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17BrO4

  • Mr = 377.23

  • Orthorhombic, P b c a

  • a = 9.9616 (4) Å

  • b = 13.6020 (13) Å

  • c = 24.4162 (17) Å

  • V = 3308.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.50 mm−1

  • T = 110 K

  • 0.47 × 0.42 × 0.31 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.499, Tmax = 1.000

  • 8122 measured reflections

  • 3296 independent reflections

  • 2940 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.04

  • 3296 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.95 2.44 3.233 (3) 140
C9—H9A⋯O2ii 0.95 2.51 3.308 (3) 141
C15—H15A⋯O2ii 0.95 2.53 3.202 (2) 128
C17—H17C⋯Br1iii 0.98 2.99 3.746 (2) 135
C17—H17ACg2iv 0.98 2.83 3.379 (2) 125
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones, or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenol groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar, 1981). Chalcones have been reported to possess many useful biological properties, including anti-inflammatory,antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). The crystal structures of some closely related chalcones, viz., (E)-1-(4-bromophenyl)-3-(3,4,5-trimethoxy-phenyl)prop-2-en-1-one (Suwunwong et al., 2009), (E)-1-(4-bromophenyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (Chantrapromma et al., 2009) and 1-(4-bromophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (Patil et al., 2006) have been reported. Hence in continuation with the synthesis and crystal structure determination and also owing to the importance of these flavanoid analogs, this new bromo-trimethoxy substituted chalcone, (I), C18H17BrO4, is synthesized and its crystal structure is reported.

The title compound, (I), C18H17BrO4,is a chalcone with 2-bromophenyl and 3,4,5-trimethoxyphenyl rings bonded at opposite sides of a propene group (Fig. 2). The dihedral angle between mean planes of the benzene rings in the ortho-bromo and meta- para-trimethoxy substituted rings is 89.3 (1)°. The angles between the mean plane of the prop-2-ene-1-one group (C1/C7/O1/C8) and the mean planes of the benzene rings in the 2-bromophenyl (C1–C6)and 3,4,5-trimethoxyphenyl rings (C10—C15) are 59.7 (1)° and 40.5 (8)°, respectively. Bond distances and angles are in normal ranges (Allen, 2002). While no classical hydrogen bonds are present, three weak intermolecular C—H···O interactions (Fig. 3) and weak C—H···Br (Table 1) and C17—H17A···Cg2 π-ring stacking interactions (H17A···Cg2 = 2.83 Å; H17A–Perp = 2.82 Å; C17—H17A···Cg2 = 125°; C17···Cg2—H17A = 3.379 (2) Å; Cg2 = C10–C15) are observed which contribute to the stability of crystal packing.

Related literature top

For radical quenching properties of included phenol groups, see: Dhar (1981). For the anticancer activities [of?], see: Dimmock et al. (1999). For a related structure, see: Chantrapromma et al. (2009); Patil et al. (2006); Suwunwong et al. (2009). For bond distances and angles, see : Allen (2002).

Experimental top

A 50% KOH solution was added to a mixture of 2-bromo acetophenone (0.01 mol, 1.99 g) and 3,4,5-trimethoxy benzaldehyde (0.01 mol, 1.96 g) in 25 ml of ethanol (Fig. 1). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from ethyl acetate by slow evaporation method and yield of the compound was 45% (m.p.325–327 K). Analytical data: Found (Calculated) for C18H17BrO4: C %: 57.26 (57.31%); H%: 4.49 (4.54%).

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances = 0.95–0.96Å and with Uiso(H) = 1.18–1.50 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction Scheme for the title compound.
[Figure 2] Fig. 2. Molecular structure of (I), C18H17BrO4, showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of the title compound, C18H17BrO4, viewed down the a axis. Dashed lines indicate weak C—H···O intermolecular hydrogen bond interactions linking the molecules into chains along the (011).
(2E)-1-(2-Bromophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H17BrO4F(000) = 1536
Mr = 377.23Dx = 1.515 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4251 reflections
a = 9.9616 (4) Åθ = 4.4–74.1°
b = 13.6020 (13) ŵ = 2.50 mm1
c = 24.4162 (17) ÅT = 110 K
V = 3308.4 (4) Å3Chunk, colorless
Z = 80.47 × 0.42 × 0.31 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
3296 independent reflections
Radiation source: Enhance (Cu) X-ray Source2940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.5081 pixels mm-1θmax = 26.3°, θmin = 2.6°
ω scansh = 127
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1615
Tmin = 0.499, Tmax = 1.000l = 3028
8122 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0769P)2 + 1.9413P]
where P = (Fo2 + 2Fc2)/3
3296 reflections(Δ/σ)max = 0.003
211 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C18H17BrO4V = 3308.4 (4) Å3
Mr = 377.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.9616 (4) ŵ = 2.50 mm1
b = 13.6020 (13) ÅT = 110 K
c = 24.4162 (17) Å0.47 × 0.42 × 0.31 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
3296 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2940 reflections with I > 2σ(I)
Tmin = 0.499, Tmax = 1.000Rint = 0.022
8122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
3296 reflectionsΔρmin = 0.67 e Å3
211 parameters
Special details top

Experimental. IR data (KBr) \v cm-1: 2998 cm-1, 2937 cm-1, 2839 cm-1 (C—H al. str), 3058 cm-1 (C—H ar.str) 1646 cm-1 (C=O), 1580 cm-1 (C=C); 1245 cm-1 (C—O—C).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74430 (2)0.76760 (2)0.612337 (10)0.02659 (13)
O10.74217 (17)0.57654 (14)0.69518 (10)0.0340 (5)
O20.31902 (16)0.16171 (11)0.60595 (6)0.0191 (3)
O30.17918 (15)0.20383 (11)0.51830 (6)0.0180 (3)
O40.14169 (16)0.39311 (11)0.48455 (6)0.0203 (3)
C10.5557 (2)0.68349 (15)0.68770 (8)0.0159 (4)
C20.6035 (2)0.77077 (15)0.66443 (8)0.0169 (4)
C30.5453 (2)0.86108 (16)0.67668 (9)0.0219 (4)
H3A0.57980.91980.66100.026*
C40.4364 (2)0.86455 (17)0.71200 (9)0.0255 (5)
H4A0.39660.92600.72080.031*
C50.3854 (2)0.77852 (17)0.73449 (9)0.0254 (5)
H5A0.31010.78110.75840.031*
C60.4441 (2)0.68889 (16)0.72215 (9)0.0203 (4)
H6A0.40790.63030.73730.024*
C70.6256 (2)0.58607 (16)0.68075 (9)0.0196 (4)
C80.5507 (2)0.50263 (15)0.65798 (9)0.0183 (4)
H8A0.58620.43840.66300.022*
C90.4355 (2)0.51190 (14)0.63061 (9)0.0157 (4)
H9A0.39750.57580.62820.019*
C100.3627 (2)0.43154 (15)0.60391 (8)0.0149 (4)
C110.3777 (2)0.33362 (15)0.62149 (8)0.0157 (4)
H11A0.43240.31850.65220.019*
C120.3114 (2)0.25927 (15)0.59324 (9)0.0151 (4)
C130.2319 (2)0.28097 (16)0.54734 (9)0.0144 (4)
C140.2176 (2)0.37893 (15)0.53031 (9)0.0158 (4)
C150.2808 (2)0.45419 (15)0.55925 (9)0.0157 (4)
H15A0.26810.52070.54860.019*
C160.3980 (2)0.13512 (16)0.65246 (10)0.0242 (5)
H16A0.39290.06390.65810.036*
H16B0.36370.16900.68500.036*
H16C0.49160.15420.64620.036*
C170.0357 (2)0.19852 (18)0.51743 (10)0.0249 (5)
H17A0.00770.14000.49700.037*
H17B0.00050.25740.49970.037*
H17C0.00180.19450.55500.037*
C180.1511 (3)0.48850 (18)0.45889 (11)0.0319 (6)
H18A0.09800.48870.42510.048*
H18B0.24520.50270.45020.048*
H18C0.11650.53880.48390.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02410 (18)0.0327 (2)0.02294 (19)0.00535 (9)0.00684 (8)0.00220 (9)
O10.0244 (9)0.0223 (9)0.0552 (13)0.0010 (6)0.0201 (8)0.0062 (9)
O20.0224 (8)0.0124 (7)0.0226 (8)0.0033 (6)0.0055 (6)0.0007 (6)
O30.0159 (7)0.0188 (7)0.0194 (7)0.0023 (6)0.0009 (6)0.0073 (6)
O40.0254 (8)0.0187 (7)0.0169 (7)0.0003 (6)0.0078 (6)0.0006 (6)
C10.0177 (9)0.0161 (10)0.0138 (9)0.0046 (8)0.0051 (8)0.0020 (7)
C20.0177 (10)0.0213 (11)0.0117 (9)0.0025 (8)0.0008 (8)0.0023 (7)
C30.0317 (12)0.0159 (10)0.0180 (10)0.0011 (9)0.0002 (9)0.0020 (8)
C40.0342 (13)0.0220 (11)0.0204 (10)0.0057 (10)0.0026 (10)0.0045 (8)
C50.0251 (11)0.0334 (13)0.0178 (10)0.0009 (10)0.0052 (9)0.0040 (9)
C60.0247 (10)0.0207 (10)0.0157 (10)0.0063 (9)0.0027 (8)0.0007 (8)
C70.0208 (10)0.0183 (10)0.0197 (10)0.0017 (8)0.0051 (8)0.0001 (8)
C80.0204 (10)0.0117 (8)0.0229 (11)0.0009 (8)0.0033 (9)0.0015 (8)
C90.0184 (10)0.0126 (9)0.0160 (10)0.0005 (8)0.0010 (8)0.0011 (7)
C100.0142 (9)0.0141 (9)0.0164 (9)0.0010 (8)0.0018 (8)0.0034 (7)
C110.0152 (9)0.0154 (9)0.0163 (9)0.0005 (8)0.0024 (8)0.0015 (8)
C120.0122 (9)0.0150 (9)0.0180 (10)0.0000 (7)0.0021 (8)0.0008 (8)
C130.0116 (9)0.0171 (10)0.0144 (10)0.0023 (7)0.0020 (7)0.0038 (8)
C140.0134 (8)0.0194 (10)0.0145 (9)0.0019 (8)0.0010 (8)0.0029 (8)
C150.0156 (8)0.0133 (9)0.0182 (10)0.0028 (8)0.0021 (8)0.0019 (8)
C160.0263 (11)0.0166 (9)0.0296 (12)0.0004 (9)0.0076 (10)0.0053 (8)
C170.0171 (10)0.0285 (12)0.0290 (12)0.0073 (9)0.0057 (9)0.0013 (9)
C180.0448 (15)0.0260 (12)0.0251 (12)0.0022 (11)0.0135 (11)0.0079 (9)
Geometric parameters (Å, º) top
Br1—C21.894 (2)C8—H8A0.9500
O1—C71.221 (3)C9—C101.465 (3)
O2—C121.365 (2)C9—H9A0.9500
O2—C161.428 (3)C10—C151.396 (3)
O3—C131.371 (2)C10—C111.407 (3)
O3—C171.431 (3)C11—C121.391 (3)
O4—C141.363 (3)C11—H11A0.9500
O4—C181.444 (3)C12—C131.404 (3)
C1—C61.396 (3)C13—C141.403 (3)
C1—C21.400 (3)C14—C151.394 (3)
C1—C71.506 (3)C15—H15A0.9500
C2—C31.391 (3)C16—H16A0.9800
C3—C41.386 (3)C16—H16B0.9800
C3—H3A0.9500C16—H16C0.9800
C4—C51.389 (3)C17—H17A0.9800
C4—H4A0.9500C17—H17B0.9800
C5—C61.385 (3)C17—H17C0.9800
C5—H5A0.9500C18—H18A0.9800
C6—H6A0.9500C18—H18B0.9800
C7—C81.468 (3)C18—H18C0.9800
C8—C91.334 (3)
C12—O2—C16117.25 (16)C12—C11—C10119.09 (19)
C13—O3—C17115.38 (17)C12—C11—H11A120.5
C14—O4—C18116.55 (17)C10—C11—H11A120.5
C6—C1—C2118.09 (19)O2—C12—C11124.57 (19)
C6—C1—C7118.82 (18)O2—C12—C13114.68 (18)
C2—C1—C7122.91 (19)C11—C12—C13120.74 (19)
C3—C2—C1121.3 (2)O3—C13—C14122.3 (2)
C3—C2—Br1118.25 (16)O3—C13—C12117.91 (19)
C1—C2—Br1120.35 (15)C14—C13—C12119.56 (19)
C4—C3—C2119.3 (2)O4—C14—C15124.20 (19)
C4—C3—H3A120.3O4—C14—C13115.69 (18)
C2—C3—H3A120.3C15—C14—C13120.1 (2)
C3—C4—C5120.3 (2)C14—C15—C10119.83 (19)
C3—C4—H4A119.9C14—C15—H15A120.1
C5—C4—H4A119.9C10—C15—H15A120.1
C6—C5—C4120.0 (2)O2—C16—H16A109.5
C6—C5—H5A120.0O2—C16—H16B109.5
C4—C5—H5A120.0H16A—C16—H16B109.5
C5—C6—C1120.9 (2)O2—C16—H16C109.5
C5—C6—H6A119.5H16A—C16—H16C109.5
C1—C6—H6A119.5H16B—C16—H16C109.5
O1—C7—C8120.7 (2)O3—C17—H17A109.5
O1—C7—C1120.0 (2)O3—C17—H17B109.5
C8—C7—C1119.23 (18)H17A—C17—H17B109.5
C9—C8—C7123.64 (19)O3—C17—H17C109.5
C9—C8—H8A118.2H17A—C17—H17C109.5
C7—C8—H8A118.2H17B—C17—H17C109.5
C8—C9—C10125.33 (18)O4—C18—H18A109.5
C8—C9—H9A117.3O4—C18—H18B109.5
C10—C9—H9A117.3H18A—C18—H18B109.5
C15—C10—C11120.61 (19)O4—C18—H18C109.5
C15—C10—C9118.17 (18)H18A—C18—H18C109.5
C11—C10—C9121.18 (19)H18B—C18—H18C109.5
C6—C1—C2—C32.4 (3)C9—C10—C11—C12177.03 (19)
C7—C1—C2—C3172.66 (19)C16—O2—C12—C111.8 (3)
C6—C1—C2—Br1174.42 (15)C16—O2—C12—C13179.68 (19)
C7—C1—C2—Br110.5 (3)C10—C11—C12—O2179.33 (19)
C1—C2—C3—C41.0 (3)C10—C11—C12—C130.9 (3)
Br1—C2—C3—C4175.89 (17)C17—O3—C13—C1468.0 (3)
C2—C3—C4—C50.6 (3)C17—O3—C13—C12117.1 (2)
C3—C4—C5—C60.7 (4)O2—C12—C13—O34.5 (3)
C4—C5—C6—C10.8 (3)C11—C12—C13—O3174.12 (18)
C2—C1—C6—C52.3 (3)O2—C12—C13—C14179.56 (18)
C7—C1—C6—C5173.0 (2)C11—C12—C13—C141.0 (3)
C6—C1—C7—O1117.3 (3)C18—O4—C14—C1513.2 (3)
C2—C1—C7—O157.7 (3)C18—O4—C14—C13165.9 (2)
C6—C1—C7—C860.9 (3)O3—C13—C14—O43.4 (3)
C2—C1—C7—C8124.0 (2)C12—C13—C14—O4178.29 (18)
O1—C7—C8—C9164.7 (2)O3—C13—C14—C15175.64 (18)
C1—C7—C8—C917.1 (3)C12—C13—C14—C150.8 (3)
C7—C8—C9—C10175.4 (2)O4—C14—C15—C10176.39 (19)
C8—C9—C10—C15153.2 (2)C13—C14—C15—C102.6 (3)
C8—C9—C10—C1124.9 (3)C11—C10—C15—C142.7 (3)
C15—C10—C11—C121.0 (3)C9—C10—C15—C14175.34 (19)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.952.443.233 (3)140
C9—H9A···O2ii0.952.513.308 (3)141
C15—H15A···O2ii0.952.533.202 (2)128
C17—H17C···Br1iii0.982.993.746 (2)135
C17—H17A···Cg2iv0.982.833.379 (2)125
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H17BrO4
Mr377.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)110
a, b, c (Å)9.9616 (4), 13.6020 (13), 24.4162 (17)
V3)3308.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.50
Crystal size (mm)0.47 × 0.42 × 0.31
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.499, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8122, 3296, 2940
Rint0.022
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.04
No. of reflections3296
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.67

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.952.443.233 (3)140
C9—H9A···O2ii0.952.513.308 (3)141
C15—H15A···O2ii0.952.533.202 (2)128
C17—H17C···Br1iii0.982.993.746 (2)135
C17—H17A···Cg2iv0.982.833.379 (2)125
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y+1/2, z+1.
 

Acknowledgements

KV thanks UGC for a Junior Research Fellowship and for an SAP chemical grant. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPatil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4644–o4645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds