organic compounds
3-[(2-Chloro-6-methylquinolin-3-yl)methyl]quinazolin-4(3H)-one
aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title molecule, C19H14ClN3O, the quinoline and quinazoline ring systems form a dihedral angle of 80.75 (4)°. In the crystal, the molecules are linked by pairs of C—H⋯N hydrogen bonds into centrosymmetric dimers, generating R22(6) ring motifs. The structure is further stabilized by C—H⋯π interactions and π–π stacking interactions [centroid–centroid distances = 3.7869 (8) and 3.8490 (8) Å].
Related literature
For quinoline analogues, see: Roopan et al. (2009); Khan et al. (2009, 2010a,b). For quinazolinone analogues, see: Roopan et al. (2008a,b). For the properties and applications of related compounds, see: Abdel-Hamide et al. (1996); Bekhit & Khalil (1998); Chapman et al. (1963); Honda et al. (1979).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810020830/gk2276sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810020830/gk2276Isup2.hkl
To a solution of 4(3H)-quinazolinone (146 mg, 1 mmol) in 2 ml of DMF were added KOtBu (112 mg, 1 mmol) in 10 ml of THF and 2-chloro-3-(chloromethyl)-6-methylquinoline (225 mg, 1 mmol) and the resulting mixture was refluxed at 343 K for 1 h. After the completion, the reaction was cooled and the excess of solvent removed under reduced pressure. Crushed ice was mixed with the residue. White solid was formed which was purified by
using hexane and ethylacetate as the eluant. Crystals of suitable quality were grown by solvent evaporation from a solution of the compound in diethyl ether.The H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for others H atoms.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Crystal packing viewed down a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. |
C19H14ClN3O | F(000) = 696 |
Mr = 335.78 | Dx = 1.438 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1326 reflections |
a = 7.86728 (14) Å | θ = 2.0–20.7° |
b = 14.7098 (3) Å | µ = 0.26 mm−1 |
c = 13.7055 (3) Å | T = 295 K |
β = 102.1500 (17)° | Needle, colourless |
V = 1550.56 (5) Å3 | 0.25 × 0.21 × 0.16 mm |
Z = 4 |
Oxford Diffraction Xcalibur E CCD diffractometer | 3048 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2417 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 26.0°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −9→9 |
Tmin = 0.938, Tmax = 0.960 | k = −18→18 |
15755 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0511P)2 + 0.0739P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
3048 reflections | Δρmax = 0.18 e Å−3 |
219 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0123 (15) |
C19H14ClN3O | V = 1550.56 (5) Å3 |
Mr = 335.78 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.86728 (14) Å | µ = 0.26 mm−1 |
b = 14.7098 (3) Å | T = 295 K |
c = 13.7055 (3) Å | 0.25 × 0.21 × 0.16 mm |
β = 102.1500 (17)° |
Oxford Diffraction Xcalibur E CCD diffractometer | 3048 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2417 reflections with I > 2σ(I) |
Tmin = 0.938, Tmax = 0.960 | Rint = 0.026 |
15755 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.18 e Å−3 |
3048 reflections | Δρmin = −0.19 e Å−3 |
219 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.05099 (5) | 0.28142 (3) | 1.12633 (3) | 0.0552 (2) | |
O1 | 0.60460 (15) | 0.24457 (8) | 0.79970 (8) | 0.0550 (4) | |
N1 | 0.90795 (14) | 0.12379 (9) | 1.13506 (8) | 0.0409 (4) | |
N2 | 0.82439 (14) | 0.32871 (8) | 0.89095 (8) | 0.0368 (4) | |
N3 | 0.79403 (17) | 0.48498 (9) | 0.92418 (9) | 0.0453 (4) | |
C1 | 0.94294 (18) | 0.18353 (10) | 1.07237 (11) | 0.0389 (5) | |
C2 | 0.90272 (18) | 0.17726 (10) | 0.96669 (10) | 0.0374 (5) | |
C3 | 0.82067 (18) | 0.09933 (10) | 0.92894 (10) | 0.0395 (5) | |
C4 | 0.77799 (17) | 0.03094 (10) | 0.99195 (10) | 0.0366 (4) | |
C5 | 0.69103 (18) | −0.05001 (10) | 0.95563 (11) | 0.0413 (5) | |
C6 | 0.64859 (18) | −0.11435 (10) | 1.01883 (11) | 0.0403 (5) | |
C7 | 0.6946 (2) | −0.09747 (11) | 1.12254 (11) | 0.0461 (5) | |
C8 | 0.77957 (19) | −0.02054 (11) | 1.16013 (11) | 0.0444 (5) | |
C9 | 0.82367 (17) | 0.04583 (10) | 1.09569 (10) | 0.0373 (5) | |
C10 | 0.5554 (2) | −0.20015 (11) | 0.97943 (13) | 0.0519 (6) | |
C11 | 0.9436 (2) | 0.25093 (11) | 0.89857 (12) | 0.0442 (5) | |
C12 | 0.65169 (19) | 0.31653 (10) | 0.84072 (10) | 0.0383 (4) | |
C13 | 0.54199 (18) | 0.39518 (10) | 0.84513 (10) | 0.0376 (5) | |
C14 | 0.3617 (2) | 0.38997 (12) | 0.80976 (11) | 0.0497 (6) | |
C15 | 0.2604 (2) | 0.46424 (15) | 0.81376 (12) | 0.0613 (7) | |
C16 | 0.3351 (3) | 0.54611 (15) | 0.85043 (13) | 0.0658 (7) | |
C17 | 0.5113 (2) | 0.55297 (12) | 0.88491 (12) | 0.0571 (6) | |
C18 | 0.61654 (19) | 0.47690 (10) | 0.88456 (10) | 0.0406 (5) | |
C19 | 0.88460 (19) | 0.41208 (11) | 0.92637 (11) | 0.0415 (5) | |
H3 | 0.79220 | 0.09100 | 0.86020 | 0.0470* | |
H5 | 0.66180 | −0.06000 | 0.88710 | 0.0500* | |
H7 | 0.66590 | −0.14020 | 1.16640 | 0.0550* | |
H8 | 0.80880 | −0.01170 | 1.22880 | 0.0530* | |
H10A | 0.44010 | −0.19950 | 0.99230 | 0.0780* | |
H10B | 0.61780 | −0.25170 | 1.01190 | 0.0780* | |
H10C | 0.54880 | −0.20420 | 0.90880 | 0.0780* | |
H11A | 1.06170 | 0.27200 | 0.92330 | 0.0530* | |
H11B | 0.93730 | 0.22560 | 0.83250 | 0.0530* | |
H14 | 0.31130 | 0.33570 | 0.78350 | 0.0600* | |
H15 | 0.14040 | 0.46010 | 0.79180 | 0.0740* | |
H16 | 0.26500 | 0.59680 | 0.85160 | 0.0790* | |
H17 | 0.56050 | 0.60830 | 0.90850 | 0.0690* | |
H19 | 1.00250 | 0.41650 | 0.95480 | 0.0500* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0554 (3) | 0.0545 (3) | 0.0522 (3) | −0.0078 (2) | 0.0032 (2) | −0.0056 (2) |
O1 | 0.0623 (7) | 0.0417 (7) | 0.0540 (7) | −0.0106 (5) | −0.0034 (5) | −0.0054 (5) |
N1 | 0.0375 (7) | 0.0482 (8) | 0.0363 (7) | 0.0036 (6) | 0.0060 (5) | −0.0013 (6) |
N2 | 0.0353 (6) | 0.0375 (7) | 0.0368 (6) | −0.0034 (5) | 0.0059 (5) | 0.0015 (5) |
N3 | 0.0483 (8) | 0.0392 (8) | 0.0451 (7) | −0.0082 (6) | 0.0021 (6) | 0.0015 (6) |
C1 | 0.0316 (7) | 0.0426 (9) | 0.0422 (8) | 0.0051 (6) | 0.0068 (6) | −0.0016 (7) |
C2 | 0.0347 (8) | 0.0412 (9) | 0.0377 (8) | 0.0094 (6) | 0.0110 (6) | 0.0016 (6) |
C3 | 0.0442 (8) | 0.0435 (9) | 0.0320 (7) | 0.0103 (7) | 0.0109 (6) | −0.0005 (6) |
C4 | 0.0365 (8) | 0.0397 (8) | 0.0347 (7) | 0.0109 (6) | 0.0100 (6) | 0.0001 (6) |
C5 | 0.0440 (8) | 0.0446 (9) | 0.0361 (8) | 0.0083 (7) | 0.0105 (6) | −0.0042 (7) |
C6 | 0.0358 (8) | 0.0401 (9) | 0.0468 (9) | 0.0088 (6) | 0.0128 (6) | 0.0002 (7) |
C7 | 0.0449 (9) | 0.0495 (10) | 0.0467 (9) | 0.0038 (7) | 0.0158 (7) | 0.0083 (7) |
C8 | 0.0439 (8) | 0.0557 (10) | 0.0341 (8) | 0.0024 (7) | 0.0096 (6) | 0.0028 (7) |
C9 | 0.0326 (7) | 0.0436 (9) | 0.0369 (8) | 0.0087 (6) | 0.0099 (6) | 0.0007 (6) |
C10 | 0.0519 (10) | 0.0455 (10) | 0.0604 (10) | 0.0026 (8) | 0.0169 (8) | −0.0015 (8) |
C11 | 0.0436 (9) | 0.0479 (9) | 0.0436 (8) | 0.0035 (7) | 0.0152 (7) | 0.0017 (7) |
C12 | 0.0430 (8) | 0.0383 (8) | 0.0317 (7) | −0.0078 (7) | 0.0038 (6) | 0.0041 (6) |
C13 | 0.0392 (8) | 0.0436 (9) | 0.0293 (7) | −0.0041 (7) | 0.0054 (6) | 0.0083 (6) |
C14 | 0.0414 (9) | 0.0646 (11) | 0.0400 (9) | −0.0059 (8) | 0.0015 (7) | 0.0123 (8) |
C15 | 0.0433 (10) | 0.0941 (15) | 0.0460 (10) | 0.0117 (10) | 0.0084 (7) | 0.0210 (10) |
C16 | 0.0701 (13) | 0.0799 (14) | 0.0482 (10) | 0.0341 (11) | 0.0143 (9) | 0.0114 (10) |
C17 | 0.0739 (12) | 0.0484 (10) | 0.0478 (10) | 0.0125 (9) | 0.0101 (8) | 0.0022 (8) |
C18 | 0.0475 (9) | 0.0425 (9) | 0.0318 (7) | −0.0007 (7) | 0.0083 (6) | 0.0046 (6) |
C19 | 0.0386 (8) | 0.0432 (9) | 0.0402 (8) | −0.0114 (7) | 0.0028 (6) | 0.0039 (7) |
Cl1—C1 | 1.7545 (15) | C13—C14 | 1.401 (2) |
O1—C12 | 1.2191 (19) | C13—C18 | 1.396 (2) |
N1—C1 | 1.2984 (19) | C14—C15 | 1.360 (3) |
N1—C9 | 1.3767 (19) | C15—C16 | 1.387 (3) |
N2—C11 | 1.469 (2) | C16—C17 | 1.371 (3) |
N2—C12 | 1.3994 (19) | C17—C18 | 1.393 (2) |
N2—C19 | 1.367 (2) | C3—H3 | 0.9300 |
N3—C18 | 1.393 (2) | C5—H5 | 0.9300 |
N3—C19 | 1.284 (2) | C7—H7 | 0.9300 |
C1—C2 | 1.419 (2) | C8—H8 | 0.9300 |
C2—C3 | 1.363 (2) | C10—H10A | 0.9600 |
C2—C11 | 1.509 (2) | C10—H10B | 0.9600 |
C3—C4 | 1.412 (2) | C10—H10C | 0.9600 |
C4—C5 | 1.411 (2) | C11—H11A | 0.9700 |
C4—C9 | 1.4084 (19) | C11—H11B | 0.9700 |
C5—C6 | 1.371 (2) | C14—H14 | 0.9300 |
C6—C7 | 1.413 (2) | C15—H15 | 0.9300 |
C6—C10 | 1.502 (2) | C16—H16 | 0.9300 |
C7—C8 | 1.359 (2) | C17—H17 | 0.9300 |
C8—C9 | 1.408 (2) | C19—H19 | 0.9300 |
C12—C13 | 1.452 (2) | ||
Cl1···N2 | 3.4130 (12) | C15···H3ix | 2.9900 |
Cl1···C19 | 3.3776 (16) | C16···H3ix | 2.9200 |
Cl1···H11A | 2.8000 | C18···H8vi | 2.9100 |
Cl1···H19 | 3.0400 | C19···H15x | 3.0800 |
Cl1···H16i | 3.1300 | C19···H19iv | 3.0300 |
Cl1···H11Bii | 3.1400 | C19···H8vi | 3.0300 |
O1···C2 | 3.0757 (18) | H3···O1 | 2.7300 |
O1···C3 | 3.0535 (18) | H3···H5 | 2.5100 |
O1···H3 | 2.7300 | H3···H11B | 2.3600 |
O1···H11B | 2.5800 | H3···C15xi | 2.9900 |
O1···H14 | 2.6400 | H3···C16xi | 2.9200 |
O1···H7iii | 2.7400 | H5···H3 | 2.5100 |
N2···Cl1 | 3.4130 (12) | H5···H10C | 2.3400 |
N3···C19iv | 3.271 (2) | H5···C14xi | 2.7700 |
N1···H15v | 2.8000 | H5···C15xi | 2.9600 |
N3···H19iv | 2.5100 | H7···O1iii | 2.7400 |
N3···H8vi | 2.7300 | H8···N3ii | 2.7300 |
C1···C5vii | 3.573 (2) | H8···C18ii | 2.9100 |
C2···O1 | 3.0757 (18) | H8···C19ii | 3.0300 |
C3···O1 | 3.0535 (18) | H10A···C1iii | 2.9700 |
C3···C9vii | 3.592 (2) | H10A···C2iii | 2.8900 |
C3···C12 | 3.572 (2) | H10A···C3iii | 2.9100 |
C4···C4vii | 3.5715 (19) | H10A···C4iii | 3.0500 |
C4···C6iii | 3.547 (2) | H10A···C12iii | 3.0700 |
C5···C1vii | 3.572 (2) | H10B···H17viii | 2.4900 |
C6···C4iii | 3.547 (2) | H10B···H11Avii | 2.5100 |
C9···C3vii | 3.592 (2) | H10C···H5 | 2.3400 |
C12···C3 | 3.572 (2) | H11A···Cl1 | 2.8000 |
C16···C18i | 3.587 (2) | H11A···H19 | 2.2400 |
C17···C18i | 3.539 (2) | H11A···H10Bvii | 2.5100 |
C17···C17i | 3.557 (2) | H11B···O1 | 2.5800 |
C18···C17i | 3.539 (2) | H11B···H3 | 2.3600 |
C18···C16i | 3.587 (2) | H11B···Cl1vi | 3.1400 |
C19···N3iv | 3.271 (2) | H14···O1 | 2.6400 |
C19···Cl1 | 3.3776 (16) | H15···C19xii | 3.0800 |
C19···C19iv | 3.538 (2) | H15···N1xiii | 2.8000 |
C1···H10Aiii | 2.9700 | H16···Cl1i | 3.1300 |
C2···H10Aiii | 2.8900 | H17···C10xiv | 2.9800 |
C3···H10Aiii | 2.9100 | H17···H10Bxiv | 2.4900 |
C4···H10Aiii | 3.0500 | H19···Cl1 | 3.0400 |
C10···H17viii | 2.9800 | H19···H11A | 2.2400 |
C12···H10Aiii | 3.0700 | H19···N3iv | 2.5100 |
C14···H5ix | 2.7700 | H19···C19iv | 3.0300 |
C15···H5ix | 2.9600 | ||
C1—N1—C9 | 117.14 (12) | C16—C17—C18 | 119.90 (17) |
C11—N2—C12 | 118.32 (12) | N3—C18—C13 | 121.98 (13) |
C11—N2—C19 | 120.35 (12) | N3—C18—C17 | 118.56 (14) |
C12—N2—C19 | 121.18 (12) | C13—C18—C17 | 119.46 (14) |
C18—N3—C19 | 116.34 (13) | N2—C19—N3 | 126.29 (14) |
Cl1—C1—N1 | 115.34 (11) | C2—C3—H3 | 119.00 |
Cl1—C1—C2 | 117.89 (11) | C4—C3—H3 | 119.00 |
N1—C1—C2 | 126.78 (14) | C4—C5—H5 | 119.00 |
C1—C2—C3 | 115.35 (13) | C6—C5—H5 | 119.00 |
C1—C2—C11 | 123.66 (13) | C6—C7—H7 | 119.00 |
C3—C2—C11 | 120.99 (13) | C8—C7—H7 | 119.00 |
C2—C3—C4 | 121.45 (13) | C7—C8—H8 | 120.00 |
C3—C4—C5 | 123.08 (13) | C9—C8—H8 | 120.00 |
C3—C4—C9 | 117.63 (13) | C6—C10—H10A | 110.00 |
C5—C4—C9 | 119.29 (13) | C6—C10—H10B | 109.00 |
C4—C5—C6 | 121.62 (13) | C6—C10—H10C | 109.00 |
C5—C6—C7 | 118.00 (14) | H10A—C10—H10B | 109.00 |
C5—C6—C10 | 121.23 (14) | H10A—C10—H10C | 109.00 |
C7—C6—C10 | 120.78 (14) | H10B—C10—H10C | 109.00 |
C6—C7—C8 | 121.94 (14) | N2—C11—H11A | 109.00 |
C7—C8—C9 | 120.39 (14) | N2—C11—H11B | 109.00 |
N1—C9—C4 | 121.65 (13) | C2—C11—H11A | 109.00 |
N1—C9—C8 | 119.58 (12) | C2—C11—H11B | 109.00 |
C4—C9—C8 | 118.76 (13) | H11A—C11—H11B | 108.00 |
N2—C11—C2 | 112.79 (12) | C13—C14—H14 | 120.00 |
O1—C12—N2 | 120.49 (14) | C15—C14—H14 | 120.00 |
O1—C12—C13 | 125.83 (14) | C14—C15—H15 | 120.00 |
N2—C12—C13 | 113.67 (12) | C16—C15—H15 | 120.00 |
C12—C13—C14 | 120.61 (14) | C15—C16—H16 | 120.00 |
C12—C13—C18 | 119.82 (13) | C17—C16—H16 | 120.00 |
C14—C13—C18 | 119.57 (14) | C16—C17—H17 | 120.00 |
C13—C14—C15 | 120.08 (16) | C18—C17—H17 | 120.00 |
C14—C15—C16 | 120.32 (17) | N2—C19—H19 | 117.00 |
C15—C16—C17 | 120.62 (19) | N3—C19—H19 | 117.00 |
C9—N1—C1—Cl1 | −179.80 (10) | C3—C4—C9—N1 | −0.4 (2) |
C9—N1—C1—C2 | 0.3 (2) | C3—C4—C9—C8 | 178.79 (13) |
C1—N1—C9—C4 | 0.4 (2) | C5—C4—C9—N1 | −179.72 (13) |
C1—N1—C9—C8 | −178.82 (13) | C5—C4—C9—C8 | −0.5 (2) |
C12—N2—C11—C2 | −69.62 (16) | C4—C5—C6—C7 | 0.0 (2) |
C19—N2—C11—C2 | 114.68 (14) | C4—C5—C6—C10 | 179.76 (14) |
C11—N2—C12—O1 | −4.0 (2) | C5—C6—C7—C8 | −0.5 (2) |
C11—N2—C12—C13 | 174.94 (12) | C10—C6—C7—C8 | 179.74 (15) |
C19—N2—C12—O1 | 171.64 (13) | C6—C7—C8—C9 | 0.5 (2) |
C19—N2—C12—C13 | −9.40 (18) | C7—C8—C9—N1 | 179.26 (14) |
C11—N2—C19—N3 | −179.97 (14) | C7—C8—C9—C4 | 0.1 (2) |
C12—N2—C19—N3 | 4.5 (2) | O1—C12—C13—C14 | 7.1 (2) |
C19—N3—C18—C13 | −2.9 (2) | O1—C12—C13—C18 | −172.61 (14) |
C19—N3—C18—C17 | 176.95 (14) | N2—C12—C13—C14 | −171.76 (13) |
C18—N3—C19—N2 | 2.1 (2) | N2—C12—C13—C18 | 8.50 (19) |
Cl1—C1—C2—C3 | 179.26 (11) | C12—C13—C14—C15 | −179.62 (14) |
Cl1—C1—C2—C11 | −1.6 (2) | C18—C13—C14—C15 | 0.1 (2) |
N1—C1—C2—C3 | −0.8 (2) | C12—C13—C18—N3 | −2.7 (2) |
N1—C1—C2—C11 | 178.31 (14) | C12—C13—C18—C17 | 177.48 (13) |
C1—C2—C3—C4 | 0.7 (2) | C14—C13—C18—N3 | 177.54 (13) |
C11—C2—C3—C4 | −178.43 (14) | C14—C13—C18—C17 | −2.3 (2) |
C1—C2—C11—N2 | −75.60 (18) | C13—C14—C15—C16 | 1.7 (2) |
C3—C2—C11—N2 | 103.49 (16) | C14—C15—C16—C17 | −1.3 (3) |
C2—C3—C4—C5 | 179.10 (14) | C15—C16—C17—C18 | −0.9 (3) |
C2—C3—C4—C9 | −0.2 (2) | C16—C17—C18—N3 | −177.16 (15) |
C3—C4—C5—C6 | −178.76 (14) | C16—C17—C18—C13 | 2.7 (2) |
C9—C4—C5—C6 | 0.5 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y, −z+2; (iv) −x+2, −y+1, −z+2; (v) x+1, −y+1/2, z+1/2; (vi) x, −y+1/2, z−1/2; (vii) −x+2, −y, −z+2; (viii) x, y−1, z; (ix) −x+1, y+1/2, −z+3/2; (x) x+1, y, z; (xi) −x+1, y−1/2, −z+3/2; (xii) x−1, y, z; (xiii) x−1, −y+1/2, z−1/2; (xiv) x, y+1, z. |
Cg1 and Cg2 are the centroids of the N1/C1–C4/C9 and N2/N3/C12/C13/C18/C19 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19···N3iv | 0.93 | 2.51 | 3.271 (2) | 139 |
C8—H8···Cg2ii | 0.93 | 2.89 | 3.6598 (16) | 142 |
C10—H10A···Cg1iii | 0.96 | 2.68 | 3.5189 (17) | 146 |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y, −z+2; (iv) −x+2, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C19H14ClN3O |
Mr | 335.78 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 7.86728 (14), 14.7098 (3), 13.7055 (3) |
β (°) | 102.1500 (17) |
V (Å3) | 1550.56 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.25 × 0.21 × 0.16 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur E CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.938, 0.960 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15755, 3048, 2417 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.096, 1.14 |
No. of reflections | 3048 |
No. of parameters | 219 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.19 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Cg1 and Cg2 are the centroids of the N1/C1–C4/C9 and N2/N3/C12/C13/C18/C19 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19···N3i | 0.93 | 2.51 | 3.271 (2) | 139 |
C8—H8···Cg2ii | 0.93 | 2.89 | 3.6598 (16) | 142 |
C10—H10A···Cg1iii | 0.96 | 2.68 | 3.5189 (17) | 146 |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y, −z+2. |
Acknowledgements
We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.
References
Abdel-Hamide, S. G., El-Hakim, A. E. & El-Helby, A. A. (1996). Az. J. Pharm. Sci. 17, 35–40. CAS Google Scholar
Bekhit, A. A. & Khalil, M. A. (1998). Pharmazie, 53, 539–543. Web of Science CAS PubMed Google Scholar
Chapman, N. B., Clarke, K. & Wilson, K. (1963). J. Chem. Soc. pp. 2256–2266. CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Honda, G., Tabata, M. & Tsuda, M. (1979). Planta Med. 37, 172–174. CrossRef CAS PubMed Web of Science Google Scholar
Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2686. Web of Science CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Roopan, S. M. & Khan, F. N. (2008b). Indian J. Heterocycl. Chem. 18, 183–184. CAS Google Scholar
Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161–169. CrossRef Google Scholar
Roopan, S. M., Khan, F. N. & Maiyalagan, T. (2008a). Can. J. Chem. 86 , 1019–1025. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic chemistry comprises at least half of all organic chemistry research worldwide (Roopan et al., 2008a,b). In particular, heterocyclic structures form the basis of many pharmaceutical, agrochemical and veterinary products. 4(3H)-quinazolinones and quinolines (Roopan et al., 2009) are classes of fused heterocycles that are of considerable interest because of their biological properties. Some are endowed with antimicrobial, aniconvulsant, antihistamine and anti-inflammatory properties (Abdel-Hamide et al., 1996, Chapman et al., 1963, Bekhit et al., 1998). On the other hand, some quinoline derivatives also have various biological properties like antioxidant, hemolytic and cytotoxicity. These observations prompted us to synthesized heterocyclic compounds containing a quinolinyl-quinazolinone moiety.
As shown in Fig. 1, the quinoline (N1/C1–C9) and quinazoline (N2/N3/C12–C19) ring systems of the title molecule (I) are almost planar with maximum deviations of -0.016 (1) Å for C2 and 0.065 (1) Å for N2, respectively, and there is a dihedral angle of 80.75 (4)° between them.
Two neighbouring molecules are linked by a pair of C—H···N hydrogen bonds into a pseudo-centrosymmetric dimer, generating an R22(6) ring motif (Table 1, Fig. 2). In addition, the structure is stabilized by C—H···π interactions (Table 1) and π-π stacking interactions [Cg1···Cg3(2 - x,-y, 2 - z) = 3.7869 (8) Å and Cg3···Cg3(1 - x, -y, 2 - z) = 3.8490 (8) Å; where Cg1 and Cg3 are centroids of the N1/C1–C4/C9 and C4–C9 rings, respectively].