organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-[2-(4-Chloro­phen­yl)hydrazin-1-yl­­idene]-4,4,4-tri­fluoro-3-oxobutanal

aFaculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: tigerhuo1974@yahoo.com.cn

(Received 9 April 2010; accepted 8 June 2010; online 16 June 2010)

The title compound, C10H6ClF3N2O2, was synthesized by coupling 4-dimethyl­amino-1,1,1-trifluoro­but-3-en-2-one with 4-chloro­benzene­diazo­nium chloride. It crystallizes with two mol­ecules in the asymmetric unit, which form two similar centrosymmetric dimers via hydrogen bonds. Extensive electron delocalization and intra­molecular N—H⋯O hydrogen bonds are responsible for a planar conformation of the mol­ecules (maximum deviations = 0.010 and −0.015 Å for the two molecules). In addition to hydrogen bonds, ππ stacking inter­actions with centroid–centroid distances of 3.604 (2) and 3.583 (2) Å contribute to the stability of the crystal structure.

Related literature

For the crystal structure of the isostructural iodo derivative, see: Jiang & Zhu (2008[Jiang, H. & Zhu, S. (2008). J. Fluorine Chem. 129, 40-44.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6ClF3N2O2

  • Mr = 278.62

  • Triclinic, [P \overline 1]

  • a = 7.6440 (4) Å

  • b = 7.7139 (4) Å

  • c = 19.4221 (10) Å

  • α = 86.134 (1)°

  • β = 81.706 (1)°

  • γ = 88.999 (1)°

  • V = 1130.63 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 173 K

  • 0.44 × 0.38 × 0.35 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.880

  • 8820 measured reflections

  • 4387 independent reflections

  • 3577 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.111

  • S = 1.05

  • 4387 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O8 0.88 2.01 2.6746 (18) 131
N29—H29⋯O26 0.88 2.03 2.679 (2) 130
N29—H29⋯O26i 0.88 2.42 3.2159 (19) 150
C27—H27⋯O6ii 0.95 2.59 3.491 (2) 158
C36—H36⋯O26i 0.95 2.52 3.323 (3) 143
Symmetry codes: (i) -x, -y, -z+2; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Herein, we report the crystal structure of (2E)-2-[2-(4-chlorophenyl)]hydrazinylidene]-4,4,4-trifluoro-3-oxobutanal, which was prepared via a reaction of 4-(dimethylamino)-1,1,1-trifluorobut-3-en-2-one with diazonium salt according to the procedure reported by Zhu et al. (2008). The title compound, 3, has been characterized by ESI-MS, NMR, FTIR spectroscopy and elemental analysis. Here we report the crystal structure of 3. It crystallizes with two almost identical molecules in the asymmetric unit. The molecule is almost planar except for the –CF3 group F atoms. There are some supramolecular interactions in the compound 3. The intramolecular N—H···O hydrogen bonds are N11—H11···O8 and N29—H29···O26 (Table 1) together with strong π-π stacking interactions [centroid-to-centroid distance = 3.604 (2) Å; 3.583 (2) Å] that contribute to the stability of the structure.

Related literature top

For the crystal structure of the isostructural iodo derivative, see: Jiang & Zhu (2008).

Experimental top

The title compound was prepared via the reaction of 4-(dimethylamino)-1,1,1-trifluorobut-3-en-2-one with diazonium salt according to the procedure reported by Zhu et al. (2008). A solution of the p-chloroaniline 2 (1.28 g, 10 mmol) in a solution of 3 M HCl (5 ml) was diazotized at 0 °C by slow addition of a solution of NaNO2 (0.7 g, 10 mmol) in 5 ml H2O. The solution of aniline diazonium salt was added dropwise to a mixture of compound 1 (see scheme) (1.67 g, 10 mmol) with NaOH (1.6 g, 40 mmol) and ethanol (50 ml) in ice-salt bath. The reaction mixture was stirred for 1 h at the same temperature, then TLC analysis showed that the reaction had finished. The resulting precipitate was filtered off. Purification by column chromatography on silica gel (hexane:AcOEt = 30:1) gave red solid 3 in 75% yield. mp 418-420 K. 1H NMR (CDCl3, 300 MHz) δ14.87 (1H, s, NH), 10.03 (1H, s, CHO), 7.45 (4H, s, Ph), 19F NMR (CDCl3): -71.50 (3 F, s, CF3). IR (KBr, cm-1): 2924, 1699, 1526, 1308, 1187, 1157, 897; ESI-MS m/z: 279.9 ([M+H]+); Elemental analysis: found C: 43.13, H: 2.29, N: 10.07; calculated for (C10H6ClF3N2O2) C: 43.11 H: 2.17 N: 10.05 (%). 20 mg of compound 3 was dissolved in 10 ml (EtOAc:pPetroleum ether = 1:8) and the solution was kept at room temperature for 6 d, natural evaporation gave red single crystals of compound 3 suitable for X-ray analysis.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with all C—H = 0.95 Å, N—H = 0.88 Å and with Uĩso(H) = 1.2Ueq(C), Uĩso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthesis of (E)-2-(2-(4-Chlophenyl)hydrazono)-4,4,4-trifluoro-3-oxobutanal
[Figure 2] Fig. 2. View of the asymmetric unit in the title compound.
(2E)-2-[2-(4-Chlorophenyl)hydrazin-1-ylidene]-4,4,4-trifluoro- 3-oxobutanal top
Crystal data top
C10H6ClF3N2O2Z = 4
Mr = 278.62F(000) = 560
Triclinic, P1Dx = 1.637 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6440 (4) ÅCell parameters from 8820 reflections
b = 7.7139 (4) Åθ = 1.1–26.0°
c = 19.4221 (10) ŵ = 0.37 mm1
α = 86.134 (1)°T = 173 K
β = 81.706 (1)°Block, yellow
γ = 88.999 (1)°0.44 × 0.38 × 0.35 mm
V = 1130.63 (10) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4387 independent reflections
Radiation source: fine-focus sealed tube3577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 26.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.853, Tmax = 0.880k = 99
8820 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.2643P]
where P = (Fo2 + 2Fc2)/3
4387 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H6ClF3N2O2γ = 88.999 (1)°
Mr = 278.62V = 1130.63 (10) Å3
Triclinic, P1Z = 4
a = 7.6440 (4) ÅMo Kα radiation
b = 7.7139 (4) ŵ = 0.37 mm1
c = 19.4221 (10) ÅT = 173 K
α = 86.134 (1)°0.44 × 0.38 × 0.35 mm
β = 81.706 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4387 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3577 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.880Rint = 0.017
8820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
4387 reflectionsΔρmin = 0.23 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.41928 (17)0.14617 (18)0.81983 (6)0.0571 (4)
F20.43024 (15)0.08932 (15)0.75482 (6)0.0461 (3)
F30.36230 (15)0.15031 (16)0.71485 (6)0.0464 (3)
C40.4666 (3)0.0800 (3)0.75480 (10)0.0373 (4)
C50.6660 (2)0.1153 (2)0.73104 (9)0.0312 (4)
O60.7481 (2)0.19276 (19)0.77259 (7)0.0478 (4)
C70.7407 (2)0.0528 (2)0.66091 (9)0.0271 (4)
O80.99555 (16)0.04137 (17)0.57727 (7)0.0362 (3)
C90.9266 (2)0.0873 (2)0.63594 (10)0.0315 (4)
H90.99630.14780.66660.038*
N100.62895 (18)0.03374 (17)0.62508 (7)0.0258 (3)
N110.67864 (18)0.09586 (17)0.56194 (7)0.0255 (3)
H110.78790.08040.54170.031*
C120.5552 (2)0.18901 (19)0.52582 (8)0.0244 (3)
C130.3785 (2)0.2002 (2)0.55450 (9)0.0287 (4)
H130.33840.14590.59920.034*
C140.2614 (2)0.2914 (2)0.51727 (10)0.0316 (4)
H140.13980.29890.53590.038*
C150.3231 (2)0.3710 (2)0.45304 (9)0.0290 (4)
Cl160.17686 (7)0.48727 (6)0.40584 (3)0.04196 (15)
C170.4984 (2)0.3604 (2)0.42417 (9)0.0296 (4)
H170.53820.41580.37960.036*
C180.6156 (2)0.2678 (2)0.46094 (9)0.0287 (4)
H180.73670.25850.44170.034*
F190.14628 (17)0.47780 (18)0.67586 (6)0.0541 (3)
F200.32094 (14)0.45871 (15)0.75272 (6)0.0422 (3)
F210.06433 (17)0.57720 (15)0.77605 (7)0.0525 (3)
C220.1519 (2)0.4478 (3)0.74380 (10)0.0368 (4)
C230.0728 (2)0.2668 (2)0.76964 (10)0.0344 (4)
O240.0173 (2)0.1827 (2)0.72714 (8)0.0522 (4)
C250.0720 (2)0.2110 (2)0.84266 (9)0.0302 (4)
O260.0099 (2)0.01845 (17)0.92755 (7)0.0438 (3)
C270.0109 (2)0.0371 (2)0.86723 (10)0.0367 (4)
H270.02940.03550.83530.044*
N280.13267 (18)0.32559 (19)0.88092 (7)0.0287 (3)
N290.13874 (19)0.29289 (19)0.94648 (7)0.0295 (3)
H290.10230.19240.96730.035*
C300.2050 (2)0.4213 (2)0.98458 (9)0.0287 (4)
C310.2464 (2)0.5856 (2)0.95348 (10)0.0346 (4)
H310.23050.61320.90640.042*
C320.3108 (3)0.7084 (3)0.99149 (11)0.0391 (4)
H320.34000.82120.97070.047*
C330.3327 (2)0.6661 (3)1.06009 (10)0.0367 (4)
Cl340.41607 (7)0.82172 (8)1.10737 (3)0.05462 (18)
C350.2909 (3)0.5042 (3)1.09141 (10)0.0397 (4)
H350.30580.47731.13870.048*
C360.2265 (2)0.3804 (3)1.05305 (10)0.0355 (4)
H360.19740.26771.07390.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0558 (8)0.0763 (9)0.0332 (7)0.0031 (7)0.0083 (6)0.0094 (6)
F20.0472 (7)0.0443 (7)0.0457 (7)0.0121 (5)0.0005 (5)0.0122 (5)
F30.0399 (6)0.0555 (7)0.0441 (7)0.0124 (5)0.0044 (5)0.0055 (5)
C40.0405 (11)0.0413 (10)0.0281 (9)0.0002 (8)0.0008 (8)0.0012 (8)
C50.0361 (9)0.0271 (8)0.0306 (9)0.0005 (7)0.0056 (8)0.0019 (7)
O60.0513 (9)0.0526 (9)0.0378 (8)0.0088 (7)0.0084 (7)0.0115 (7)
C70.0293 (8)0.0254 (8)0.0274 (9)0.0005 (7)0.0058 (7)0.0031 (6)
O80.0294 (7)0.0437 (7)0.0344 (7)0.0009 (6)0.0017 (5)0.0011 (6)
C90.0299 (9)0.0311 (9)0.0344 (10)0.0017 (7)0.0068 (8)0.0031 (7)
N100.0293 (7)0.0225 (7)0.0262 (7)0.0011 (6)0.0056 (6)0.0028 (5)
N110.0238 (7)0.0257 (7)0.0267 (7)0.0001 (5)0.0031 (6)0.0007 (6)
C120.0289 (8)0.0188 (7)0.0266 (8)0.0002 (6)0.0071 (7)0.0035 (6)
C130.0307 (9)0.0256 (8)0.0290 (9)0.0008 (7)0.0018 (7)0.0008 (7)
C140.0269 (9)0.0285 (9)0.0398 (10)0.0013 (7)0.0044 (7)0.0050 (7)
C150.0344 (9)0.0235 (8)0.0318 (9)0.0047 (7)0.0129 (7)0.0052 (7)
Cl160.0452 (3)0.0363 (3)0.0482 (3)0.0099 (2)0.0215 (2)0.0017 (2)
C170.0369 (9)0.0266 (8)0.0255 (9)0.0000 (7)0.0056 (7)0.0012 (7)
C180.0282 (8)0.0281 (8)0.0294 (9)0.0005 (7)0.0020 (7)0.0028 (7)
F190.0567 (8)0.0720 (9)0.0322 (6)0.0073 (6)0.0087 (5)0.0149 (6)
F200.0355 (6)0.0476 (6)0.0424 (6)0.0043 (5)0.0058 (5)0.0071 (5)
F210.0563 (8)0.0395 (6)0.0557 (8)0.0145 (6)0.0049 (6)0.0082 (6)
C220.0339 (10)0.0426 (11)0.0326 (10)0.0036 (8)0.0030 (8)0.0024 (8)
C230.0291 (9)0.0417 (10)0.0321 (10)0.0027 (8)0.0039 (7)0.0026 (8)
O240.0641 (10)0.0588 (9)0.0367 (8)0.0119 (8)0.0154 (7)0.0049 (7)
C250.0281 (9)0.0313 (9)0.0302 (9)0.0021 (7)0.0015 (7)0.0020 (7)
O260.0559 (9)0.0368 (7)0.0379 (8)0.0070 (6)0.0066 (6)0.0050 (6)
C270.0389 (10)0.0337 (10)0.0374 (11)0.0014 (8)0.0037 (8)0.0041 (8)
N280.0245 (7)0.0328 (8)0.0277 (8)0.0039 (6)0.0008 (6)0.0002 (6)
N290.0295 (7)0.0310 (8)0.0268 (8)0.0002 (6)0.0011 (6)0.0006 (6)
C300.0215 (8)0.0346 (9)0.0291 (9)0.0017 (7)0.0002 (7)0.0030 (7)
C310.0340 (9)0.0383 (10)0.0303 (9)0.0017 (8)0.0014 (8)0.0003 (8)
C320.0363 (10)0.0373 (10)0.0424 (11)0.0042 (8)0.0012 (8)0.0028 (8)
C330.0253 (9)0.0460 (11)0.0396 (11)0.0003 (8)0.0028 (8)0.0137 (8)
Cl340.0433 (3)0.0645 (4)0.0607 (4)0.0052 (3)0.0112 (3)0.0283 (3)
C350.0346 (10)0.0545 (12)0.0308 (10)0.0021 (9)0.0076 (8)0.0049 (9)
C360.0354 (10)0.0397 (10)0.0307 (10)0.0005 (8)0.0051 (8)0.0023 (8)
Geometric parameters (Å, º) top
F1—C41.332 (2)F19—C221.331 (2)
F2—C41.331 (2)F20—C221.333 (2)
F3—C41.335 (2)F21—C221.333 (2)
C4—C51.553 (3)C22—C231.553 (3)
C5—O61.213 (2)C23—O241.210 (2)
C5—C71.453 (2)C23—C251.453 (3)
C7—N101.322 (2)C25—N281.324 (2)
C7—C91.459 (2)C25—C271.455 (2)
O8—C91.217 (2)O26—C271.219 (2)
C9—H90.9500C27—H270.9500
N10—N111.2924 (19)N28—N291.289 (2)
N11—C121.414 (2)N29—C301.418 (2)
N11—H110.8800N29—H290.8800
C12—C181.382 (2)C30—C361.378 (3)
C12—C131.388 (2)C30—C311.388 (3)
C13—C141.384 (2)C31—C321.378 (3)
C13—H130.9500C31—H310.9500
C14—C151.376 (3)C32—C331.383 (3)
C14—H140.9500C32—H320.9500
C15—C171.380 (3)C33—C351.374 (3)
C15—Cl161.7444 (17)C33—Cl341.7418 (19)
C17—C181.384 (2)C35—C361.388 (3)
C17—H170.9500C35—H350.9500
C18—H180.9500C36—H360.9500
F2—C4—F1106.75 (15)F19—C22—F20106.75 (15)
F2—C4—F3107.72 (16)F19—C22—F21107.22 (15)
F1—C4—F3107.31 (15)F20—C22—F21107.53 (16)
F2—C4—C5111.72 (15)F19—C22—C23110.29 (16)
F1—C4—C5110.14 (16)F20—C22—C23112.13 (15)
F3—C4—C5112.91 (15)F21—C22—C23112.62 (15)
O6—C5—C7124.78 (17)O24—C23—C25124.99 (18)
O6—C5—C4117.46 (17)O24—C23—C22117.30 (17)
C7—C5—C4117.76 (15)C25—C23—C22117.70 (16)
N10—C7—C5114.86 (15)N28—C25—C23115.36 (16)
N10—C7—C9125.69 (16)N28—C25—C27125.67 (17)
C5—C7—C9119.46 (15)C23—C25—C27118.95 (16)
O8—C9—C7122.43 (16)O26—C27—C25122.08 (18)
O8—C9—H9118.8O26—C27—H27119.0
C7—C9—H9118.8C25—C27—H27119.0
N11—N10—C7121.04 (14)N29—N28—C25121.73 (15)
N10—N11—C12119.13 (14)N28—N29—C30118.97 (14)
N10—N11—H11120.4N28—N29—H29120.5
C12—N11—H11120.4C30—N29—H29120.5
C18—C12—C13121.04 (15)C36—C30—C31120.69 (17)
C18—C12—N11117.95 (15)C36—C30—N29118.84 (16)
C13—C12—N11121.01 (15)C31—C30—N29120.47 (16)
C14—C13—C12119.29 (16)C32—C31—C30119.47 (18)
C14—C13—H13120.4C32—C31—H31120.3
C12—C13—H13120.4C30—C31—H31120.3
C15—C14—C13119.29 (16)C31—C32—C33119.50 (18)
C15—C14—H14120.4C31—C32—H32120.2
C13—C14—H14120.4C33—C32—H32120.2
C14—C15—C17121.74 (16)C35—C33—C32121.38 (18)
C14—C15—Cl16119.69 (14)C35—C33—Cl34119.53 (16)
C17—C15—Cl16118.57 (14)C32—C33—Cl34119.09 (16)
C15—C17—C18119.14 (16)C33—C35—C36119.10 (18)
C15—C17—H17120.4C33—C35—H35120.4
C18—C17—H17120.4C36—C35—H35120.4
C12—C18—C17119.49 (16)C30—C36—C35119.85 (18)
C12—C18—H18120.3C30—C36—H36120.1
C17—C18—H18120.3C35—C36—H36120.1
F2—C4—C5—O6117.94 (19)F19—C22—C23—O240.9 (2)
F1—C4—C5—O60.5 (2)F20—C22—C23—O24119.74 (19)
F3—C4—C5—O6120.46 (19)F21—C22—C23—O24118.8 (2)
F2—C4—C5—C761.9 (2)F19—C22—C23—C25178.66 (15)
F1—C4—C5—C7179.66 (15)F20—C22—C23—C2559.8 (2)
F3—C4—C5—C759.7 (2)F21—C22—C23—C2561.6 (2)
O6—C5—C7—N10177.83 (17)O24—C23—C25—N28177.47 (18)
C4—C5—C7—N102.0 (2)C22—C23—C25—N283.0 (2)
O6—C5—C7—C91.8 (3)O24—C23—C25—C274.1 (3)
C4—C5—C7—C9178.39 (15)C22—C23—C25—C27175.47 (16)
N10—C7—C9—O82.0 (3)N28—C25—C27—O260.5 (3)
C5—C7—C9—O8178.45 (16)C23—C25—C27—O26178.74 (17)
C5—C7—N10—N11179.81 (14)C23—C25—N28—N29179.78 (15)
C9—C7—N10—N110.6 (2)C27—C25—N28—N291.9 (3)
C7—N10—N11—C12179.37 (14)C25—N28—N29—C30179.92 (14)
N10—N11—C12—C18174.08 (14)N28—N29—C30—C36174.13 (15)
N10—N11—C12—C136.2 (2)N28—N29—C30—C316.3 (2)
C18—C12—C13—C140.2 (2)C36—C30—C31—C320.5 (3)
N11—C12—C13—C14179.47 (15)N29—C30—C31—C32179.94 (16)
C12—C13—C14—C150.9 (2)C30—C31—C32—C330.2 (3)
C13—C14—C15—C171.0 (3)C31—C32—C33—C350.3 (3)
C13—C14—C15—Cl16179.66 (13)C31—C32—C33—Cl34179.43 (14)
C14—C15—C17—C180.3 (3)C32—C33—C35—C360.5 (3)
Cl16—C15—C17—C18179.69 (13)Cl34—C33—C35—C36179.23 (14)
C13—C12—C18—C170.4 (2)C31—C30—C36—C350.3 (3)
N11—C12—C18—C17179.87 (14)N29—C30—C36—C35179.87 (15)
C15—C17—C18—C120.4 (2)C33—C35—C36—C300.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O80.882.012.6746 (18)131
N29—H29···O260.882.032.679 (2)130
N29—H29···O26i0.882.423.2159 (19)150
C27—H27···O6ii0.952.593.491 (2)158
C36—H36···O26i0.952.523.323 (3)143
Symmetry codes: (i) x, y, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H6ClF3N2O2
Mr278.62
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.6440 (4), 7.7139 (4), 19.4221 (10)
α, β, γ (°)86.134 (1), 81.706 (1), 88.999 (1)
V3)1130.63 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.44 × 0.38 × 0.35
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.853, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
8820, 4387, 3577
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.111, 1.05
No. of reflections4387
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O80.882.012.6746 (18)131
N29—H29···O260.882.032.679 (2)130
N29—H29···O26i0.882.423.2159 (19)150
C27—H27···O6ii0.952.593.491 (2)158
C36—H36···O26i0.952.523.323 (3)143
Symmetry codes: (i) x, y, z+2; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20802010), the Natural Science Foundation of Guangdong Province (No.07300884) and the 211 project of Guangdong Province.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJiang, H. & Zhu, S. (2008). J. Fluorine Chem. 129, 40–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds