organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1598-o1599

p-Tolyl 2-O-benzoyl-3-O-benzyl-4,6-O-benzyl­­idene-1-thio-α-L-ido­pyran­oside

aCarbohydrate Chemistry Team, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand 5040
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 25 May 2010; accepted 1 June 2010; online 9 June 2010)

The title compound, C34H32O6S, is an ido-configured thio­glycoside building block for heparan sulfate fragments. It contains disordered tolyl and O-benzyl groups with occupancy ratios of 0.539 (13):0.461 (13) and 0.613 (13):0.387 (13), respectively, as determined from a weakly diffracting crystal. The fused rings adopt chair conformations with the mol­ecules packing into a three-dimensional network via C—H⋯O and three C—H⋯π inter­actions. The former inter­actions, occuring between mol­ecules related by a twofold axis, define an R22(26) motif.

Related literature

For the synthesis, see: Barroca & Jacquinet (2000[Barroca, N. & Jacquinet, J.-C. (2000). Carbohydr. Res. 329, 667-679.]); Polat & Wong (2007[Polat, T. & Wong, C.-H. (2007). J. Am. Chem. Soc. 129, 12795-12800.]). For a related structure, see: Zhou et al. (2006[Zhou, F.-Y., Zhou, F.-Y. & Zhong, J.-H. (2006). Acta Cryst. E62, o266-o267.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C34H32O6S

  • Mr = 568.66

  • Monoclinic, C 2

  • a = 19.296 (4) Å

  • b = 8.2060 (16) Å

  • c = 19.045 (4) Å

  • β = 101.27 (3)°

  • V = 2957.5 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.34 mm−1

  • T = 123 K

  • 0.60 × 0.11 × 0.11 mm

Data collection
  • Rigaku Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.754, Tmax = 1.0

  • 10947 measured reflections

  • 4882 independent reflections

  • 2352 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.201

  • S = 1.03

  • 4882 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1939 Friedel pairs

  • Flack parameter: 0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C2,C9–C13, C14A–C19A and C22–C27 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O4i 0.95 2.50 3.359 (8) 150
C1—H1⋯O2ii 1.00 2.62 3.592 (7) 164
C3—H3ACg1ii 0.99 2.60 3.506 (7) 152
C28A—H28BCg3iii 0.99 2.60 3.572 (11) 165
C31A—H31ACg2iii 0.95 2.87 3.526 (13) 127
C31B—H31BCg2iii 0.93 2.81 3.68 (2) 157
Symmetry codes: (i) -x+1, y, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z]; (iii) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: FSProcess (Rigaku, 1998[Rigaku (1998). FSProcess. Rigaku Corporation, Tokyo, Japan.]); data reduction: FSProcess; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heparan sulfates (HSs), highly sulfated glycosaminoglycans, have emerged as a novel and exciting class of molecules with a huge variety of critical functions in cell signalling and development. HSs are made up of repeating 1,4-linked disaccharide units. These are composed of a hexuronic acid (ido- and gluco-configured) and an N-acetyl or N-sulfoglucosamine which bear one or several O-sulfate substituents. Ido-configured thioglycoside building blocks 2 and 3 (Figure 1) were prepared to be used in our synthesis of defined fragments of HS.

The title compound (4, Figure 1), C34H32O6S, crystallizes with one independent molecule in the asymmetric unit (Figure 2). For information, its systematic name is benzoic acid 8-benzyloxy-2-phenyl-6-p-tolylsulfanyl -hexahydro-pyrano[3,2-d][1,3]dioxin-7-yl ester. The phenyl rings (C14–C19 & C29–C34 plus linked atoms C20, O6 & C25) are disordered between two conformations which are labelled a & b respectively (Figure 3) with the final refined occupancies a:b being 0.539 (13):0.461 (13) and 0.613 (10):0.387 (10) respectively. Note that it was not possible to refine two positions at the C15 & C16 sites so these atoms were given unit occupancies.

The determined absolute configuration with C1(R), C4(S), C5(R), C6(S), C7(R) & C8(R) confirms the expected stereochemistry and is different from the diacetate derivative (XAZLUG) with configurations R,R,S,S,R,S respectively (Zhou et al., 2006). The fused rings adopt chair configurations: for O1,C1–C5 the puckering amplitude Q is 0.559 (6) Å, θ 166.6 (6)° and ϕ 243 (3)° while for O5, C4–C8 the corresponding values are 0.525 (6) Å, 13.9 (7)° and 333 (3)° (Cremer & Pople, 1975).

The molecules pack into a three dimensional network using C—H···O and C–H···π interactions (Table 1) with phenyl, tertiary & methylene carbon donor atoms (Figure 2). The C—H···O interactions form a dimeric R22(26) motif (Bernstein et al., 1995) through O4, between molecules related by the 2-fold rotation axis, and a weaker C(3) link through O1, respectively (Figure 4). The Cg1, Cg2 & Cg3 atom designations in Table 1 are the centroids of phenyl rings (C2,C9–C13), (C14A–C19A) and (C22–C27) respectively. The related diacetate (XUGLAG) packing was reported as two dimensional sheets via C–H···O interactions, but these sheets are interconnected via at least one C–H···π interaction.

Related literature top

For the synthesis, see: Barroca & Jacquinet (2000); Polat & Wong (2007). For a related structure, see: Zhou et al. (2006). For ring conformations, see: Cremer & Pople (1975) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

(see Figure 1) p-Tolyl 2-O-benzoyl-3-O-benzyl-4,6-O-benzyl idene-1-thio-a-L-idopyranoside (4) was prepared in 4 steps from the known 1,2,4,6-Tetra-O-benzoyl-3-O-benzyl-β-L-idopyranoside (Barroca & Jacquinet, 2000). The starting tetra-benzoate (7.45 g, 10.85 mmol) was dissolved in (CH2Cl2, hereafter DCM)(50 ml) and treated with thiocresol (2 g, 16.27 mmol) in the presence of boron trifluoride etherate (0.534 ml, 4.34 mmol) at room temperature for 4 h. The solution was diluted with DCM, washed with water and sat. NaHCO3 solution, dried and concentrated. Chromatography (EtOAc: hexanes, 1: 5) furnished the p-tolyl-derivative (1, 6.1 g, 8.86 mmol) in 82% yield as a clear syrup. Then Zemplen deacetylation (Polat & Wong, 2007) of the tri-benzoate (1, 6 g, 8.71 mmol) at room temperature afforded a triol (2, 3.1 g, 8.23 mmol) in 95% yield as a syrup. Triol (2, 1 g, 2.66 mmol) was dissolved in dry DMF (15 ml) and treated with benzaldehyde dimethylacetal (1 ml, 6.66 mmol, 2.5 eq.) followed by a catalytic amount (40 mg) of p-toluenesulfonic acid. After 1 h at 60°C the solvents were removed in vacuo and the residue was purified by flash chromatography on silica gel to give the benzylidene-derivative (3)(1.1 g, 2.37 mmol) in 89% yield as a white foam. The benzylidene-derivative (3, 1 g, 2.15 mmol) was dissolved in a mixture of dry DCM (10 ml) and dry pyridine (10 ml) and cooled to 0°C. Treatment with benzoyl chloride (0.625 ml, 5.38 mmol) at 0°C rising to room temperature for 12 h was followed by an aqueous work-up. The solution was diluted with DCM, washed with water and sat. NaHCO3 solution, dried and concentrated. Chromatography (EtOAc: hexanes 1: 4) furnished the benzoate (4, 1.2 g, 2.11 mmol) in 98% yield as a white foam. Compound 4 (100 mg) was dissolved in a hot mixture of EtOAc: hexanes (1:10), and the solution was allowed to cool down slowly. Single crystals were collected and dried in vacuo.

1H NMR (300 MHz, CDCl3) δ 2.29 (s, 3H), 3.91 (ddd, 1H, J3,4 2.6 Hz, J2,3 2.5 Hz, H-3); 4.12 (dd, 1H, J4,5 1.6 Hz, H-4), 4.34 (dd, 1H, J6a,6 b 12.3 Hz, H-6a), 4.19 (dd, 1H, H–6 b), 4.51 (ddd, 1H, J5,6a 1.5 Hz, J5,6 b 2.0 Hz, H-5), 4.71 and 4.95 (2 d, 2H, J 11.7 Hz, PhCH2), 5.52 (dd, 1H, J2,4 1.0 Hz, H-2), 5.56 (s, 1H, PhCH), 5.74 (d, 1H, J1,2 1.3 Hz, H-1), 7.07–8.06 (m, 19H, aromatic). 13C NMR (300 MHz, CDCl3) δ 21.4, 51.7, 60.9, 68.3, 70.3, 71.5, 72.8, 73.6, 73.7, 77.0, 77.5, 77.9, 86.7, 101.4, 126.8, 127.6, 128.3, 128.4, 128.6, 128.9, 129.2, 129.9, 130.1, 130.6, 130.9, 131.1, 131.4, 133.2, 133.4, 133.9, 137.5, 137.7, 138.3, 166.1. HRMS calcd for C34H32O6S (M+Na)+ 591.1817, found 591.1824.

The benzoate (4) was converted to the known compound p-tolyl 2-O-benzoyl-3-O-benzyl-1-thio-α-L-idopyranoside (Polat & Wong, 2007). Benzoate (4, 200 mg, 352 µmol) was dissolved in 80% AcOH (10 ml) and stirred at 80°C for 16 h. Concentration and chromatography (EtOAc, hexanes 1: 2) afforded the p-tolyl 2-O-benzoyl-3-O-benzyl-1-thio-α-L-idopyranoside (169 mg, 352 µmol) as a white foam. The 1H and 13C spectra and mass spectral analyses of this were in accord with literature data (Polat & Wong, 2007).

Refinement top

The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bonds. Hydrogen H31B was fixed in a calculated position in the last cycles of refinement. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 (aromatic), 1.00 (tertiary) or 0.99 (methylene) Å with Uiso(H) = 1.2Ueq(C,N). A total of 116 reflections at high theta with negative intensities were clearly outliers (Delta/sigw > 3.5) and were removed from the refinement. One low angle reflection (10,0,0) was also removed as an outlier. A total of 82 reflections out of the 2878 expected within θ 67.7° are therefore not reported. The crystals were poor diffractors but sufficient data was obtained to solve the structure, confirming the absolute configuration.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: FSProcess (Rigaku, 1998); data reduction: FSProcess (Rigaku, 1998; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Chemical synthesis steps to the title compound (see text).
[Figure 2] Fig. 2. An ORTEP (Farrugia, 1999) view showing the asymmetric unit with 40% probabilility ellipsoids. Only one set (A) of the disordered atoms are shown for clarity.
[Figure 3] Fig. 3. An ORTEP (Farrugia, 1999) view showing the conformational disorder using 40% probabilility ellipsoids. Dotted bonds indicate the minor set (B) atoms; only representattive atoms labels are shown for clarity.
[Figure 4] Fig. 4. Mercury cell packing view (Macrae et al., 2006) showing most of the C–H···O and C–H···π interactions (dotted lines, Table 1). All contact atoms are in ball mode with other H atoms omitted for clarity. Symmetry operations: (i) 1/2 - x, y - 1/2, -z (ii) x - 1/2, y - 1/2, -z
p-Tolyl 2-O-benzoyl-3-O-benzyl- 4,6-O-benzylidene-1-thio-α-L-idopyranoside top
Crystal data top
C34H32O6SF(000) = 1200
Mr = 568.66Dx = 1.277 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.54178 Å
Hall symbol: C 2yCell parameters from 1721 reflections
a = 19.296 (4) Åθ = 6.5–66.9°
b = 8.2060 (16) ŵ = 1.34 mm1
c = 19.045 (4) ÅT = 123 K
β = 101.27 (3)°Needle, colourless
V = 2957.5 (10) Å30.60 × 0.11 × 0.11 mm
Z = 4
Data collection top
Rigaku Spider
diffractometer
4882 independent reflections
Radiation source: Rigaku MM007 rotating anode2352 reflections with I > 2σ(I)
Rigaku VariMax-HF Confocal Optical System monochromatorRint = 0.052
Detector resolution: 10 pixels mm-1θmax = 72.2°, θmin = 6.5°
ω–scansh = 2223
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 98
Tmin = 0.754, Tmax = 1.0l = 1723
10947 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.0855P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.201(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.28 e Å3
4882 reflectionsΔρmin = 0.31 e Å3
343 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0019 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1939 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (4)
Crystal data top
C34H32O6SV = 2957.5 (10) Å3
Mr = 568.66Z = 4
Monoclinic, C2Cu Kα radiation
a = 19.296 (4) ŵ = 1.34 mm1
b = 8.2060 (16) ÅT = 123 K
c = 19.045 (4) Å0.60 × 0.11 × 0.11 mm
β = 101.27 (3)°
Data collection top
Rigaku Spider
diffractometer
4882 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2352 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 1.0Rint = 0.052
10947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.201Δρmax = 0.28 e Å3
S = 1.03Δρmin = 0.31 e Å3
4882 reflectionsAbsolute structure: Flack (1983), 1939 Friedel pairs
343 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.26771 (9)0.5118 (2)0.32352 (10)0.0904 (6)
O10.3489 (2)0.4758 (5)0.0899 (2)0.0674 (11)
O20.23586 (18)0.5312 (5)0.0294 (2)0.0685 (11)
O30.3923 (2)0.7274 (5)0.2062 (2)0.0671 (11)
O40.5075 (2)0.7017 (6)0.2613 (2)0.0898 (15)
O50.2527 (2)0.6221 (5)0.1852 (3)0.0702 (12)
C10.2993 (3)0.4463 (7)0.0262 (4)0.0712 (18)
H10.28930.32690.02140.085*
C20.3277 (3)0.5043 (7)0.0372 (4)0.0635 (16)
C30.2032 (3)0.4603 (8)0.0837 (4)0.0777 (19)
H3A0.18900.34710.06980.093*
H3B0.15990.52250.08670.093*
C40.2516 (3)0.4592 (7)0.1565 (4)0.0746 (19)
H40.23210.38290.18870.090*
C50.3255 (3)0.4017 (8)0.1499 (4)0.0713 (18)
H50.32330.28130.14170.086*
C60.2959 (3)0.6339 (8)0.2545 (3)0.0718 (18)
H60.29450.75040.26970.086*
C70.3720 (3)0.5973 (7)0.2490 (3)0.0703 (18)
H70.40230.60250.29800.084*
C90.3943 (3)0.5753 (7)0.0304 (3)0.0655 (17)
H90.42320.58850.01570.085*
C80.3821 (3)0.4344 (7)0.2166 (4)0.0738 (19)
H80.43060.42430.20580.089*
C100.4185 (3)0.6267 (8)0.0907 (4)0.0767 (19)
H100.46400.67470.08600.092*
C110.3760 (3)0.6076 (8)0.1576 (4)0.0763 (19)
H110.39260.64190.19910.092*
C120.3099 (3)0.5392 (8)0.1645 (4)0.0781 (19)
H120.28070.52840.21060.094*
C130.2858 (3)0.4864 (8)0.1051 (4)0.0791 (19)
H130.24040.43740.11040.095*
O6A0.3646 (5)0.2944 (12)0.2544 (6)0.064 (3)*0.59 (2)
C14A0.2117 (6)0.6505 (15)0.3596 (6)0.050 (3)*0.539 (13)
C150.1681 (3)0.7644 (8)0.3084 (3)0.0723 (17)
H150.17180.76780.25940.087*
C160.1223 (3)0.8646 (9)0.3351 (3)0.0769 (19)
H160.09240.93630.30360.092*
C17A0.1189 (7)0.8623 (17)0.4122 (8)0.0657 (13)*0.539 (13)
C18A0.1578 (7)0.7442 (16)0.4544 (7)0.0657 (13)*0.539 (13)
H18A0.15290.73570.50290.079*0.539 (13)
C19A0.2027 (7)0.6396 (17)0.4305 (7)0.0657 (13)*0.539 (13)
H19A0.22770.55980.46170.079*0.539 (13)
C20A0.0731 (7)0.9795 (17)0.4412 (6)0.0657 (13)*0.539 (13)
H20A0.03610.91990.45900.099*0.539 (13)
H20B0.05141.05460.40320.099*0.539 (13)
H20C0.10171.04140.48050.099*0.539 (13)
C210.4617 (3)0.7713 (8)0.2173 (4)0.0713 (18)
C220.4727 (3)0.9110 (7)0.1729 (3)0.0613 (16)
C230.4227 (3)0.9586 (7)0.1144 (3)0.0620 (16)
H230.38040.89760.10090.074*
C240.4339 (3)1.0941 (8)0.0755 (3)0.0680 (17)
H240.39901.12620.03560.082*
C250.4956 (3)1.1845 (9)0.0941 (3)0.0729 (17)
H250.50291.27860.06740.088*
C260.5459 (4)1.1357 (8)0.1516 (4)0.081 (2)
H260.58831.19660.16460.097*
C270.5357 (3)1.0011 (9)0.1903 (3)0.0754 (17)
H270.57150.96780.22940.091*
C28A0.4234 (5)0.1966 (16)0.2865 (6)0.0727 (11)*0.613 (10)
H28A0.46170.26690.31250.087*0.613 (10)
H28B0.44180.13620.24900.087*0.613 (10)
C29A0.3993 (8)0.0763 (16)0.3388 (7)0.0727 (11)*0.613 (10)
C30A0.3302 (5)0.0774 (15)0.3568 (6)0.053 (3)*0.613 (10)
H300.29820.16230.33860.064*0.613 (10)
C31A0.3088 (6)0.0416 (15)0.4000 (6)0.0727 (11)*0.613 (10)
H31A0.26330.03930.41200.087*0.613 (10)
C32A0.3585 (6)0.1674 (15)0.4255 (6)0.0727 (11)*0.613 (10)
H32A0.34470.25520.45230.087*0.613 (10)
C33A0.4261 (7)0.1638 (16)0.4120 (6)0.0727 (11)*0.613 (10)
H33A0.45960.24300.43320.087*0.613 (10)
C34A0.4455 (6)0.0452 (15)0.3676 (6)0.0727 (11)*0.613 (10)
H34A0.49160.04780.35680.087*0.613 (10)
O6B0.3821 (6)0.3383 (16)0.2850 (8)0.054 (5)*0.41 (2)
C14B0.1955 (9)0.628 (2)0.3382 (9)0.0657 (13)*0.461 (13)
C17B0.1005 (8)0.829 (2)0.3942 (9)0.0657 (13)*0.461 (13)
C18B0.1331 (8)0.7014 (19)0.4340 (8)0.0657 (13)*0.461 (13)
H18B0.12170.67820.47930.079*0.461 (13)
C19B0.1832 (8)0.6041 (19)0.4088 (8)0.0657 (13)*0.461 (13)
H19B0.20880.52290.43880.079*0.461 (13)
C20B0.0442 (8)0.9276 (19)0.4240 (7)0.0657 (13)*0.461 (13)
H20D0.00100.86960.41360.099*0.461 (13)
H20E0.03871.03530.40130.099*0.461 (13)
H20F0.05940.94040.47590.099*0.461 (13)
C28B0.4256 (9)0.274 (2)0.3140 (10)0.0727 (11)*0.387 (10)
H28C0.45060.34850.35150.087*0.387 (10)
H28D0.45820.25220.28090.087*0.387 (10)
C29B0.4141 (11)0.121 (3)0.3485 (12)0.0727 (11)*0.387 (10)
C30B0.3541 (13)0.079 (3)0.3547 (12)0.0727 (11)*0.387 (10)
H30B0.31560.13660.32690.087*0.387 (10)
C31B0.3372 (9)0.049 (3)0.4002 (10)0.0727 (11)*0.387 (10)
H31B0.29460.08560.40950.087*0.387 (10)
C32B0.3913 (10)0.137 (2)0.4345 (10)0.0727 (11)*0.387 (10)
H32B0.38310.22100.46640.087*0.387 (10)
C33B0.4565 (10)0.109 (2)0.4248 (9)0.0727 (11)*0.387 (10)
H33B0.49360.17970.44680.087*0.387 (10)
C34B0.4724 (9)0.024 (2)0.3821 (8)0.0727 (11)*0.387 (10)
H34B0.51930.04620.37650.087*0.387 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0924 (13)0.0693 (11)0.1261 (14)0.0217 (10)0.0622 (11)0.0350 (11)
O10.061 (2)0.055 (3)0.098 (3)0.001 (2)0.045 (2)0.006 (2)
O20.050 (2)0.058 (3)0.109 (3)0.006 (2)0.044 (2)0.004 (2)
O30.059 (3)0.064 (3)0.087 (3)0.003 (2)0.035 (2)0.022 (2)
O40.069 (3)0.105 (4)0.100 (3)0.020 (3)0.030 (2)0.036 (3)
O50.069 (3)0.041 (2)0.112 (3)0.009 (2)0.045 (3)0.014 (2)
C10.063 (4)0.040 (3)0.117 (5)0.004 (3)0.033 (4)0.007 (3)
C20.044 (3)0.046 (3)0.109 (5)0.002 (3)0.038 (3)0.009 (4)
C30.065 (4)0.061 (4)0.120 (6)0.004 (3)0.049 (4)0.011 (4)
C40.069 (4)0.043 (4)0.125 (5)0.003 (3)0.050 (4)0.016 (4)
C50.064 (4)0.047 (4)0.115 (5)0.008 (3)0.049 (4)0.005 (4)
C60.076 (4)0.053 (4)0.099 (5)0.010 (3)0.049 (4)0.025 (3)
C70.067 (4)0.059 (4)0.093 (5)0.010 (3)0.034 (4)0.021 (4)
C90.051 (4)0.067 (4)0.082 (4)0.010 (3)0.021 (3)0.007 (3)
C80.075 (4)0.052 (4)0.108 (5)0.017 (3)0.050 (4)0.029 (3)
C100.054 (4)0.093 (5)0.089 (5)0.000 (4)0.028 (4)0.002 (4)
C110.065 (4)0.075 (5)0.102 (5)0.002 (3)0.048 (4)0.020 (4)
C120.068 (4)0.078 (5)0.095 (5)0.002 (4)0.031 (4)0.031 (4)
C130.066 (4)0.065 (4)0.114 (6)0.001 (3)0.037 (4)0.032 (4)
C150.068 (4)0.076 (5)0.084 (4)0.009 (4)0.040 (3)0.007 (4)
C160.070 (4)0.086 (5)0.084 (5)0.013 (4)0.039 (4)0.020 (4)
C210.054 (4)0.071 (4)0.097 (5)0.007 (3)0.034 (4)0.008 (4)
C220.053 (4)0.058 (4)0.079 (4)0.006 (3)0.027 (3)0.018 (3)
C230.052 (3)0.051 (4)0.086 (4)0.003 (3)0.022 (3)0.009 (3)
C240.053 (4)0.066 (4)0.087 (4)0.012 (3)0.016 (3)0.014 (4)
C250.067 (4)0.074 (5)0.086 (5)0.000 (4)0.036 (4)0.010 (4)
C260.071 (4)0.070 (5)0.103 (5)0.021 (4)0.021 (4)0.006 (4)
C270.049 (4)0.083 (5)0.094 (5)0.005 (4)0.015 (3)0.008 (4)
Geometric parameters (Å, º) top
S1—C14B1.755 (17)C20A—H20B0.9800
S1—C14A1.796 (13)C20A—H20C0.9800
S1—C61.818 (6)C21—C221.465 (8)
O1—C11.412 (6)C22—C231.379 (7)
O1—C51.442 (6)C22—C271.406 (7)
O2—C11.420 (6)C23—C241.376 (7)
O2—C31.435 (6)C23—H230.9500
O3—C211.362 (7)C24—C251.388 (8)
O3—C71.443 (6)C24—H240.9500
O4—C211.232 (7)C25—C261.375 (8)
O5—C61.421 (6)C25—H250.9500
O5—C41.443 (7)C26—C271.363 (8)
C1—C21.498 (8)C26—H260.9500
C1—H11.0000C27—H270.9500
C2—C131.392 (7)C28A—C29A1.537 (17)
C2—C91.394 (7)C28A—H28A0.9900
C3—C41.513 (8)C28A—H28B0.9900
C3—H3A0.9900C29A—C34A1.378 (15)
C3—H3B0.9900C29A—C30A1.441 (17)
C4—C51.530 (7)C30A—C31A1.391 (15)
C4—H41.0000C30A—H300.9500
C5—C81.529 (8)C31A—C32A1.428 (16)
C5—H51.0000C31A—H31A0.9500
C6—C71.523 (7)C32A—C33A1.378 (14)
C6—H61.0000C32A—H32A0.9500
C7—C81.501 (8)C33A—C34A1.388 (15)
C7—H71.0000C33A—H33A0.9500
C9—C101.387 (7)C34A—H34A0.9500
C9—H90.9500O6B—C28B1.050 (19)
C8—O6A1.430 (8)C14B—C19B1.42 (2)
C8—O6B1.522 (12)C17B—C18B1.371 (19)
C8—H81.0000C17B—C20B1.547 (19)
C10—C111.384 (8)C18B—C19B1.409 (19)
C10—H100.9500C18B—H18B0.9500
C11—C121.377 (8)C19B—H19B0.9500
C11—H110.9500C20B—H20D0.9800
C12—C131.374 (8)C20B—H20E0.9800
C12—H120.9500C20B—H20F0.9800
C13—H130.9500C28B—C29B1.46 (3)
O6A—C28A1.426 (12)C28B—H28C0.9900
C14A—C19A1.397 (16)C28B—H28D0.9900
C14A—C151.488 (13)C29B—C30B1.24 (3)
C15—C161.375 (7)C29B—C34B1.43 (2)
C15—H150.9500C30B—C31B1.44 (3)
C16—C17A1.484 (15)C30B—H30B0.9500
C16—H160.9500C31B—C32B1.33 (2)
C17A—C18A1.383 (16)C31B—H31B0.922 (19)
C17A—C20A1.483 (17)C32B—C33B1.33 (2)
C18A—C19A1.359 (15)C32B—H32B0.9500
C18A—H18A0.9500C33B—C34B1.43 (2)
C19A—H19A0.9500C33B—H33B0.9500
C20A—H20A0.9800C34B—H34B0.9500
C14B—S1—C6100.0 (6)C18A—C19A—H19A120.3
C14A—S1—C6102.4 (4)C14A—C19A—H19A120.3
C1—O1—C5110.1 (5)O4—C21—O3122.4 (6)
C1—O2—C3109.6 (4)O4—C21—C22126.1 (6)
C21—O3—C7118.3 (5)O3—C21—C22111.4 (6)
C6—O5—C4112.2 (5)C23—C22—C27118.5 (6)
O1—C1—O2109.0 (5)C23—C22—C21122.1 (6)
O1—C1—C2110.2 (5)C27—C22—C21119.4 (6)
O2—C1—C2109.4 (5)C24—C23—C22120.3 (6)
O1—C1—H1109.4C24—C23—H23119.8
O2—C1—H1109.4C22—C23—H23119.8
C2—C1—H1109.4C23—C24—C25120.8 (6)
C13—C2—C9119.2 (6)C23—C24—H24119.6
C13—C2—C1118.6 (6)C25—C24—H24119.6
C9—C2—C1122.2 (6)C26—C25—C24118.9 (6)
O2—C3—C4112.5 (5)C26—C25—H25120.5
O2—C3—H3A109.1C24—C25—H25120.5
C4—C3—H3A109.1C27—C26—C25120.9 (6)
O2—C3—H3B109.1C27—C26—H26119.6
C4—C3—H3B109.1C25—C26—H26119.6
H3A—C3—H3B107.8C26—C27—C22120.5 (6)
O5—C4—C3107.6 (5)C26—C27—H27119.8
O5—C4—C5111.8 (5)C22—C27—H27119.8
C3—C4—C5110.2 (6)O6A—C28A—C29A108.9 (9)
O5—C4—H4109.1O6A—C28A—H28A109.9
C3—C4—H4109.1C29A—C28A—H28A109.9
C5—C4—H4109.1O6A—C28A—H28B109.9
O1—C5—C8107.6 (5)C29A—C28A—H28B109.9
O1—C5—C4112.1 (5)H28A—C28A—H28B108.3
C8—C5—C4113.7 (6)C34A—C29A—C30A117.8 (12)
O1—C5—H5107.7C34A—C29A—C28A118.0 (12)
C8—C5—H5107.7C30A—C29A—C28A124.1 (11)
C4—C5—H5107.7C31A—C30A—C29A122.2 (10)
O5—C6—C7108.7 (5)C31A—C30A—H30118.9
O5—C6—S1115.5 (4)C29A—C30A—H30118.9
C7—C6—S1111.7 (4)C30A—C31A—C32A116.8 (10)
O5—C6—H6106.8C30A—C31A—H31A121.6
C7—C6—H6106.8C32A—C31A—H31A121.6
S1—C6—H6106.8C33A—C32A—C31A121.2 (12)
O3—C7—C8110.9 (5)C33A—C32A—H32A119.4
O3—C7—C6105.4 (4)C31A—C32A—H32A119.4
C8—C7—C6114.1 (6)C32A—C33A—C34A120.5 (11)
O3—C7—H7108.8C32A—C33A—H33A119.8
C8—C7—H7108.8C34A—C33A—H33A119.8
C6—C7—H7108.8C29A—C34A—C33A121.3 (12)
C10—C9—C2120.2 (6)C29A—C34A—H34A119.4
C10—C9—H9119.9C33A—C34A—H34A119.4
C2—C9—H9119.9C28B—O6B—C8125.0 (13)
O6A—C8—C7116.6 (7)C19B—C14B—S1111.1 (12)
C7—C8—O6B95.1 (7)C18B—C17B—C20B118.4 (14)
O6A—C8—C594.4 (7)C17B—C18B—C19B121.1 (15)
C7—C8—C5111.7 (5)C17B—C18B—H18B119.5
O6B—C8—C5120.1 (8)C19B—C18B—H18B119.5
O6A—C8—H8111.0C18B—C19B—C14B119.7 (14)
C7—C8—H8111.0C18B—C19B—H19B120.1
O6B—C8—H8106.8C14B—C19B—H19B120.1
C5—C8—H8111.0C17B—C20B—H20D109.5
C11—C10—C9119.6 (6)C17B—C20B—H20E109.5
C11—C10—H10120.2H20D—C20B—H20E109.5
C9—C10—H10120.2C17B—C20B—H20F109.5
C12—C11—C10120.3 (6)H20D—C20B—H20F109.5
C12—C11—H11119.8H20E—C20B—H20F109.5
C10—C11—H11119.8O6B—C28B—C29B119.4 (18)
C13—C12—C11120.4 (6)O6B—C28B—H28C107.5
C13—C12—H12119.8C29B—C28B—H28C107.5
C11—C12—H12119.8O6B—C28B—H28D107.5
C12—C13—C2120.2 (6)C29B—C28B—H28D107.5
C12—C13—H13119.9H28C—C28B—H28D107.0
C2—C13—H13119.9C30B—C29B—C34B118 (2)
C28A—O6A—C8114.9 (8)C30B—C29B—C28B121 (2)
C19A—C14A—C15120.8 (10)C34B—C29B—C28B120.6 (18)
C19A—C14A—S1121.8 (9)C29B—C30B—C31B126 (2)
C15—C14A—S1116.9 (8)C29B—C30B—H30B117.0
C16—C15—C14A117.1 (7)C31B—C30B—H30B117.0
C16—C15—H15121.5C32B—C31B—C30B116.3 (19)
C14A—C15—H15121.5C32B—C31B—H31B112 (2)
C15—C16—C17A121.0 (7)C30B—C31B—H31B132 (2)
C15—C16—H16119.5C33B—C32B—C31B121 (2)
C17A—C16—H16119.5C33B—C32B—H32B119.6
C18A—C17A—C20A122.2 (12)C31B—C32B—H32B119.6
C18A—C17A—C16117.4 (11)C32B—C33B—C34B121.7 (17)
C20A—C17A—C16120.4 (11)C32B—C33B—H33B119.1
C19A—C18A—C17A123.9 (12)C34B—C33B—H33B119.1
C19A—C18A—H18A118.1C29B—C34B—C33B116.4 (17)
C17A—C18A—H18A118.1C29B—C34B—H34B121.8
C18A—C19A—C14A119.4 (12)C33B—C34B—H34B121.8
C5—O1—C1—O267.1 (5)C14B—S1—C14A—C1547 (3)
C5—O1—C1—C2172.8 (5)C6—S1—C14A—C1535.7 (9)
C3—O2—C1—O167.6 (5)C19A—C14A—C15—C164.0 (13)
C3—O2—C1—C2171.8 (5)S1—C14A—C15—C16176.5 (6)
O1—C1—C2—C13179.6 (5)C14A—C15—C16—C17A2.2 (11)
O2—C1—C2—C1359.8 (7)C15—C16—C17A—C18A6.7 (14)
O1—C1—C2—C90.3 (7)C15—C16—C17A—C20A175.5 (8)
O2—C1—C2—C9120.1 (6)C20A—C17A—C18A—C19A176.9 (11)
C1—O2—C3—C456.9 (6)C16—C17A—C18A—C19A5.3 (17)
C6—O5—C4—C3178.9 (4)C17A—C18A—C19A—C14A0.8 (18)
C6—O5—C4—C560.0 (6)C15—C14A—C19A—C18A5.6 (16)
O2—C3—C4—O577.3 (6)S1—C14A—C19A—C18A177.8 (9)
O2—C3—C4—C544.9 (6)C7—O3—C21—O41.6 (9)
C1—O1—C5—C8178.7 (4)C7—O3—C21—C22176.5 (5)
C1—O1—C5—C455.5 (6)O4—C21—C22—C23165.3 (6)
O5—C4—C5—O175.6 (7)O3—C21—C22—C2316.6 (8)
C3—C4—C5—O144.0 (7)O4—C21—C22—C2715.3 (10)
O5—C4—C5—C846.8 (7)O3—C21—C22—C27162.7 (5)
C3—C4—C5—C8166.3 (5)C27—C22—C23—C241.8 (8)
C4—O5—C6—C763.8 (6)C21—C22—C23—C24177.6 (5)
C4—O5—C6—S162.7 (5)C22—C23—C24—C250.4 (9)
C14B—S1—C6—O575.0 (7)C23—C24—C25—C260.6 (9)
C14A—S1—C6—O591.3 (6)C24—C25—C26—C270.2 (10)
C14B—S1—C6—C7160.1 (7)C25—C26—C27—C221.2 (10)
C14A—S1—C6—C7143.8 (6)C23—C22—C27—C262.2 (9)
C21—O3—C7—C885.0 (7)C21—C22—C27—C26177.2 (6)
C21—O3—C7—C6151.1 (5)C8—O6A—C28A—C29A167.0 (10)
O5—C6—C7—O365.1 (6)O6A—C28A—C29A—C34A170.7 (10)
S1—C6—C7—O3166.4 (4)O6A—C28A—C29A—C30A6.1 (15)
O5—C6—C7—C856.8 (6)C34A—C29A—C30A—C31A1.9 (15)
S1—C6—C7—C871.8 (6)C28A—C29A—C30A—C31A174.8 (11)
C13—C2—C9—C100.3 (9)C29A—C30A—C31A—C32A0.6 (16)
C1—C2—C9—C10179.8 (6)C30A—C31A—C32A—C33A4.5 (16)
O3—C7—C8—O6A179.3 (7)C31A—C32A—C33A—C34A5.9 (17)
C6—C7—C8—O6A61.9 (9)C30A—C29A—C34A—C33A0.7 (15)
O3—C7—C8—O6B161.0 (6)C28A—C29A—C34A—C33A176.3 (10)
C6—C7—C8—O6B80.2 (7)C32A—C33A—C34A—C29A3.2 (17)
O3—C7—C8—C573.7 (7)O6A—C8—O6B—C28B103 (3)
C6—C7—C8—C545.1 (7)C7—C8—O6B—C28B114 (2)
O1—C5—C8—O6A154.0 (5)C5—C8—O6B—C28B127 (2)
C4—C5—C8—O6A81.2 (6)C14A—S1—C14B—C19B54 (3)
O1—C5—C8—C785.1 (6)C6—S1—C14B—C19B153.7 (11)
C4—C5—C8—C739.8 (7)C20B—C17B—C18B—C19B178.1 (11)
O1—C5—C8—O6B165.0 (6)C17B—C18B—C19B—C14B6 (2)
C4—C5—C8—O6B70.2 (9)S1—C14B—C19B—C18B172.3 (10)
C2—C9—C10—C110.2 (9)C8—O6B—C28B—C29B144.0 (16)
C9—C10—C11—C120.5 (9)O6B—C28B—C29B—C30B12 (4)
C10—C11—C12—C131.2 (10)O6B—C28B—C29B—C34B174 (2)
C11—C12—C13—C21.2 (10)C34B—C29B—C30B—C31B8 (4)
C9—C2—C13—C120.4 (9)C28B—C29B—C30B—C31B165.9 (19)
C1—C2—C13—C12179.5 (6)C29B—C30B—C31B—C32B5 (4)
C7—C8—O6A—C28A111.1 (10)C30B—C31B—C32B—C33B2 (3)
O6B—C8—O6A—C28A68.8 (14)C31B—C32B—C33B—C34B5 (3)
C5—C8—O6A—C28A131.9 (11)C30B—C29B—C34B—C33B4 (3)
C14B—S1—C14A—C19A125 (4)C28B—C29B—C34B—C33B169.7 (17)
C6—S1—C14A—C19A151.8 (9)C32B—C33B—C34B—C29B2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C2,C9–C13, C14A–C19A and C22-C27 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.952.503.359 (8)150
C1—H1···O2ii1.002.623.592 (7)164
C3—H3A···Cg1ii0.992.603.506 (7)152
C28A—H28B···Cg3iii0.992.603.572 (11)165
C31A—H31A···Cg2iii0.952.873.526 (13)127
C31B—H31B···Cg2iii0.932.813.68 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC34H32O6S
Mr568.66
Crystal system, space groupMonoclinic, C2
Temperature (K)123
a, b, c (Å)19.296 (4), 8.2060 (16), 19.045 (4)
β (°) 101.27 (3)
V3)2957.5 (10)
Z4
Radiation typeCu Kα
µ (mm1)1.34
Crystal size (mm)0.60 × 0.11 × 0.11
Data collection
DiffractometerRigaku Spider
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.754, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
10947, 4882, 2352
Rint0.052
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.201, 1.03
No. of reflections4882
No. of parameters343
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.31
Absolute structureFlack (1983), 1939 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: CrystalClear (Rigaku, 2005), FSProcess (Rigaku, 1998), FSProcess (Rigaku, 1998, SIR92 (Altomare et al., 1993), ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C2,C9–C13, C14A–C19A and C22-C27 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.952.503.359 (8)150
C1—H1···O2ii1.002.623.592 (7)164
C3—H3A···Cg1ii0.992.603.506 (7)152
C28A—H28B···Cg3iii0.992.603.572 (11)165
C31A—H31A···Cg2iii0.952.873.526 (13)127
C31B—H31B···Cg2iii0.932.813.68 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z; (iii) x, y1, z.
 

Acknowledgements

We thank the MacDiarmid Institute for Advanced Materials and Nanotechnology for funding of the diffractometer equipment and Dr Shane Telfer (Massey University, Palmerston North) for his assistance. This work was supported by the New Zealand Foundation for Research, Science & Technology, project C08X0601, `New Synthesis Methods'.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarroca, N. & Jacquinet, J.-C. (2000). Carbohydr. Res. 329, 667–679.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolat, T. & Wong, C.-H. (2007). J. Am. Chem. Soc. 129, 12795–12800.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). FSProcess. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, F.-Y., Zhou, F.-Y. & Zhong, J.-H. (2006). Acta Cryst. E62, o266–o267.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1598-o1599
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds