organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6,14,17-Tetra­meth­oxy-22,23-di­phenyl-1,10,12,21-tetra­azahexa­cyclo[19.2.1.02,7.010,23.012,22.013,18]tetracosa-2(7),3,5,13(18),14,16-hexa­ene-11,24-di­thione

aKey Laboratory of Pesticides and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: yanyang20100203@gmail.com

(Received 26 April 2010; accepted 9 June 2010; online 16 June 2010)

The title compound, C36H34N4O4S2, is a thio­glycoluril derivative, which bears two phenyl substituents on its convex face and two meth­oxy substituted o-xylylenes as sidewalls of the molecular clip. There is one half-mol­ecule in the asymmetric unit: a crystallographic twofold axis generates the complete molecule. The non-planar seven-membered rings adopt chair conformations, while the two five-membered rings exhibit envelope conformations and make a dihedral angle of 68.46 (12)°. The O atoms of the meth­oxy groups are coplanar with the six-membered o-xylylene sidewalls.

Related literature

For related structures, see: Broan et al. (1989[Broan, C. J., Butler, A. R., Reed, D. & Sadler, I. H. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 731-740.]); Cao et al. (2009[Cao, L., Ding, J., Yin, G., Gao, M., Li, Y. & Wu, A. (2009). Synlett, pp. 1445-1448.]); Wang et al. (2006[Wang, Z., Zhou, B., Chen, Y., Yin, G., Li, Y., Wu, A. & Isaacs, L. (2006). J. Org. Chem. 71, 4502-4508.]); Wang & Xi (2009[Wang, Z. & Xi, H. (2009). Acta Cryst. E65, o1426.]); Wu & Sun, (2009[Wu, Y. & Sun, Y. (2009). Acta Cryst. E65, o1715.]). For further synthetic details, see: Broan et al. (1989[Broan, C. J., Butler, A. R., Reed, D. & Sadler, I. H. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 731-740.]); Wu et al. (2002[Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem. 67, 5817-5830.]). The rigid concave shape of glycoluril makes it a versatile building block in supramolecular chemistry, see: Gao et al. (2009[Gao, M., Cao, L., Wang, Z., Sun, J., She, N. & Wu, A. (2009). Synlett, pp. 315-319.]); Rowan et al. (1999[Rowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995-1006.]); Hof et al. (2002[Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Angew. Chem. Int. Ed. 41, 1488-1508.]); Kolbel & Menger (2001[Kolbel, M. & Menger, F. M. (2001). Chem. Commun. pp. 275-276.]); Wu et al. (2002[Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem. 67, 5817-5830.]); Kang et al. (2004[Kang, J., Jo, J.-H. & In, S. (2004). Tetrahedron Lett. 45, 5225-5228.]).

[Scheme 1]

Experimental

Crystal data
  • C36H34N4O4S2

  • Mr = 650.79

  • Monoclinic, C 2/c

  • a = 17.9993 (15) Å

  • b = 12.5069 (11) Å

  • c = 16.0934 (12) Å

  • β = 115.961 (3)°

  • V = 3257.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 13570 measured reflections

  • 3546 independent reflections

  • 2279 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.162

  • S = 0.98

  • 3546 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The rigid concave shape of glycoluril makes it a versatile building block to construct various supramolecular objects (Gao et al., 2009), including molecular clips and molecular baskets (Rowan et al., 1999), molecular capsules (Hof et al., 2002), xerogels (Kolbel & Menger, 2001), the cucurbit[n]uril family (Wu et al., 2002), and anion-binding receptors (Kang et al., 2004). Based on the previous studies (Broan et al., 1989; Cao et al., 2009; Wang et al., 2006; Wang & Xi, 2009; Wu & Sun, 2009), we report here the structure of the title thioglycoluril derivative (Fig. 1), which is a potential receptor in supramolecular chemistry.

There is one half-molecule in the asymmetric unit. The non-planar seven-membered rings adopt chair conformations, while the two five-membered rings have envelope conformation and the dihedral angle between them is 68.46°. The methoxy groups on sidewalls are coplanar with the six-membered o-xylylene sidewalls. The molecule contains three nonclassical intramolecular C—H···S, C—H···O and C—H···N hydrogen bonds, and its crystal structure is stabilized mostly by intermolecular C—H···π interactions (Table 1).

Related literature top

For related structures, see: Broan et al. (1989); Cao et al. (2009); Wang et al. (2006); Wang & Xi (2009); Wu & Sun, (2009). For further synthetic details, see: Broan et al. (1989); Wu et al. (2002). The rigid concave shape of glycoluril makes it a versatile building block, see: Gao et al. (2009); Rowan et al. (1999); Hof et al. (2002); Kolbel & Menger (2001); Wu et al. (2002); Kang et al. (2004).

Experimental top

The thioglycoluril was synthesized according to a literature procedure, see : Broan et al., (1989). Preparation of the title compound: A solution of thioglycoluril (326 mg, 1.00 mmol), paraformaldehyde (120 mg, 4.00 mmol) and 1,4-dimethoxybenzene (304 mg, 2.20 mmol) in TFA (5 ml) was stirred and heated at reflux for 6 h. After rotary evaporation the residue was chromatographed to yield the tile compound (521 mg, 0.80 mmol,80%). Crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane-methanol (1:2) solution of the title compound under 293 K.

Refinement top

All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93-0.98 Å and Uĩso~(H) = 1.2U~eq~(C) or Uĩso~(H) = 1.5U~eq~(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing of (I) with C—H···π interactions drawn as dashed lines showing the formation of a one-dimensional chain.
3,6,14,17-Tetramethoxy-22,23-diphenyl-1,10,12,21-tetraazahexacyclo[19.2.1.02,7.010,23.012,22.013,18]tetracosa-2(7),3,5,13 (18),14,16-hexaene-11,24-dithione top
Crystal data top
C36H34N4O4S2F(000) = 1368
Mr = 650.79Dx = 1.327 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2697 reflections
a = 17.9993 (15) Åθ = 2.5–21.3°
b = 12.5069 (11) ŵ = 0.21 mm1
c = 16.0934 (12) ÅT = 298 K
β = 115.961 (3)°Block, colorless
V = 3257.3 (5) Å30.23 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2279 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 27.0°, θmin = 2.1°
phi and ω scansh = 2213
13570 measured reflectionsk = 1515
3546 independent reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0878P)2]
where P = (Fo2 + 2Fc2)/3
3546 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C36H34N4O4S2V = 3257.3 (5) Å3
Mr = 650.79Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.9993 (15) ŵ = 0.21 mm1
b = 12.5069 (11) ÅT = 298 K
c = 16.0934 (12) Å0.23 × 0.20 × 0.10 mm
β = 115.961 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2279 reflections with I > 2σ(I)
13570 measured reflectionsRint = 0.067
3546 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 0.98Δρmax = 0.29 e Å3
3546 reflectionsΔρmin = 0.24 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11451 (4)0.22118 (5)0.14339 (5)0.0528 (3)
N10.09215 (11)0.31734 (13)0.27979 (13)0.0335 (5)
N20.00738 (11)0.34780 (13)0.14082 (13)0.0325 (4)
C130.07957 (13)0.50126 (16)0.32973 (15)0.0343 (5)
C90.16813 (14)0.27755 (17)0.35521 (17)0.0388 (6)
H9A0.19700.33710.39490.047*
H9B0.20360.24890.32940.047*
C120.03855 (13)0.39284 (16)0.29759 (15)0.0306 (5)
C100.06573 (14)0.29489 (16)0.18917 (16)0.0326 (5)
O20.06197 (14)0.16264 (16)0.57355 (15)0.0713 (6)
O10.24132 (13)0.08009 (14)0.37734 (15)0.0683 (6)
C10.15415 (14)0.19204 (17)0.41322 (17)0.0393 (6)
C20.10798 (15)0.21274 (17)0.46227 (17)0.0406 (6)
C60.19350 (16)0.09225 (18)0.42349 (19)0.0477 (7)
C180.13789 (15)0.53676 (19)0.30210 (19)0.0497 (7)
H180.15600.49160.26880.060*
C110.06462 (15)0.31850 (18)0.04628 (16)0.0392 (6)
H11A0.03430.31570.00920.047*
H11B0.10600.37420.02090.047*
C30.10368 (17)0.1344 (2)0.52320 (19)0.0512 (7)
C140.05429 (16)0.56979 (18)0.37978 (18)0.0463 (7)
H140.01500.54690.39880.056*
C40.14195 (17)0.0364 (2)0.5309 (2)0.0578 (8)
H40.13790.01560.57010.069*
C170.16966 (18)0.6394 (2)0.3237 (2)0.0655 (9)
H170.20860.66310.30450.079*
C50.18588 (18)0.0156 (2)0.4811 (2)0.0564 (8)
H50.21080.05080.48630.068*
C150.0865 (2)0.6717 (2)0.4019 (2)0.0638 (9)
H150.06930.71700.43600.077*
C160.1438 (2)0.7055 (2)0.3733 (2)0.0731 (10)
H160.16540.77420.38780.088*
C70.2729 (2)0.0224 (2)0.3750 (3)0.0859 (11)
H7A0.29240.05500.43480.129*
H7B0.31780.01620.35830.129*
H7C0.23010.06580.33020.129*
C80.0599 (2)0.0907 (3)0.6401 (2)0.0865 (11)
H8A0.02410.03190.60940.130*
H8B0.03960.12690.67870.130*
H8C0.11460.06430.67750.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0520 (5)0.0520 (4)0.0612 (5)0.0130 (3)0.0311 (4)0.0081 (3)
N10.0300 (11)0.0293 (9)0.0435 (12)0.0043 (7)0.0181 (9)0.0014 (8)
N20.0341 (11)0.0273 (9)0.0390 (11)0.0020 (8)0.0189 (9)0.0016 (8)
C130.0316 (13)0.0300 (11)0.0397 (13)0.0029 (9)0.0141 (10)0.0006 (9)
C90.0268 (13)0.0385 (13)0.0466 (14)0.0035 (10)0.0118 (11)0.0042 (10)
C120.0317 (12)0.0264 (10)0.0391 (12)0.0013 (9)0.0205 (10)0.0006 (9)
C100.0327 (13)0.0270 (11)0.0395 (14)0.0012 (9)0.0170 (11)0.0011 (9)
O20.0922 (16)0.0662 (13)0.0746 (14)0.0174 (11)0.0543 (13)0.0311 (11)
O10.0756 (15)0.0481 (11)0.0968 (17)0.0248 (10)0.0521 (13)0.0162 (10)
C10.0328 (14)0.0343 (12)0.0433 (14)0.0000 (10)0.0097 (11)0.0030 (10)
C20.0390 (14)0.0331 (12)0.0430 (14)0.0015 (10)0.0118 (12)0.0037 (10)
C60.0452 (16)0.0364 (13)0.0582 (17)0.0053 (11)0.0197 (13)0.0014 (11)
C180.0428 (16)0.0428 (14)0.0692 (19)0.0048 (11)0.0300 (14)0.0017 (12)
C110.0397 (14)0.0408 (13)0.0357 (13)0.0020 (10)0.0153 (11)0.0017 (10)
C30.0549 (18)0.0474 (15)0.0536 (17)0.0009 (13)0.0259 (14)0.0083 (12)
C140.0582 (17)0.0334 (13)0.0518 (16)0.0035 (11)0.0284 (14)0.0037 (11)
C40.063 (2)0.0437 (15)0.0596 (18)0.0013 (13)0.0207 (16)0.0190 (13)
C170.0486 (18)0.0531 (17)0.091 (2)0.0183 (14)0.0267 (17)0.0117 (16)
C50.065 (2)0.0345 (14)0.0639 (19)0.0073 (12)0.0226 (16)0.0073 (13)
C150.090 (2)0.0359 (14)0.0624 (19)0.0065 (15)0.0304 (17)0.0115 (13)
C160.084 (3)0.0387 (16)0.080 (2)0.0232 (16)0.021 (2)0.0042 (15)
C70.112 (3)0.055 (2)0.113 (3)0.0199 (19)0.070 (3)0.0035 (18)
C80.099 (3)0.095 (3)0.076 (2)0.009 (2)0.048 (2)0.036 (2)
Geometric parameters (Å, º) top
S1—C101.652 (2)C6—C51.381 (4)
N1—C101.351 (3)C18—C171.386 (4)
N1—C91.462 (3)C18—H180.9300
N1—C121.465 (3)C11—C2i1.511 (3)
N2—C101.371 (3)C11—H11A0.9700
N2—C12i1.450 (3)C11—H11B0.9700
N2—C111.462 (3)C3—C41.384 (4)
C13—C181.381 (3)C14—C151.381 (3)
C13—C141.382 (3)C14—H140.9300
C13—C121.522 (3)C4—C51.375 (4)
C9—C11.511 (3)C4—H40.9300
C9—H9A0.9700C17—C161.364 (4)
C9—H9B0.9700C17—H170.9300
C12—N2i1.450 (3)C5—H50.9300
C12—C12i1.553 (4)C15—C161.369 (4)
O2—C31.370 (3)C15—H150.9300
O2—C81.412 (3)C16—H160.9300
O1—C61.369 (3)C7—H7A0.9600
O1—C71.410 (3)C7—H7B0.9600
C1—C21.398 (3)C7—H7C0.9600
C1—C61.409 (3)C8—H8A0.9600
C2—C31.412 (3)C8—H8B0.9600
C2—C11i1.511 (3)C8—H8C0.9600
C10—N1—C9125.79 (19)N2—C11—H11A108.6
C10—N1—C12113.23 (17)C2i—C11—H11A108.6
C9—N1—C12120.91 (18)N2—C11—H11B108.6
C10—N2—C12i111.24 (18)C2i—C11—H11B108.6
C10—N2—C11122.26 (18)H11A—C11—H11B107.6
C12i—N2—C11120.09 (18)O2—C3—C4123.7 (2)
C18—C13—C14118.6 (2)O2—C3—C2116.3 (2)
C18—C13—C12120.1 (2)C4—C3—C2120.0 (3)
C14—C13—C12121.1 (2)C15—C14—C13121.0 (3)
N1—C9—C1113.92 (19)C15—C14—H14119.5
N1—C9—H9A108.8C13—C14—H14119.5
C1—C9—H9A108.8C5—C4—C3120.4 (2)
N1—C9—H9B108.8C5—C4—H4119.8
C1—C9—H9B108.8C3—C4—H4119.8
H9A—C9—H9B107.7C16—C17—C18120.0 (3)
N2i—C12—N1111.61 (16)C16—C17—H17120.0
N2i—C12—C13112.90 (18)C18—C17—H17120.0
N1—C12—C13112.20 (18)C4—C5—C6120.8 (2)
N2i—C12—C12i103.2 (2)C4—C5—H5119.6
N1—C12—C12i100.82 (17)C6—C5—H5119.6
C13—C12—C12i115.23 (12)C16—C15—C14119.4 (3)
N1—C10—N2108.02 (18)C16—C15—H15120.3
N1—C10—S1126.35 (17)C14—C15—H15120.3
N2—C10—S1125.57 (17)C17—C16—C15120.7 (3)
C3—O2—C8119.2 (2)C17—C16—H16119.7
C6—O1—C7118.2 (2)C15—C16—H16119.7
C2—C1—C6119.4 (2)O1—C7—H7A109.5
C2—C1—C9121.2 (2)O1—C7—H7B109.5
C6—C1—C9119.2 (2)H7A—C7—H7B109.5
C1—C2—C3119.4 (2)O1—C7—H7C109.5
C1—C2—C11i121.4 (2)H7A—C7—H7C109.5
C3—C2—C11i119.2 (2)H7B—C7—H7C109.5
O1—C6—C5123.9 (2)O2—C8—H8A109.5
O1—C6—C1116.0 (2)O2—C8—H8B109.5
C5—C6—C1120.0 (3)H8A—C8—H8B109.5
C13—C18—C17120.3 (3)O2—C8—H8C109.5
C13—C18—H18119.8H8A—C8—H8C109.5
C17—C18—H18119.8H8B—C8—H8C109.5
N2—C11—C2i114.50 (19)
C10—N1—C9—C1106.3 (3)C7—O1—C6—C511.7 (4)
C12—N1—C9—C177.1 (3)C7—O1—C6—C1171.6 (3)
C10—N1—C12—N2i122.1 (2)C2—C1—C6—O1176.5 (2)
C9—N1—C12—N2i60.9 (2)C9—C1—C6—O11.2 (3)
C10—N1—C12—C13110.1 (2)C2—C1—C6—C50.4 (4)
C9—N1—C12—C1366.9 (2)C9—C1—C6—C5175.7 (2)
C10—N1—C12—C12i13.1 (2)C14—C13—C18—C170.5 (4)
C9—N1—C12—C12i169.92 (18)C12—C13—C18—C17173.8 (2)
C18—C13—C12—N2i155.7 (2)C10—N2—C11—C2i70.0 (3)
C14—C13—C12—N2i30.1 (3)C12i—N2—C11—C2i79.4 (2)
C18—C13—C12—N128.6 (3)C8—O2—C3—C42.6 (4)
C14—C13—C12—N1157.3 (2)C8—O2—C3—C2175.9 (3)
C18—C13—C12—C12i86.0 (3)C1—C2—C3—O2175.8 (2)
C14—C13—C12—C12i88.1 (3)C11i—C2—C3—O22.3 (4)
C9—N1—C10—N2179.57 (19)C1—C2—C3—C42.8 (4)
C12—N1—C10—N22.7 (2)C11i—C2—C3—C4179.0 (2)
C9—N1—C10—S12.1 (3)C18—C13—C14—C150.0 (4)
C12—N1—C10—S1174.75 (16)C12—C13—C14—C15174.3 (2)
C12i—N2—C10—N110.2 (2)O2—C3—C4—C5177.0 (3)
C11—N2—C10—N1162.05 (19)C2—C3—C4—C51.5 (4)
C12i—N2—C10—S1172.29 (15)C13—C18—C17—C160.6 (4)
C11—N2—C10—S120.5 (3)C3—C4—C5—C60.8 (4)
N1—C9—C1—C261.3 (3)O1—C6—C5—C4174.9 (2)
N1—C9—C1—C6123.5 (2)C1—C6—C5—C41.8 (4)
C6—C1—C2—C31.8 (4)C13—C14—C15—C160.5 (4)
C9—C1—C2—C3173.4 (2)C18—C17—C16—C150.2 (5)
C6—C1—C2—C11i180.0 (2)C14—C15—C16—C170.4 (5)
C9—C1—C2—C11i4.8 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg1i0.972.703.540145
C11—H11A···O2i0.972.262.757 (3)111
C14—H14···N2i0.932.562.879 (3)101
C18—H18···N10.932.512.842 (3)102
C9—H9B···S10.972.733.189 (3)110
C9—H9B···O10.972.252.748 (3)111
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC36H34N4O4S2
Mr650.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.9993 (15), 12.5069 (11), 16.0934 (12)
β (°) 115.961 (3)
V3)3257.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.23 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13570, 3546, 2279
Rint0.067
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.162, 0.98
No. of reflections3546
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg1i0.9712.7023.540144.73
C11—H11A···O2i0.972.262.757 (3)111
C14—H14···N2i0.932.562.879 (3)101
C18—H18···N10.932.512.842 (3)102
C9—H9B···S10.972.733.189 (3)110
C9—H9B···O10.972.252.748 (3)111
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The author thanks Professor An-Xin Wu for technical assistance and Dr Meng Xiang-Gao for the data collection.

References

First citationBroan, C. J., Butler, A. R., Reed, D. & Sadler, I. H. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 731–740.  CrossRef Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, L., Ding, J., Yin, G., Gao, M., Li, Y. & Wu, A. (2009). Synlett, pp. 1445–1448.  Google Scholar
First citationGao, M., Cao, L., Wang, Z., Sun, J., She, N. & Wu, A. (2009). Synlett, pp. 315–319.  Google Scholar
First citationHof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Angew. Chem. Int. Ed. 41, 1488–1508.  Web of Science CrossRef CAS Google Scholar
First citationKang, J., Jo, J.-H. & In, S. (2004). Tetrahedron Lett. 45, 5225–5228.  Web of Science CrossRef CAS Google Scholar
First citationKolbel, M. & Menger, F. M. (2001). Chem. Commun. pp. 275–276.  Web of Science CrossRef Google Scholar
First citationRowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995–1006.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. & Xi, H. (2009). Acta Cryst. E65, o1426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z., Zhou, B., Chen, Y., Yin, G., Li, Y., Wu, A. & Isaacs, L. (2006). J. Org. Chem. 71, 4502–4508.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem. 67, 5817–5830.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, Y. & Sun, Y. (2009). Acta Cryst. E65, o1715.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds