organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(2-Chloro-6-methyl­quinolin-3-yl)meth­yl]quinazolin-4(3H)-one

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 May 2010; accepted 1 June 2010; online 5 June 2010)

In the title mol­ecule, C19H14ClN3O, the quinoline and quinazoline ring systems form a dihedral angle of 80.75 (4)°. In the crystal, the mol­ecules are linked by pairs of C—H⋯N hydrogen bonds into centrosymmetric dimers, generating R22(6) ring motifs. The structure is further stabilized by C—H⋯π inter­actions and ππ stacking inter­actions [centroid–centroid distances = 3.7869 (8) and 3.8490 (8) Å].

Related literature

For quinoline analogues, see: Roopan et al. (2009[Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161-169.]); Khan et al. (2009[Khan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2686.], 2010a[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200.],b[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.]). For quinazolinone analogues, see: Roopan et al. (2008a[Roopan, S. M., Khan, F. N. & Maiyalagan, T. (2008a). Can. J. Chem. 86 , 1019-1025.],b[Roopan, S. M. & Khan, F. N. (2008b). Indian J. Heterocycl. Chem. 18, 183-184.]). For the properties and applications of related compounds, see: Abdel-Hamide et al. (1996[Abdel-Hamide, S. G., El-Hakim, A. E. & El-Helby, A. A. (1996). Az. J. Pharm. Sci. 17, 35-40.]); Bekhit & Khalil (1998[Bekhit, A. A. & Khalil, M. A. (1998). Pharmazie, 53, 539-543.]); Chapman et al. (1963[Chapman, N. B., Clarke, K. & Wilson, K. (1963). J. Chem. Soc. pp. 2256-2266.]); Honda et al. (1979[Honda, G., Tabata, M. & Tsuda, M. (1979). Planta Med. 37, 172-174.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14ClN3O

  • Mr = 335.78

  • Monoclinic, P 21 /c

  • a = 7.86728 (14) Å

  • b = 14.7098 (3) Å

  • c = 13.7055 (3) Å

  • β = 102.1500 (17)°

  • V = 1550.56 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 K

  • 0.25 × 0.21 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur E CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.938, Tmax = 0.960

  • 15755 measured reflections

  • 3048 independent reflections

  • 2417 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.14

  • 3048 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1–C4/C9 and N2/N3/C12/C13/C18/C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯N3i 0.93 2.51 3.271 (2) 139
C8—H8⋯Cg2ii 0.93 2.89 3.6598 (16) 142
C10—H10ACg1iii 0.96 2.68 3.5189 (17) 146
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Heterocyclic chemistry comprises at least half of all organic chemistry research worldwide (Roopan et al., 2008a,b). In particular, heterocyclic structures form the basis of many pharmaceutical, agrochemical and veterinary products. 4(3H)-quinazolinones and quinolines (Roopan et al., 2009) are classes of fused heterocycles that are of considerable interest because of their biological properties. Some are endowed with antimicrobial, aniconvulsant, antihistamine and anti-inflammatory properties (Abdel-Hamide et al., 1996, Chapman et al., 1963, Bekhit et al., 1998). On the other hand, some quinoline derivatives also have various biological properties like antioxidant, hemolytic and cytotoxicity. These observations prompted us to synthesized heterocyclic compounds containing a quinolinyl-quinazolinone moiety.

As shown in Fig. 1, the quinoline (N1/C1–C9) and quinazoline (N2/N3/C12–C19) ring systems of the title molecule (I) are almost planar with maximum deviations of -0.016 (1) Å for C2 and 0.065 (1) Å for N2, respectively, and there is a dihedral angle of 80.75 (4)° between them.

Two neighbouring molecules are linked by a pair of C—H···N hydrogen bonds into a pseudo-centrosymmetric dimer, generating an R22(6) ring motif (Table 1, Fig. 2). In addition, the structure is stabilized by C—H···π interactions (Table 1) and π-π stacking interactions [Cg1···Cg3(2 - x,-y, 2 - z) = 3.7869 (8) Å and Cg3···Cg3(1 - x, -y, 2 - z) = 3.8490 (8) Å; where Cg1 and Cg3 are centroids of the N1/C1–C4/C9 and C4–C9 rings, respectively].

Related literature top

For quinoline analogues, see: Roopan et al. (2009); Khan et al. (2009, 2010a,b). For quinazolinone analogues, see: Roopan et al. (2008a,b). For the properties and applications of related compounds, see: Abdel-Hamide et al. (1996); Bekhit & Khalil (1998); Chapman et al. (1963); Honda et al. (1979).

Experimental top

To a solution of 4(3H)-quinazolinone (146 mg, 1 mmol) in 2 ml of DMF were added KOtBu (112 mg, 1 mmol) in 10 ml of THF and 2-chloro-3-(chloromethyl)-6-methylquinoline (225 mg, 1 mmol) and the resulting mixture was refluxed at 343 K for 1 h. After the completion, the reaction was cooled and the excess of solvent removed under reduced pressure. Crushed ice was mixed with the residue. White solid was formed which was purified by column chromatography using hexane and ethylacetate as the eluant. Crystals of suitable quality were grown by solvent evaporation from a solution of the compound in diethyl ether.

Refinement top

The H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for others H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed down a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
3-[(2-Chloro-6-methylquinolin-3-yl)methyl]quinazolin-4(3H)-one top
Crystal data top
C19H14ClN3OF(000) = 696
Mr = 335.78Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1326 reflections
a = 7.86728 (14) Åθ = 2.0–20.7°
b = 14.7098 (3) ŵ = 0.26 mm1
c = 13.7055 (3) ÅT = 295 K
β = 102.1500 (17)°Needle, colourless
V = 1550.56 (5) Å30.25 × 0.21 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E CCD
diffractometer
3048 independent reflections
Radiation source: Enhance (Mo) X-ray Source2417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 99
Tmin = 0.938, Tmax = 0.960k = 1818
15755 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.0739P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
3048 reflectionsΔρmax = 0.18 e Å3
219 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0123 (15)
Crystal data top
C19H14ClN3OV = 1550.56 (5) Å3
Mr = 335.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.86728 (14) ŵ = 0.26 mm1
b = 14.7098 (3) ÅT = 295 K
c = 13.7055 (3) Å0.25 × 0.21 × 0.16 mm
β = 102.1500 (17)°
Data collection top
Oxford Diffraction Xcalibur E CCD
diffractometer
3048 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2417 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.960Rint = 0.026
15755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.14Δρmax = 0.18 e Å3
3048 reflectionsΔρmin = 0.19 e Å3
219 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.05099 (5)0.28142 (3)1.12633 (3)0.0552 (2)
O10.60460 (15)0.24457 (8)0.79970 (8)0.0550 (4)
N10.90795 (14)0.12379 (9)1.13506 (8)0.0409 (4)
N20.82439 (14)0.32871 (8)0.89095 (8)0.0368 (4)
N30.79403 (17)0.48498 (9)0.92418 (9)0.0453 (4)
C10.94294 (18)0.18353 (10)1.07237 (11)0.0389 (5)
C20.90272 (18)0.17726 (10)0.96669 (10)0.0374 (5)
C30.82067 (18)0.09933 (10)0.92894 (10)0.0395 (5)
C40.77799 (17)0.03094 (10)0.99195 (10)0.0366 (4)
C50.69103 (18)0.05001 (10)0.95563 (11)0.0413 (5)
C60.64859 (18)0.11435 (10)1.01883 (11)0.0403 (5)
C70.6946 (2)0.09747 (11)1.12254 (11)0.0461 (5)
C80.77957 (19)0.02054 (11)1.16013 (11)0.0444 (5)
C90.82367 (17)0.04583 (10)1.09569 (10)0.0373 (5)
C100.5554 (2)0.20015 (11)0.97943 (13)0.0519 (6)
C110.9436 (2)0.25093 (11)0.89857 (12)0.0442 (5)
C120.65169 (19)0.31653 (10)0.84072 (10)0.0383 (4)
C130.54199 (18)0.39518 (10)0.84513 (10)0.0376 (5)
C140.3617 (2)0.38997 (12)0.80976 (11)0.0497 (6)
C150.2604 (2)0.46424 (15)0.81376 (12)0.0613 (7)
C160.3351 (3)0.54611 (15)0.85043 (13)0.0658 (7)
C170.5113 (2)0.55297 (12)0.88491 (12)0.0571 (6)
C180.61654 (19)0.47690 (10)0.88456 (10)0.0406 (5)
C190.88460 (19)0.41208 (11)0.92637 (11)0.0415 (5)
H30.792200.091000.860200.0470*
H50.661800.060000.887100.0500*
H70.665900.140201.166400.0550*
H80.808800.011701.228800.0530*
H10A0.440100.199500.992300.0780*
H10B0.617800.251701.011900.0780*
H10C0.548800.204200.908800.0780*
H11A1.061700.272000.923300.0530*
H11B0.937300.225600.832500.0530*
H140.311300.335700.783500.0600*
H150.140400.460100.791800.0740*
H160.265000.596800.851600.0790*
H170.560500.608300.908500.0690*
H191.002500.416500.954800.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0554 (3)0.0545 (3)0.0522 (3)0.0078 (2)0.0032 (2)0.0056 (2)
O10.0623 (7)0.0417 (7)0.0540 (7)0.0106 (5)0.0034 (5)0.0054 (5)
N10.0375 (7)0.0482 (8)0.0363 (7)0.0036 (6)0.0060 (5)0.0013 (6)
N20.0353 (6)0.0375 (7)0.0368 (6)0.0034 (5)0.0059 (5)0.0015 (5)
N30.0483 (8)0.0392 (8)0.0451 (7)0.0082 (6)0.0021 (6)0.0015 (6)
C10.0316 (7)0.0426 (9)0.0422 (8)0.0051 (6)0.0068 (6)0.0016 (7)
C20.0347 (8)0.0412 (9)0.0377 (8)0.0094 (6)0.0110 (6)0.0016 (6)
C30.0442 (8)0.0435 (9)0.0320 (7)0.0103 (7)0.0109 (6)0.0005 (6)
C40.0365 (8)0.0397 (8)0.0347 (7)0.0109 (6)0.0100 (6)0.0001 (6)
C50.0440 (8)0.0446 (9)0.0361 (8)0.0083 (7)0.0105 (6)0.0042 (7)
C60.0358 (8)0.0401 (9)0.0468 (9)0.0088 (6)0.0128 (6)0.0002 (7)
C70.0449 (9)0.0495 (10)0.0467 (9)0.0038 (7)0.0158 (7)0.0083 (7)
C80.0439 (8)0.0557 (10)0.0341 (8)0.0024 (7)0.0096 (6)0.0028 (7)
C90.0326 (7)0.0436 (9)0.0369 (8)0.0087 (6)0.0099 (6)0.0007 (6)
C100.0519 (10)0.0455 (10)0.0604 (10)0.0026 (8)0.0169 (8)0.0015 (8)
C110.0436 (9)0.0479 (9)0.0436 (8)0.0035 (7)0.0152 (7)0.0017 (7)
C120.0430 (8)0.0383 (8)0.0317 (7)0.0078 (7)0.0038 (6)0.0041 (6)
C130.0392 (8)0.0436 (9)0.0293 (7)0.0041 (7)0.0054 (6)0.0083 (6)
C140.0414 (9)0.0646 (11)0.0400 (9)0.0059 (8)0.0015 (7)0.0123 (8)
C150.0433 (10)0.0941 (15)0.0460 (10)0.0117 (10)0.0084 (7)0.0210 (10)
C160.0701 (13)0.0799 (14)0.0482 (10)0.0341 (11)0.0143 (9)0.0114 (10)
C170.0739 (12)0.0484 (10)0.0478 (10)0.0125 (9)0.0101 (8)0.0022 (8)
C180.0475 (9)0.0425 (9)0.0318 (7)0.0007 (7)0.0083 (6)0.0046 (6)
C190.0386 (8)0.0432 (9)0.0402 (8)0.0114 (7)0.0028 (6)0.0039 (7)
Geometric parameters (Å, º) top
Cl1—C11.7545 (15)C13—C141.401 (2)
O1—C121.2191 (19)C13—C181.396 (2)
N1—C11.2984 (19)C14—C151.360 (3)
N1—C91.3767 (19)C15—C161.387 (3)
N2—C111.469 (2)C16—C171.371 (3)
N2—C121.3994 (19)C17—C181.393 (2)
N2—C191.367 (2)C3—H30.9300
N3—C181.393 (2)C5—H50.9300
N3—C191.284 (2)C7—H70.9300
C1—C21.419 (2)C8—H80.9300
C2—C31.363 (2)C10—H10A0.9600
C2—C111.509 (2)C10—H10B0.9600
C3—C41.412 (2)C10—H10C0.9600
C4—C51.411 (2)C11—H11A0.9700
C4—C91.4084 (19)C11—H11B0.9700
C5—C61.371 (2)C14—H140.9300
C6—C71.413 (2)C15—H150.9300
C6—C101.502 (2)C16—H160.9300
C7—C81.359 (2)C17—H170.9300
C8—C91.408 (2)C19—H190.9300
C12—C131.452 (2)
Cl1···N23.4130 (12)C15···H3ix2.9900
Cl1···C193.3776 (16)C16···H3ix2.9200
Cl1···H11A2.8000C18···H8vi2.9100
Cl1···H193.0400C19···H15x3.0800
Cl1···H16i3.1300C19···H19iv3.0300
Cl1···H11Bii3.1400C19···H8vi3.0300
O1···C23.0757 (18)H3···O12.7300
O1···C33.0535 (18)H3···H52.5100
O1···H32.7300H3···H11B2.3600
O1···H11B2.5800H3···C15xi2.9900
O1···H142.6400H3···C16xi2.9200
O1···H7iii2.7400H5···H32.5100
N2···Cl13.4130 (12)H5···H10C2.3400
N3···C19iv3.271 (2)H5···C14xi2.7700
N1···H15v2.8000H5···C15xi2.9600
N3···H19iv2.5100H7···O1iii2.7400
N3···H8vi2.7300H8···N3ii2.7300
C1···C5vii3.573 (2)H8···C18ii2.9100
C2···O13.0757 (18)H8···C19ii3.0300
C3···O13.0535 (18)H10A···C1iii2.9700
C3···C9vii3.592 (2)H10A···C2iii2.8900
C3···C123.572 (2)H10A···C3iii2.9100
C4···C4vii3.5715 (19)H10A···C4iii3.0500
C4···C6iii3.547 (2)H10A···C12iii3.0700
C5···C1vii3.572 (2)H10B···H17viii2.4900
C6···C4iii3.547 (2)H10B···H11Avii2.5100
C9···C3vii3.592 (2)H10C···H52.3400
C12···C33.572 (2)H11A···Cl12.8000
C16···C18i3.587 (2)H11A···H192.2400
C17···C18i3.539 (2)H11A···H10Bvii2.5100
C17···C17i3.557 (2)H11B···O12.5800
C18···C17i3.539 (2)H11B···H32.3600
C18···C16i3.587 (2)H11B···Cl1vi3.1400
C19···N3iv3.271 (2)H14···O12.6400
C19···Cl13.3776 (16)H15···C19xii3.0800
C19···C19iv3.538 (2)H15···N1xiii2.8000
C1···H10Aiii2.9700H16···Cl1i3.1300
C2···H10Aiii2.8900H17···C10xiv2.9800
C3···H10Aiii2.9100H17···H10Bxiv2.4900
C4···H10Aiii3.0500H19···Cl13.0400
C10···H17viii2.9800H19···H11A2.2400
C12···H10Aiii3.0700H19···N3iv2.5100
C14···H5ix2.7700H19···C19iv3.0300
C15···H5ix2.9600
C1—N1—C9117.14 (12)C16—C17—C18119.90 (17)
C11—N2—C12118.32 (12)N3—C18—C13121.98 (13)
C11—N2—C19120.35 (12)N3—C18—C17118.56 (14)
C12—N2—C19121.18 (12)C13—C18—C17119.46 (14)
C18—N3—C19116.34 (13)N2—C19—N3126.29 (14)
Cl1—C1—N1115.34 (11)C2—C3—H3119.00
Cl1—C1—C2117.89 (11)C4—C3—H3119.00
N1—C1—C2126.78 (14)C4—C5—H5119.00
C1—C2—C3115.35 (13)C6—C5—H5119.00
C1—C2—C11123.66 (13)C6—C7—H7119.00
C3—C2—C11120.99 (13)C8—C7—H7119.00
C2—C3—C4121.45 (13)C7—C8—H8120.00
C3—C4—C5123.08 (13)C9—C8—H8120.00
C3—C4—C9117.63 (13)C6—C10—H10A110.00
C5—C4—C9119.29 (13)C6—C10—H10B109.00
C4—C5—C6121.62 (13)C6—C10—H10C109.00
C5—C6—C7118.00 (14)H10A—C10—H10B109.00
C5—C6—C10121.23 (14)H10A—C10—H10C109.00
C7—C6—C10120.78 (14)H10B—C10—H10C109.00
C6—C7—C8121.94 (14)N2—C11—H11A109.00
C7—C8—C9120.39 (14)N2—C11—H11B109.00
N1—C9—C4121.65 (13)C2—C11—H11A109.00
N1—C9—C8119.58 (12)C2—C11—H11B109.00
C4—C9—C8118.76 (13)H11A—C11—H11B108.00
N2—C11—C2112.79 (12)C13—C14—H14120.00
O1—C12—N2120.49 (14)C15—C14—H14120.00
O1—C12—C13125.83 (14)C14—C15—H15120.00
N2—C12—C13113.67 (12)C16—C15—H15120.00
C12—C13—C14120.61 (14)C15—C16—H16120.00
C12—C13—C18119.82 (13)C17—C16—H16120.00
C14—C13—C18119.57 (14)C16—C17—H17120.00
C13—C14—C15120.08 (16)C18—C17—H17120.00
C14—C15—C16120.32 (17)N2—C19—H19117.00
C15—C16—C17120.62 (19)N3—C19—H19117.00
C9—N1—C1—Cl1179.80 (10)C3—C4—C9—N10.4 (2)
C9—N1—C1—C20.3 (2)C3—C4—C9—C8178.79 (13)
C1—N1—C9—C40.4 (2)C5—C4—C9—N1179.72 (13)
C1—N1—C9—C8178.82 (13)C5—C4—C9—C80.5 (2)
C12—N2—C11—C269.62 (16)C4—C5—C6—C70.0 (2)
C19—N2—C11—C2114.68 (14)C4—C5—C6—C10179.76 (14)
C11—N2—C12—O14.0 (2)C5—C6—C7—C80.5 (2)
C11—N2—C12—C13174.94 (12)C10—C6—C7—C8179.74 (15)
C19—N2—C12—O1171.64 (13)C6—C7—C8—C90.5 (2)
C19—N2—C12—C139.40 (18)C7—C8—C9—N1179.26 (14)
C11—N2—C19—N3179.97 (14)C7—C8—C9—C40.1 (2)
C12—N2—C19—N34.5 (2)O1—C12—C13—C147.1 (2)
C19—N3—C18—C132.9 (2)O1—C12—C13—C18172.61 (14)
C19—N3—C18—C17176.95 (14)N2—C12—C13—C14171.76 (13)
C18—N3—C19—N22.1 (2)N2—C12—C13—C188.50 (19)
Cl1—C1—C2—C3179.26 (11)C12—C13—C14—C15179.62 (14)
Cl1—C1—C2—C111.6 (2)C18—C13—C14—C150.1 (2)
N1—C1—C2—C30.8 (2)C12—C13—C18—N32.7 (2)
N1—C1—C2—C11178.31 (14)C12—C13—C18—C17177.48 (13)
C1—C2—C3—C40.7 (2)C14—C13—C18—N3177.54 (13)
C11—C2—C3—C4178.43 (14)C14—C13—C18—C172.3 (2)
C1—C2—C11—N275.60 (18)C13—C14—C15—C161.7 (2)
C3—C2—C11—N2103.49 (16)C14—C15—C16—C171.3 (3)
C2—C3—C4—C5179.10 (14)C15—C16—C17—C180.9 (3)
C2—C3—C4—C90.2 (2)C16—C17—C18—N3177.16 (15)
C3—C4—C5—C6178.76 (14)C16—C17—C18—C132.7 (2)
C9—C4—C5—C60.5 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+2; (iv) x+2, y+1, z+2; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x+2, y, z+2; (viii) x, y1, z; (ix) x+1, y+1/2, z+3/2; (x) x+1, y, z; (xi) x+1, y1/2, z+3/2; (xii) x1, y, z; (xiii) x1, y+1/2, z1/2; (xiv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C4/C9 and N2/N3/C12/C13/C18/C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···N3iv0.932.513.271 (2)139
C8—H8···Cg2ii0.932.893.6598 (16)142
C10—H10A···Cg1iii0.962.683.5189 (17)146
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+2; (iv) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC19H14ClN3O
Mr335.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.86728 (14), 14.7098 (3), 13.7055 (3)
β (°) 102.1500 (17)
V3)1550.56 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.25 × 0.21 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur E CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.938, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
15755, 3048, 2417
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.14
No. of reflections3048
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C4/C9 and N2/N3/C12/C13/C18/C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···N3i0.932.513.271 (2)139
C8—H8···Cg2ii0.932.893.6598 (16)142
C10—H10A···Cg1iii0.962.683.5189 (17)146
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationAbdel-Hamide, S. G., El-Hakim, A. E. & El-Helby, A. A. (1996). Az. J. Pharm. Sci. 17, 35–40.  CAS Google Scholar
First citationBekhit, A. A. & Khalil, M. A. (1998). Pharmazie, 53, 539–543.  Web of Science CAS PubMed Google Scholar
First citationChapman, N. B., Clarke, K. & Wilson, K. (1963). J. Chem. Soc. pp. 2256–2266.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHonda, G., Tabata, M. & Tsuda, M. (1979). Planta Med. 37, 172–174.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2686.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2008b). Indian J. Heterocycl. Chem. 18, 183–184.  CAS Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161–169.  CrossRef Google Scholar
First citationRoopan, S. M., Khan, F. N. & Maiyalagan, T. (2008a). Can. J. Chem. 86 , 1019–1025.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds