organic compounds
5-Methoxy-1-(3,4,5-trimethoxyphenyl)-1H-indole
aDepartment of Chemistry, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
*Correspondence e-mail: djones@uncc.edu, cogle@uncc.edu
The title compound, C18H19NO4, was prepared as an indole derivative with possible antimitotic properties. The planes of the indole and trimethoxyphenyl rings make a dihedral angle of 45.35 (5)° with one another. In the crystal, molecules related by a twofold screw axis exhibit arene C—H⋯arene-π interactions which are 3.035 (1) Å in length.
Related literature
For a related structure, see: Suthar et al. (2005). For pharmaceutical applications of indoles, see: Fuwa & Sasaki (2009); Li & Martins (2003).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810018568/fl2291sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810018568/fl2291Isup2.hkl
Preparation of the title compound (III) (See Synthesis scheme): To a Schlenk flask equipped with a magnetic stir bar, 1.47 g (10 mmol) of 5-methoxyindole (II), 6.36 g (30 mmol) of K3PO4, and 0.190 g (10 mol %) of CuI were added. The reaction flask was then purged with nitrogen gas and charged with 2.94 g (10 mmol) of 5-iodo-1,2,3-trimethoxybenzene (I), 0.22 ml (20 mol %) of N,N'-dimethylethylenediamine, and 25.0 ml of dry degassed toluene. The reaction mixture was heated to reflux for 24 hours. Upon completion, the crude reaction mixture was filtered through a celite plug, and concentrated on a rotary evaporator to yield an off-white solid. The solid was recrystallized from ethanol to obtain the x-ray quality crystals. Pure product was obtained in 86 % yield (2.70 g). Melting point: 99-101°C. MS(E1): M+ 313 m/z, 298 m/z. 1H NMR (300 MHz, DMSO-d) δ7.62 (d, 1H), 7.56 (d,1H), 7.14 (d,1H), 6.84(d,1H), 6.82 (s, 2H), 6.58 (d, 1H), 3.85 (s,6H), 3.78 (s, 3H), 3.71 (s,3H)
All H atoms were constrained using a riding model. The aromatic C—H bond lengths were fixed at 0.93 Å, with Uiso(H) = 1.2 Ueq(C). The methyl C—H bond lengths were fixed at 0.96 Å, with Uiso(H) = 1.5 Ueq(C). An idealized tetrahedral geometry was used for the methyl groups, and the torsion angles around the O—C bonds were refined.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).C18H19NO4 | F(000) = 1328 |
Mr = 313.34 | Dx = 1.273 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -C 2yc | Cell parameters from 24 reflections |
a = 19.0036 (16) Å | θ = 6.4–20.8° |
b = 7.3179 (14) Å | µ = 0.74 mm−1 |
c = 23.672 (4) Å | T = 295 K |
β = 96.802 (10)° | Prism, colorless |
V = 3268.8 (9) Å3 | 0.32 × 0.27 × 0.26 mm |
Z = 8 |
Enraf–Nonius CAD-4 diffractometer | θmax = 67.4°, θmin = 3.8° |
non–profiled ω/2θ scans | h = −22→22 |
6084 measured reflections | k = −8→0 |
2951 independent reflections | l = −28→28 |
2074 reflections with I > 2σ(I) | 3 standard reflections every 190 reflections |
Rint = 0.026 | intensity decay: 4% |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0613P)2 + 0.605P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.037 | (Δ/σ)max < 0.001 |
wR(F2) = 0.110 | Δρmax = 0.16 e Å−3 |
S = 1.00 | Δρmin = −0.16 e Å−3 |
2951 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
209 parameters | Extinction coefficient: 0.00188 (13) |
0 restraints |
C18H19NO4 | V = 3268.8 (9) Å3 |
Mr = 313.34 | Z = 8 |
Monoclinic, C2/c | Cu Kα radiation |
a = 19.0036 (16) Å | µ = 0.74 mm−1 |
b = 7.3179 (14) Å | T = 295 K |
c = 23.672 (4) Å | 0.32 × 0.27 × 0.26 mm |
β = 96.802 (10)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.026 |
6084 measured reflections | 3 standard reflections every 190 reflections |
2951 independent reflections | intensity decay: 4% |
2074 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.16 e Å−3 |
2951 reflections | Δρmin = −0.16 e Å−3 |
209 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O14 | 0.15356 (6) | 0.12928 (15) | 0.49143 (5) | 0.0511 (3) | |
O13 | 0.07247 (7) | 0.29172 (17) | 0.40657 (5) | 0.0575 (3) | |
O5 | 0.40130 (7) | 0.77324 (19) | 0.74372 (5) | 0.0647 (4) | |
N | 0.14855 (7) | 0.67340 (19) | 0.60827 (5) | 0.0451 (3) | |
O12 | 0.02905 (7) | 0.64188 (17) | 0.41594 (5) | 0.0562 (4) | |
C11 | 0.08846 (8) | 0.6630 (2) | 0.51210 (7) | 0.0459 (4) | |
H15 | 0.0741 | 0.7834 | 0.5159 | 0.055* | |
C15 | 0.15105 (8) | 0.3970 (2) | 0.55189 (6) | 0.0429 (4) | |
H11 | 0.1773 | 0.3391 | 0.5824 | 0.051* | |
C14 | 0.13334 (8) | 0.3050 (2) | 0.50087 (7) | 0.0414 (4) | |
C8 | 0.21611 (9) | 0.6831 (2) | 0.63793 (6) | 0.0428 (4) | |
C7 | 0.27934 (9) | 0.6005 (2) | 0.62755 (7) | 0.0488 (4) | |
H4 | 0.2813 | 0.5235 | 0.5965 | 0.059* | |
C13 | 0.09214 (8) | 0.3894 (2) | 0.45562 (6) | 0.0430 (4) | |
C12 | 0.06941 (8) | 0.5691 (2) | 0.46185 (7) | 0.0435 (4) | |
C10 | 0.12910 (8) | 0.5758 (2) | 0.55666 (6) | 0.0427 (4) | |
C6 | 0.33859 (10) | 0.6368 (3) | 0.66472 (7) | 0.0519 (4) | |
H3 | 0.3813 | 0.5823 | 0.6589 | 0.062* | |
C5 | 0.33640 (10) | 0.7540 (2) | 0.71127 (7) | 0.0496 (4) | |
C3 | 0.14176 (10) | 0.8679 (2) | 0.68041 (7) | 0.0539 (5) | |
H9 | 0.124 | 0.95 | 0.7052 | 0.065* | |
C18 | 0.20053 (9) | 0.0443 (2) | 0.53514 (7) | 0.0532 (4) | |
H18A | 0.2109 | −0.0777 | 0.5237 | 0.08* | |
H18B | 0.1786 | 0.04 | 0.5696 | 0.08* | |
H18C | 0.2437 | 0.1134 | 0.5415 | 0.08* | |
C4 | 0.27495 (10) | 0.8393 (2) | 0.72137 (7) | 0.0520 (4) | |
H7 | 0.274 | 0.9179 | 0.7521 | 0.062* | |
C2 | 0.10450 (10) | 0.7872 (2) | 0.63464 (7) | 0.0512 (4) | |
H8 | 0.0566 | 0.8057 | 0.6228 | 0.061* | |
C9 | 0.21305 (9) | 0.8044 (2) | 0.68373 (7) | 0.0466 (4) | |
C16 | 0.00926 (10) | 0.8294 (3) | 0.41920 (8) | 0.0597 (5) | |
H16A | −0.0187 | 0.8644 | 0.3844 | 0.09* | |
H16B | 0.0511 | 0.9038 | 0.4248 | 0.09* | |
H16C | −0.0179 | 0.8461 | 0.4505 | 0.09* | |
C17 | 0.10615 (13) | 0.3480 (3) | 0.35877 (8) | 0.0751 (6) | |
H17A | 0.0895 | 0.2739 | 0.3265 | 0.113* | |
H17B | 0.1565 | 0.3342 | 0.3673 | 0.113* | |
H17C | 0.0951 | 0.4738 | 0.3504 | 0.113* | |
C19 | 0.40555 (13) | 0.8959 (3) | 0.78968 (9) | 0.0857 (7) | |
H1A | 0.4531 | 0.8973 | 0.8086 | 0.129* | |
H1B | 0.3736 | 0.858 | 0.8159 | 0.129* | |
H1C | 0.3929 | 1.0162 | 0.7759 | 0.129* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O14 | 0.0641 (7) | 0.0342 (6) | 0.0528 (7) | 0.0029 (5) | −0.0026 (6) | −0.0024 (5) |
O13 | 0.0760 (8) | 0.0458 (7) | 0.0466 (6) | −0.0098 (6) | −0.0091 (6) | −0.0038 (5) |
O5 | 0.0659 (8) | 0.0628 (9) | 0.0605 (8) | −0.0043 (7) | −0.0125 (6) | −0.0102 (7) |
N | 0.0516 (8) | 0.0402 (8) | 0.0423 (7) | 0.0020 (6) | 0.0006 (6) | −0.0044 (6) |
O12 | 0.0620 (8) | 0.0452 (7) | 0.0560 (7) | 0.0041 (6) | −0.0155 (6) | 0.0022 (6) |
C11 | 0.0497 (9) | 0.0362 (9) | 0.0503 (9) | 0.0013 (7) | 0.0003 (7) | −0.0013 (7) |
C15 | 0.0465 (9) | 0.0387 (9) | 0.0420 (8) | −0.0023 (7) | −0.0006 (7) | 0.0026 (7) |
C14 | 0.0443 (8) | 0.0322 (8) | 0.0475 (8) | −0.0049 (7) | 0.0050 (7) | 0.0006 (7) |
C8 | 0.0522 (9) | 0.0359 (9) | 0.0394 (8) | −0.0001 (7) | 0.0009 (7) | −0.0006 (7) |
C7 | 0.0568 (10) | 0.0445 (10) | 0.0446 (8) | 0.0004 (8) | 0.0043 (7) | −0.0065 (7) |
C13 | 0.0468 (9) | 0.0386 (9) | 0.0421 (8) | −0.0093 (7) | −0.0016 (7) | −0.0018 (7) |
C12 | 0.0409 (8) | 0.0398 (9) | 0.0480 (9) | −0.0034 (7) | −0.0027 (7) | 0.0044 (7) |
C10 | 0.0458 (8) | 0.0383 (9) | 0.0431 (8) | −0.0040 (7) | 0.0021 (7) | −0.0025 (7) |
C6 | 0.0531 (10) | 0.0494 (10) | 0.0528 (10) | 0.0010 (8) | 0.0044 (8) | −0.0033 (8) |
C5 | 0.0589 (10) | 0.0424 (10) | 0.0452 (9) | −0.0040 (8) | −0.0040 (8) | 0.0020 (7) |
C3 | 0.0648 (11) | 0.0459 (10) | 0.0505 (9) | 0.0095 (8) | 0.0050 (8) | −0.0088 (8) |
C18 | 0.0551 (10) | 0.0418 (10) | 0.0619 (10) | 0.0023 (8) | 0.0034 (8) | 0.0063 (8) |
C4 | 0.0704 (12) | 0.0417 (10) | 0.0423 (8) | −0.0013 (9) | −0.0001 (8) | −0.0072 (7) |
C2 | 0.0560 (10) | 0.0448 (9) | 0.0523 (9) | 0.0092 (8) | 0.0044 (8) | −0.0017 (8) |
C9 | 0.0608 (10) | 0.0371 (9) | 0.0409 (8) | 0.0014 (8) | 0.0022 (7) | −0.0016 (7) |
C16 | 0.0653 (12) | 0.0456 (11) | 0.0654 (12) | 0.0073 (9) | −0.0046 (9) | 0.0097 (9) |
C17 | 0.1107 (18) | 0.0663 (14) | 0.0487 (10) | 0.0058 (13) | 0.0109 (11) | −0.0032 (10) |
C19 | 0.0995 (17) | 0.0828 (17) | 0.0663 (13) | 0.0018 (14) | −0.0254 (12) | −0.0217 (12) |
O14—C14 | 1.368 (2) | C13—C12 | 1.397 (2) |
O14—C18 | 1.427 (2) | C6—C5 | 1.401 (2) |
O13—C13 | 1.3769 (18) | C6—H3 | 0.93 |
O13—C17 | 1.425 (2) | C5—C4 | 1.370 (2) |
O5—C5 | 1.381 (2) | C3—C2 | 1.357 (2) |
O5—C19 | 1.405 (2) | C3—C9 | 1.426 (2) |
N—C2 | 1.381 (2) | C3—H9 | 0.93 |
N—C8 | 1.390 (2) | C18—H18A | 0.96 |
N—C10 | 1.4255 (19) | C18—H18B | 0.96 |
O12—C12 | 1.3622 (18) | C18—H18C | 0.96 |
O12—C16 | 1.427 (2) | C4—C9 | 1.412 (2) |
C11—C12 | 1.384 (2) | C4—H7 | 0.93 |
C11—C10 | 1.387 (2) | C2—H8 | 0.93 |
C11—H15 | 0.93 | C16—H16A | 0.96 |
C15—C10 | 1.382 (2) | C16—H16B | 0.96 |
C15—C14 | 1.389 (2) | C16—H16C | 0.96 |
C15—H11 | 0.93 | C17—H17A | 0.96 |
C14—C13 | 1.394 (2) | C17—H17B | 0.96 |
C8—C7 | 1.393 (2) | C17—H17C | 0.96 |
C8—C9 | 1.408 (2) | C19—H1A | 0.96 |
C7—C6 | 1.371 (2) | C19—H1B | 0.96 |
C7—H4 | 0.93 | C19—H1C | 0.96 |
C14—O14—C18 | 117.06 (12) | C2—C3—C9 | 107.72 (15) |
C13—O13—C17 | 114.63 (14) | C2—C3—H9 | 126.1 |
C5—O5—C19 | 117.49 (16) | C9—C3—H9 | 126.1 |
C2—N—C8 | 108.29 (13) | O14—C18—H18A | 109.5 |
C2—N—C10 | 125.44 (14) | O14—C18—H18B | 109.5 |
C8—N—C10 | 126.06 (14) | H18A—C18—H18B | 109.5 |
C12—O12—C16 | 117.38 (13) | O14—C18—H18C | 109.5 |
C12—C11—C10 | 119.38 (15) | H18A—C18—H18C | 109.5 |
C12—C11—H15 | 120.3 | H18B—C18—H18C | 109.5 |
C10—C11—H15 | 120.3 | C5—C4—C9 | 118.11 (15) |
C10—C15—C14 | 119.05 (15) | C5—C4—H7 | 120.9 |
C10—C15—H11 | 120.5 | C9—C4—H7 | 120.9 |
C14—C15—H11 | 120.5 | C3—C2—N | 109.65 (16) |
O14—C14—C15 | 123.64 (14) | C3—C2—H8 | 125.2 |
O14—C14—C13 | 115.72 (14) | N—C2—H8 | 125.2 |
C15—C14—C13 | 120.63 (15) | C8—C9—C4 | 119.51 (16) |
N—C8—C7 | 130.78 (15) | C8—C9—C3 | 106.80 (15) |
N—C8—C9 | 107.54 (14) | C4—C9—C3 | 133.69 (16) |
C7—C8—C9 | 121.66 (15) | O12—C16—H16A | 109.5 |
C6—C7—C8 | 117.58 (16) | O12—C16—H16B | 109.5 |
C6—C7—H4 | 121.2 | H16A—C16—H16B | 109.5 |
C8—C7—H4 | 121.2 | O12—C16—H16C | 109.5 |
O13—C13—C14 | 119.30 (15) | H16A—C16—H16C | 109.5 |
O13—C13—C12 | 121.42 (14) | H16B—C16—H16C | 109.5 |
C14—C13—C12 | 119.23 (14) | O13—C17—H17A | 109.5 |
O12—C12—C11 | 123.83 (15) | O13—C17—H17B | 109.5 |
O12—C12—C13 | 115.82 (14) | H17A—C17—H17B | 109.5 |
C11—C12—C13 | 120.35 (15) | O13—C17—H17C | 109.5 |
C15—C10—C11 | 121.32 (15) | H17A—C17—H17C | 109.5 |
C15—C10—N | 119.60 (14) | H17B—C17—H17C | 109.5 |
C11—C10—N | 119.08 (15) | O5—C19—H1A | 109.5 |
C7—C6—C5 | 121.68 (17) | O5—C19—H1B | 109.5 |
C7—C6—H3 | 119.2 | H1A—C19—H1B | 109.5 |
C5—C6—H3 | 119.2 | O5—C19—H1C | 109.5 |
C4—C5—O5 | 125.46 (16) | H1A—C19—H1C | 109.5 |
C4—C5—C6 | 121.44 (16) | H1B—C19—H1C | 109.5 |
O5—C5—C6 | 113.10 (16) |
Experimental details
Crystal data | |
Chemical formula | C18H19NO4 |
Mr | 313.34 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 19.0036 (16), 7.3179 (14), 23.672 (4) |
β (°) | 96.802 (10) |
V (Å3) | 3268.8 (9) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.74 |
Crystal size (mm) | 0.32 × 0.27 × 0.26 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6084, 2951, 2074 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.110, 1.00 |
No. of reflections | 2951 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.16 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
Interaction between C4—H of one molecule and the centroid of the six membered (C4 through C9) aromatic ring of the screw-related molecule |
H··· ring-centroid distance | Angle between the H···ring-centroid line and the aromatic ring normal |
3.035 (1) Å | 5.6 (3) ° |
Acknowledgements
This work was supported in part by funds provided by the University of North Carolina at Charlotte.
References
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fuwa, H. & Sasaki, M. (2009). J. Org. Chem. 74, 212–221. Web of Science CrossRef PubMed CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Li, L. & Martins, A. (2003). Tetrahedron Lett. 44, 5987–5990. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suthar, B., Fowler, A., Jones, D. S. & Ogle, C. A. (2005). Acta Cryst. E61, o607–o608. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The indole core is a common structure observed in a wide variety of biologically active compounds and pharmaceutical products (Li & Martins, 2003). Indole structures are considered as privileged structure motifs, due to their ability to bind many receptors within the body (Fuwa & Sasaki, 2009). As a result, there has been a great deal of research dedicated to incorporating the indole functionality in the design and synthesis of novel anti-mitotic compounds for the treatment of cancer. The title compound was prepared as an indole derivative with possible anti-mitotic properties.
The structure of the title compound is shown in Fig. 1. The plane of the indole ring and the plane of the trimethoxyphenyl ring make a 45.35 (5)° angle with one another. The deviation of methoxy carbon C19 from the indole mean plane is 0.050 (3) Å. The deviations of methoxy carbons C16, C17, and C18 from the plane of the phenyl ring are 0.065 (3) Å, 1.157 (3) Å, and 0.138 (3) Å, respectively. Molecules related by a two-fold screw axis exhibit arene C—H··· arene π interactions, as shown in Fig. 2. The interaction is between C4—H of one molecule and the six membered (C4 through C9) aromatic ring of the screw-related molecule. The H··· ring-centroid distance is 3.035 (1) Å, and the H··· ring-centroid line makes an angle of 5.6 (3)° with the normal to the plane of the ring.
In a comparable structure, 1-(3,4,5-Trimethoxyphenyl)naphthalene (Suthar et al., 2005), the angle between the planes of the napthylene ring and the trimethoxyphenyl ring is 68.19 (10)°.