organic compounds
p-Tolyl 2-O-benzoyl-3-O-benzyl-4,6-O-benzylidene-1-thio-α-L-idopyranoside
aCarbohydrate Chemistry Team, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand 5040
*Correspondence e-mail: g.gainsford@irl.cri.nz
The title compound, C34H32O6S, is an ido-configured thioglycoside building block for heparan sulfate fragments. It contains disordered tolyl and O-benzyl groups with occupancy ratios of 0.539 (13):0.461 (13) and 0.613 (13):0.387 (13), respectively, as determined from a weakly diffracting crystal. The fused rings adopt chair conformations with the molecules packing into a three-dimensional network via C—H⋯O and three C—H⋯π interactions. The former interactions, occuring between molecules related by a twofold axis, define an R22(26) motif.
Related literature
For the synthesis, see: Barroca & Jacquinet (2000); Polat & Wong (2007). For a related structure, see: Zhou et al. (2006). For ring conformations, see: Cremer & Pople (1975) and for hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell FSProcess (Rigaku, 1998); data reduction: FSProcess; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810020970/gk2277sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810020970/gk2277Isup2.hkl
(see Figure 1) p-Tolyl 2-O-benzoyl-3-O-benzyl-4,6-O-benzyl idene-1-thio-a-L-idopyranoside (4) was prepared in 4 steps from the known 1,2,4,6-Tetra-O-benzoyl-3-O-benzyl-β-L-idopyranoside (Barroca & Jacquinet, 2000). The starting tetra-benzoate (7.45 g, 10.85 mmol) was dissolved in (CH2Cl2, hereafter DCM)(50 ml) and treated with thiocresol (2 g, 16.27 mmol) in the presence of boron trifluoride etherate (0.534 ml, 4.34 mmol) at room temperature for 4 h. The solution was diluted with DCM, washed with water and sat. NaHCO3 solution, dried and concentrated. (EtOAc: hexanes, 1: 5) furnished the p-tolyl-derivative (1, 6.1 g, 8.86 mmol) in 82% yield as a clear syrup. Then Zemplen deacetylation (Polat & Wong, 2007) of the tri-benzoate (1, 6 g, 8.71 mmol) at room temperature afforded a triol (2, 3.1 g, 8.23 mmol) in 95% yield as a syrup. Triol (2, 1 g, 2.66 mmol) was dissolved in dry DMF (15 ml) and treated with benzaldehyde dimethylacetal (1 ml, 6.66 mmol, 2.5 eq.) followed by a catalytic amount (40 mg) of p-toluenesulfonic acid. After 1 h at 60°C the solvents were removed in vacuo and the residue was purified by flash on silica gel to give the benzylidene-derivative (3)(1.1 g, 2.37 mmol) in 89% yield as a white foam. The benzylidene-derivative (3, 1 g, 2.15 mmol) was dissolved in a mixture of dry DCM (10 ml) and dry pyridine (10 ml) and cooled to 0°C. Treatment with benzoyl chloride (0.625 ml, 5.38 mmol) at 0°C rising to room temperature for 12 h was followed by an aqueous work-up. The solution was diluted with DCM, washed with water and sat. NaHCO3 solution, dried and concentrated. (EtOAc: hexanes 1: 4) furnished the benzoate (4, 1.2 g, 2.11 mmol) in 98% yield as a white foam. Compound 4 (100 mg) was dissolved in a hot mixture of EtOAc: hexanes (1:10), and the solution was allowed to cool down slowly. Single crystals were collected and dried in vacuo.
1H NMR (300 MHz, CDCl3) δ 2.29 (s, 3H), 3.91 (ddd, 1H, J3,4 2.6 Hz, J2,3 2.5 Hz, H-3); 4.12 (dd, 1H, J4,5 1.6 Hz, H-4), 4.34 (dd, 1H, J6a,6 b 12.3 Hz, H-6a), 4.19 (dd, 1H, H–6 b), 4.51 (ddd, 1H, J5,6a 1.5 Hz, J5,6 b 2.0 Hz, H-5), 4.71 and 4.95 (2 d, 2H, J 11.7 Hz, PhCH2), 5.52 (dd, 1H, J2,4 1.0 Hz, H-2), 5.56 (s, 1H, PhCH), 5.74 (d, 1H, J1,2 1.3 Hz, H-1), 7.07–8.06 (m, 19H, aromatic). 13C NMR (300 MHz, CDCl3) δ 21.4, 51.7, 60.9, 68.3, 70.3, 71.5, 72.8, 73.6, 73.7, 77.0, 77.5, 77.9, 86.7, 101.4, 126.8, 127.6, 128.3, 128.4, 128.6, 128.9, 129.2, 129.9, 130.1, 130.6, 130.9, 131.1, 131.4, 133.2, 133.4, 133.9, 137.5, 137.7, 138.3, 166.1. HRMS calcd for C34H32O6S (M+Na)+ 591.1817, found 591.1824.
The benzoate (4) was converted to the known compound p-tolyl 2-O-benzoyl-3-O-benzyl-1-thio-α-L-idopyranoside (Polat & Wong, 2007). Benzoate (4, 200 mg, 352 µmol) was dissolved in 80% AcOH (10 ml) and stirred at 80°C for 16 h. Concentration and (EtOAc, hexanes 1: 2) afforded the p-tolyl 2-O-benzoyl-3-O-benzyl-1-thio-α-L-idopyranoside (169 mg, 352 µmol) as a white foam. The 1H and 13C spectra and mass spectral analyses of this were in accord with literature data (Polat & Wong, 2007).
The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bonds. Hydrogen H31B was fixed in a calculated position in the last cycles of θ 67.7° are therefore not reported. The crystals were poor diffractors but sufficient data was obtained to solve the structure, confirming the absolute configuration.
All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 (aromatic), 1.00 (tertiary) or 0.99 (methylene) Å with Uiso(H) = 1.2Ueq(C,N). A total of 116 reflections at high theta with negative intensities were clearly outliers (Delta/sigw > 3.5) and were removed from the One low angle reflection (10,0,0) was also removed as an outlier. A total of 82 reflections out of the 2878 expected withinData collection: CrystalClear (Rigaku, 2005); cell
FSProcess (Rigaku, 1998); data reduction: FSProcess (Rigaku, 1998; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Chemical synthesis steps to the title compound (see text). | |
Fig. 2. An ORTEP (Farrugia, 1999) view showing the asymmetric unit with 40% probabilility ellipsoids. Only one set (A) of the disordered atoms are shown for clarity. | |
Fig. 3. An ORTEP (Farrugia, 1999) view showing the conformational disorder using 40% probabilility ellipsoids. Dotted bonds indicate the minor set (B) atoms; only representattive atoms labels are shown for clarity. | |
Fig. 4. Mercury cell packing view (Macrae et al., 2006) showing most of the C–H···O and C–H···π interactions (dotted lines, Table 1). All contact atoms are in ball mode with other H atoms omitted for clarity. Symmetry operations: (i) 1/2 - x, y - 1/2, -z (ii) x - 1/2, y - 1/2, -z |
C34H32O6S | F(000) = 1200 |
Mr = 568.66 | Dx = 1.277 Mg m−3 |
Monoclinic, C2 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: C 2y | Cell parameters from 1721 reflections |
a = 19.296 (4) Å | θ = 6.5–66.9° |
b = 8.2060 (16) Å | µ = 1.34 mm−1 |
c = 19.045 (4) Å | T = 123 K |
β = 101.27 (3)° | Needle, colourless |
V = 2957.5 (10) Å3 | 0.60 × 0.11 × 0.11 mm |
Z = 4 |
Rigaku Spider diffractometer | 4882 independent reflections |
Radiation source: Rigaku MM007 rotating anode | 2352 reflections with I > 2σ(I) |
Rigaku VariMax-HF Confocal Optical System monochromator | Rint = 0.052 |
Detector resolution: 10 pixels mm-1 | θmax = 72.2°, θmin = 6.5° |
ω–scans | h = −22→23 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −9→8 |
Tmin = 0.754, Tmax = 1.0 | l = −17→23 |
10947 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.068 | w = 1/[σ2(Fo2) + (0.0855P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.201 | (Δ/σ)max = 0.002 |
S = 1.03 | Δρmax = 0.28 e Å−3 |
4882 reflections | Δρmin = −0.31 e Å−3 |
343 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0019 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1939 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.01 (4) |
C34H32O6S | V = 2957.5 (10) Å3 |
Mr = 568.66 | Z = 4 |
Monoclinic, C2 | Cu Kα radiation |
a = 19.296 (4) Å | µ = 1.34 mm−1 |
b = 8.2060 (16) Å | T = 123 K |
c = 19.045 (4) Å | 0.60 × 0.11 × 0.11 mm |
β = 101.27 (3)° |
Rigaku Spider diffractometer | 4882 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2352 reflections with I > 2σ(I) |
Tmin = 0.754, Tmax = 1.0 | Rint = 0.052 |
10947 measured reflections |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.201 | Δρmax = 0.28 e Å−3 |
S = 1.03 | Δρmin = −0.31 e Å−3 |
4882 reflections | Absolute structure: Flack (1983), 1939 Friedel pairs |
343 parameters | Absolute structure parameter: 0.01 (4) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.26771 (9) | 0.5118 (2) | 0.32352 (10) | 0.0904 (6) | |
O1 | 0.3489 (2) | 0.4758 (5) | 0.0899 (2) | 0.0674 (11) | |
O2 | 0.23586 (18) | 0.5312 (5) | 0.0294 (2) | 0.0685 (11) | |
O3 | 0.3923 (2) | 0.7274 (5) | 0.2062 (2) | 0.0671 (11) | |
O4 | 0.5075 (2) | 0.7017 (6) | 0.2613 (2) | 0.0898 (15) | |
O5 | 0.2527 (2) | 0.6221 (5) | 0.1852 (3) | 0.0702 (12) | |
C1 | 0.2993 (3) | 0.4463 (7) | 0.0262 (4) | 0.0712 (18) | |
H1 | 0.2893 | 0.3269 | 0.0214 | 0.085* | |
C2 | 0.3277 (3) | 0.5043 (7) | −0.0372 (4) | 0.0635 (16) | |
C3 | 0.2032 (3) | 0.4603 (8) | 0.0837 (4) | 0.0777 (19) | |
H3A | 0.1890 | 0.3471 | 0.0698 | 0.093* | |
H3B | 0.1599 | 0.5225 | 0.0867 | 0.093* | |
C4 | 0.2516 (3) | 0.4592 (7) | 0.1565 (4) | 0.0746 (19) | |
H4 | 0.2321 | 0.3829 | 0.1887 | 0.090* | |
C5 | 0.3255 (3) | 0.4017 (8) | 0.1499 (4) | 0.0713 (18) | |
H5 | 0.3233 | 0.2813 | 0.1417 | 0.086* | |
C6 | 0.2959 (3) | 0.6339 (8) | 0.2545 (3) | 0.0718 (18) | |
H6 | 0.2945 | 0.7504 | 0.2697 | 0.086* | |
C7 | 0.3720 (3) | 0.5973 (7) | 0.2490 (3) | 0.0703 (18) | |
H7 | 0.4023 | 0.6025 | 0.2980 | 0.084* | |
C9 | 0.3943 (3) | 0.5753 (7) | −0.0304 (3) | 0.0655 (17) | |
H9 | 0.4232 | 0.5885 | 0.0157 | 0.085* | |
C8 | 0.3821 (3) | 0.4344 (7) | 0.2166 (4) | 0.0738 (19) | |
H8 | 0.4306 | 0.4243 | 0.2058 | 0.089* | |
C10 | 0.4185 (3) | 0.6267 (8) | −0.0907 (4) | 0.0767 (19) | |
H10 | 0.4640 | 0.6747 | −0.0860 | 0.092* | |
C11 | 0.3760 (3) | 0.6076 (8) | −0.1576 (4) | 0.0763 (19) | |
H11 | 0.3926 | 0.6419 | −0.1991 | 0.092* | |
C12 | 0.3099 (3) | 0.5392 (8) | −0.1645 (4) | 0.0781 (19) | |
H12 | 0.2807 | 0.5284 | −0.2106 | 0.094* | |
C13 | 0.2858 (3) | 0.4864 (8) | −0.1051 (4) | 0.0791 (19) | |
H13 | 0.2404 | 0.4374 | −0.1104 | 0.095* | |
O6A | 0.3646 (5) | 0.2944 (12) | 0.2544 (6) | 0.064 (3)* | 0.59 (2) |
C14A | 0.2117 (6) | 0.6505 (15) | 0.3596 (6) | 0.050 (3)* | 0.539 (13) |
C15 | 0.1681 (3) | 0.7644 (8) | 0.3084 (3) | 0.0723 (17) | |
H15 | 0.1718 | 0.7678 | 0.2594 | 0.087* | |
C16 | 0.1223 (3) | 0.8646 (9) | 0.3351 (3) | 0.0769 (19) | |
H16 | 0.0924 | 0.9363 | 0.3036 | 0.092* | |
C17A | 0.1189 (7) | 0.8623 (17) | 0.4122 (8) | 0.0657 (13)* | 0.539 (13) |
C18A | 0.1578 (7) | 0.7442 (16) | 0.4544 (7) | 0.0657 (13)* | 0.539 (13) |
H18A | 0.1529 | 0.7357 | 0.5029 | 0.079* | 0.539 (13) |
C19A | 0.2027 (7) | 0.6396 (17) | 0.4305 (7) | 0.0657 (13)* | 0.539 (13) |
H19A | 0.2277 | 0.5598 | 0.4617 | 0.079* | 0.539 (13) |
C20A | 0.0731 (7) | 0.9795 (17) | 0.4412 (6) | 0.0657 (13)* | 0.539 (13) |
H20A | 0.0361 | 0.9199 | 0.4590 | 0.099* | 0.539 (13) |
H20B | 0.0514 | 1.0546 | 0.4032 | 0.099* | 0.539 (13) |
H20C | 0.1017 | 1.0414 | 0.4805 | 0.099* | 0.539 (13) |
C21 | 0.4617 (3) | 0.7713 (8) | 0.2173 (4) | 0.0713 (18) | |
C22 | 0.4727 (3) | 0.9110 (7) | 0.1729 (3) | 0.0613 (16) | |
C23 | 0.4227 (3) | 0.9586 (7) | 0.1144 (3) | 0.0620 (16) | |
H23 | 0.3804 | 0.8976 | 0.1009 | 0.074* | |
C24 | 0.4339 (3) | 1.0941 (8) | 0.0755 (3) | 0.0680 (17) | |
H24 | 0.3990 | 1.1262 | 0.0356 | 0.082* | |
C25 | 0.4956 (3) | 1.1845 (9) | 0.0941 (3) | 0.0729 (17) | |
H25 | 0.5029 | 1.2786 | 0.0674 | 0.088* | |
C26 | 0.5459 (4) | 1.1357 (8) | 0.1516 (4) | 0.081 (2) | |
H26 | 0.5883 | 1.1966 | 0.1646 | 0.097* | |
C27 | 0.5357 (3) | 1.0011 (9) | 0.1903 (3) | 0.0754 (17) | |
H27 | 0.5715 | 0.9678 | 0.2294 | 0.091* | |
C28A | 0.4234 (5) | 0.1966 (16) | 0.2865 (6) | 0.0727 (11)* | 0.613 (10) |
H28A | 0.4617 | 0.2669 | 0.3125 | 0.087* | 0.613 (10) |
H28B | 0.4418 | 0.1362 | 0.2490 | 0.087* | 0.613 (10) |
C29A | 0.3993 (8) | 0.0763 (16) | 0.3388 (7) | 0.0727 (11)* | 0.613 (10) |
C30A | 0.3302 (5) | 0.0774 (15) | 0.3568 (6) | 0.053 (3)* | 0.613 (10) |
H30 | 0.2982 | 0.1623 | 0.3386 | 0.064* | 0.613 (10) |
C31A | 0.3088 (6) | −0.0416 (15) | 0.4000 (6) | 0.0727 (11)* | 0.613 (10) |
H31A | 0.2633 | −0.0393 | 0.4120 | 0.087* | 0.613 (10) |
C32A | 0.3585 (6) | −0.1674 (15) | 0.4255 (6) | 0.0727 (11)* | 0.613 (10) |
H32A | 0.3447 | −0.2552 | 0.4523 | 0.087* | 0.613 (10) |
C33A | 0.4261 (7) | −0.1638 (16) | 0.4120 (6) | 0.0727 (11)* | 0.613 (10) |
H33A | 0.4596 | −0.2430 | 0.4332 | 0.087* | 0.613 (10) |
C34A | 0.4455 (6) | −0.0452 (15) | 0.3676 (6) | 0.0727 (11)* | 0.613 (10) |
H34A | 0.4916 | −0.0478 | 0.3568 | 0.087* | 0.613 (10) |
O6B | 0.3821 (6) | 0.3383 (16) | 0.2850 (8) | 0.054 (5)* | 0.41 (2) |
C14B | 0.1955 (9) | 0.628 (2) | 0.3382 (9) | 0.0657 (13)* | 0.461 (13) |
C17B | 0.1005 (8) | 0.829 (2) | 0.3942 (9) | 0.0657 (13)* | 0.461 (13) |
C18B | 0.1331 (8) | 0.7014 (19) | 0.4340 (8) | 0.0657 (13)* | 0.461 (13) |
H18B | 0.1217 | 0.6782 | 0.4793 | 0.079* | 0.461 (13) |
C19B | 0.1832 (8) | 0.6041 (19) | 0.4088 (8) | 0.0657 (13)* | 0.461 (13) |
H19B | 0.2088 | 0.5229 | 0.4388 | 0.079* | 0.461 (13) |
C20B | 0.0442 (8) | 0.9276 (19) | 0.4240 (7) | 0.0657 (13)* | 0.461 (13) |
H20D | −0.0010 | 0.8696 | 0.4136 | 0.099* | 0.461 (13) |
H20E | 0.0387 | 1.0353 | 0.4013 | 0.099* | 0.461 (13) |
H20F | 0.0594 | 0.9404 | 0.4759 | 0.099* | 0.461 (13) |
C28B | 0.4256 (9) | 0.274 (2) | 0.3140 (10) | 0.0727 (11)* | 0.387 (10) |
H28C | 0.4506 | 0.3485 | 0.3515 | 0.087* | 0.387 (10) |
H28D | 0.4582 | 0.2522 | 0.2809 | 0.087* | 0.387 (10) |
C29B | 0.4141 (11) | 0.121 (3) | 0.3485 (12) | 0.0727 (11)* | 0.387 (10) |
C30B | 0.3541 (13) | 0.079 (3) | 0.3547 (12) | 0.0727 (11)* | 0.387 (10) |
H30B | 0.3156 | 0.1366 | 0.3269 | 0.087* | 0.387 (10) |
C31B | 0.3372 (9) | −0.049 (3) | 0.4002 (10) | 0.0727 (11)* | 0.387 (10) |
H31B | 0.2946 | −0.0856 | 0.4095 | 0.087* | 0.387 (10) |
C32B | 0.3913 (10) | −0.137 (2) | 0.4345 (10) | 0.0727 (11)* | 0.387 (10) |
H32B | 0.3831 | −0.2210 | 0.4664 | 0.087* | 0.387 (10) |
C33B | 0.4565 (10) | −0.109 (2) | 0.4248 (9) | 0.0727 (11)* | 0.387 (10) |
H33B | 0.4936 | −0.1797 | 0.4468 | 0.087* | 0.387 (10) |
C34B | 0.4724 (9) | 0.024 (2) | 0.3821 (8) | 0.0727 (11)* | 0.387 (10) |
H34B | 0.5193 | 0.0462 | 0.3765 | 0.087* | 0.387 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0924 (13) | 0.0693 (11) | 0.1261 (14) | 0.0217 (10) | 0.0622 (11) | 0.0350 (11) |
O1 | 0.061 (2) | 0.055 (3) | 0.098 (3) | 0.001 (2) | 0.045 (2) | 0.006 (2) |
O2 | 0.050 (2) | 0.058 (3) | 0.109 (3) | 0.006 (2) | 0.044 (2) | 0.004 (2) |
O3 | 0.059 (3) | 0.064 (3) | 0.087 (3) | 0.003 (2) | 0.035 (2) | 0.022 (2) |
O4 | 0.069 (3) | 0.105 (4) | 0.100 (3) | 0.020 (3) | 0.030 (2) | 0.036 (3) |
O5 | 0.069 (3) | 0.041 (2) | 0.112 (3) | 0.009 (2) | 0.045 (3) | 0.014 (2) |
C1 | 0.063 (4) | 0.040 (3) | 0.117 (5) | −0.004 (3) | 0.033 (4) | −0.007 (3) |
C2 | 0.044 (3) | 0.046 (3) | 0.109 (5) | 0.002 (3) | 0.038 (3) | 0.009 (4) |
C3 | 0.065 (4) | 0.061 (4) | 0.120 (6) | −0.004 (3) | 0.049 (4) | 0.011 (4) |
C4 | 0.069 (4) | 0.043 (4) | 0.125 (5) | 0.003 (3) | 0.050 (4) | 0.016 (4) |
C5 | 0.064 (4) | 0.047 (4) | 0.115 (5) | 0.008 (3) | 0.049 (4) | 0.005 (4) |
C6 | 0.076 (4) | 0.053 (4) | 0.099 (5) | 0.010 (3) | 0.049 (4) | 0.025 (3) |
C7 | 0.067 (4) | 0.059 (4) | 0.093 (5) | 0.010 (3) | 0.034 (4) | 0.021 (4) |
C9 | 0.051 (4) | 0.067 (4) | 0.082 (4) | 0.010 (3) | 0.021 (3) | 0.007 (3) |
C8 | 0.075 (4) | 0.052 (4) | 0.108 (5) | 0.017 (3) | 0.050 (4) | 0.029 (3) |
C10 | 0.054 (4) | 0.093 (5) | 0.089 (5) | 0.000 (4) | 0.028 (4) | 0.002 (4) |
C11 | 0.065 (4) | 0.075 (5) | 0.102 (5) | 0.002 (3) | 0.048 (4) | −0.020 (4) |
C12 | 0.068 (4) | 0.078 (5) | 0.095 (5) | 0.002 (4) | 0.031 (4) | −0.031 (4) |
C13 | 0.066 (4) | 0.065 (4) | 0.114 (6) | −0.001 (3) | 0.037 (4) | −0.032 (4) |
C15 | 0.068 (4) | 0.076 (5) | 0.084 (4) | 0.009 (4) | 0.040 (3) | 0.007 (4) |
C16 | 0.070 (4) | 0.086 (5) | 0.084 (5) | 0.013 (4) | 0.039 (4) | 0.020 (4) |
C21 | 0.054 (4) | 0.071 (4) | 0.097 (5) | 0.007 (3) | 0.034 (4) | 0.008 (4) |
C22 | 0.053 (4) | 0.058 (4) | 0.079 (4) | 0.006 (3) | 0.027 (3) | 0.018 (3) |
C23 | 0.052 (3) | 0.051 (4) | 0.086 (4) | 0.003 (3) | 0.022 (3) | 0.009 (3) |
C24 | 0.053 (4) | 0.066 (4) | 0.087 (4) | 0.012 (3) | 0.016 (3) | 0.014 (4) |
C25 | 0.067 (4) | 0.074 (5) | 0.086 (5) | 0.000 (4) | 0.036 (4) | 0.010 (4) |
C26 | 0.071 (4) | 0.070 (5) | 0.103 (5) | −0.021 (4) | 0.021 (4) | 0.006 (4) |
C27 | 0.049 (4) | 0.083 (5) | 0.094 (5) | −0.005 (4) | 0.015 (3) | 0.008 (4) |
S1—C14B | 1.755 (17) | C20A—H20B | 0.9800 |
S1—C14A | 1.796 (13) | C20A—H20C | 0.9800 |
S1—C6 | 1.818 (6) | C21—C22 | 1.465 (8) |
O1—C1 | 1.412 (6) | C22—C23 | 1.379 (7) |
O1—C5 | 1.442 (6) | C22—C27 | 1.406 (7) |
O2—C1 | 1.420 (6) | C23—C24 | 1.376 (7) |
O2—C3 | 1.435 (6) | C23—H23 | 0.9500 |
O3—C21 | 1.362 (7) | C24—C25 | 1.388 (8) |
O3—C7 | 1.443 (6) | C24—H24 | 0.9500 |
O4—C21 | 1.232 (7) | C25—C26 | 1.375 (8) |
O5—C6 | 1.421 (6) | C25—H25 | 0.9500 |
O5—C4 | 1.443 (7) | C26—C27 | 1.363 (8) |
C1—C2 | 1.498 (8) | C26—H26 | 0.9500 |
C1—H1 | 1.0000 | C27—H27 | 0.9500 |
C2—C13 | 1.392 (7) | C28A—C29A | 1.537 (17) |
C2—C9 | 1.394 (7) | C28A—H28A | 0.9900 |
C3—C4 | 1.513 (8) | C28A—H28B | 0.9900 |
C3—H3A | 0.9900 | C29A—C34A | 1.378 (15) |
C3—H3B | 0.9900 | C29A—C30A | 1.441 (17) |
C4—C5 | 1.530 (7) | C30A—C31A | 1.391 (15) |
C4—H4 | 1.0000 | C30A—H30 | 0.9500 |
C5—C8 | 1.529 (8) | C31A—C32A | 1.428 (16) |
C5—H5 | 1.0000 | C31A—H31A | 0.9500 |
C6—C7 | 1.523 (7) | C32A—C33A | 1.378 (14) |
C6—H6 | 1.0000 | C32A—H32A | 0.9500 |
C7—C8 | 1.501 (8) | C33A—C34A | 1.388 (15) |
C7—H7 | 1.0000 | C33A—H33A | 0.9500 |
C9—C10 | 1.387 (7) | C34A—H34A | 0.9500 |
C9—H9 | 0.9500 | O6B—C28B | 1.050 (19) |
C8—O6A | 1.430 (8) | C14B—C19B | 1.42 (2) |
C8—O6B | 1.522 (12) | C17B—C18B | 1.371 (19) |
C8—H8 | 1.0000 | C17B—C20B | 1.547 (19) |
C10—C11 | 1.384 (8) | C18B—C19B | 1.409 (19) |
C10—H10 | 0.9500 | C18B—H18B | 0.9500 |
C11—C12 | 1.377 (8) | C19B—H19B | 0.9500 |
C11—H11 | 0.9500 | C20B—H20D | 0.9800 |
C12—C13 | 1.374 (8) | C20B—H20E | 0.9800 |
C12—H12 | 0.9500 | C20B—H20F | 0.9800 |
C13—H13 | 0.9500 | C28B—C29B | 1.46 (3) |
O6A—C28A | 1.426 (12) | C28B—H28C | 0.9900 |
C14A—C19A | 1.397 (16) | C28B—H28D | 0.9900 |
C14A—C15 | 1.488 (13) | C29B—C30B | 1.24 (3) |
C15—C16 | 1.375 (7) | C29B—C34B | 1.43 (2) |
C15—H15 | 0.9500 | C30B—C31B | 1.44 (3) |
C16—C17A | 1.484 (15) | C30B—H30B | 0.9500 |
C16—H16 | 0.9500 | C31B—C32B | 1.33 (2) |
C17A—C18A | 1.383 (16) | C31B—H31B | 0.922 (19) |
C17A—C20A | 1.483 (17) | C32B—C33B | 1.33 (2) |
C18A—C19A | 1.359 (15) | C32B—H32B | 0.9500 |
C18A—H18A | 0.9500 | C33B—C34B | 1.43 (2) |
C19A—H19A | 0.9500 | C33B—H33B | 0.9500 |
C20A—H20A | 0.9800 | C34B—H34B | 0.9500 |
C14B—S1—C6 | 100.0 (6) | C18A—C19A—H19A | 120.3 |
C14A—S1—C6 | 102.4 (4) | C14A—C19A—H19A | 120.3 |
C1—O1—C5 | 110.1 (5) | O4—C21—O3 | 122.4 (6) |
C1—O2—C3 | 109.6 (4) | O4—C21—C22 | 126.1 (6) |
C21—O3—C7 | 118.3 (5) | O3—C21—C22 | 111.4 (6) |
C6—O5—C4 | 112.2 (5) | C23—C22—C27 | 118.5 (6) |
O1—C1—O2 | 109.0 (5) | C23—C22—C21 | 122.1 (6) |
O1—C1—C2 | 110.2 (5) | C27—C22—C21 | 119.4 (6) |
O2—C1—C2 | 109.4 (5) | C24—C23—C22 | 120.3 (6) |
O1—C1—H1 | 109.4 | C24—C23—H23 | 119.8 |
O2—C1—H1 | 109.4 | C22—C23—H23 | 119.8 |
C2—C1—H1 | 109.4 | C23—C24—C25 | 120.8 (6) |
C13—C2—C9 | 119.2 (6) | C23—C24—H24 | 119.6 |
C13—C2—C1 | 118.6 (6) | C25—C24—H24 | 119.6 |
C9—C2—C1 | 122.2 (6) | C26—C25—C24 | 118.9 (6) |
O2—C3—C4 | 112.5 (5) | C26—C25—H25 | 120.5 |
O2—C3—H3A | 109.1 | C24—C25—H25 | 120.5 |
C4—C3—H3A | 109.1 | C27—C26—C25 | 120.9 (6) |
O2—C3—H3B | 109.1 | C27—C26—H26 | 119.6 |
C4—C3—H3B | 109.1 | C25—C26—H26 | 119.6 |
H3A—C3—H3B | 107.8 | C26—C27—C22 | 120.5 (6) |
O5—C4—C3 | 107.6 (5) | C26—C27—H27 | 119.8 |
O5—C4—C5 | 111.8 (5) | C22—C27—H27 | 119.8 |
C3—C4—C5 | 110.2 (6) | O6A—C28A—C29A | 108.9 (9) |
O5—C4—H4 | 109.1 | O6A—C28A—H28A | 109.9 |
C3—C4—H4 | 109.1 | C29A—C28A—H28A | 109.9 |
C5—C4—H4 | 109.1 | O6A—C28A—H28B | 109.9 |
O1—C5—C8 | 107.6 (5) | C29A—C28A—H28B | 109.9 |
O1—C5—C4 | 112.1 (5) | H28A—C28A—H28B | 108.3 |
C8—C5—C4 | 113.7 (6) | C34A—C29A—C30A | 117.8 (12) |
O1—C5—H5 | 107.7 | C34A—C29A—C28A | 118.0 (12) |
C8—C5—H5 | 107.7 | C30A—C29A—C28A | 124.1 (11) |
C4—C5—H5 | 107.7 | C31A—C30A—C29A | 122.2 (10) |
O5—C6—C7 | 108.7 (5) | C31A—C30A—H30 | 118.9 |
O5—C6—S1 | 115.5 (4) | C29A—C30A—H30 | 118.9 |
C7—C6—S1 | 111.7 (4) | C30A—C31A—C32A | 116.8 (10) |
O5—C6—H6 | 106.8 | C30A—C31A—H31A | 121.6 |
C7—C6—H6 | 106.8 | C32A—C31A—H31A | 121.6 |
S1—C6—H6 | 106.8 | C33A—C32A—C31A | 121.2 (12) |
O3—C7—C8 | 110.9 (5) | C33A—C32A—H32A | 119.4 |
O3—C7—C6 | 105.4 (4) | C31A—C32A—H32A | 119.4 |
C8—C7—C6 | 114.1 (6) | C32A—C33A—C34A | 120.5 (11) |
O3—C7—H7 | 108.8 | C32A—C33A—H33A | 119.8 |
C8—C7—H7 | 108.8 | C34A—C33A—H33A | 119.8 |
C6—C7—H7 | 108.8 | C29A—C34A—C33A | 121.3 (12) |
C10—C9—C2 | 120.2 (6) | C29A—C34A—H34A | 119.4 |
C10—C9—H9 | 119.9 | C33A—C34A—H34A | 119.4 |
C2—C9—H9 | 119.9 | C28B—O6B—C8 | 125.0 (13) |
O6A—C8—C7 | 116.6 (7) | C19B—C14B—S1 | 111.1 (12) |
C7—C8—O6B | 95.1 (7) | C18B—C17B—C20B | 118.4 (14) |
O6A—C8—C5 | 94.4 (7) | C17B—C18B—C19B | 121.1 (15) |
C7—C8—C5 | 111.7 (5) | C17B—C18B—H18B | 119.5 |
O6B—C8—C5 | 120.1 (8) | C19B—C18B—H18B | 119.5 |
O6A—C8—H8 | 111.0 | C18B—C19B—C14B | 119.7 (14) |
C7—C8—H8 | 111.0 | C18B—C19B—H19B | 120.1 |
O6B—C8—H8 | 106.8 | C14B—C19B—H19B | 120.1 |
C5—C8—H8 | 111.0 | C17B—C20B—H20D | 109.5 |
C11—C10—C9 | 119.6 (6) | C17B—C20B—H20E | 109.5 |
C11—C10—H10 | 120.2 | H20D—C20B—H20E | 109.5 |
C9—C10—H10 | 120.2 | C17B—C20B—H20F | 109.5 |
C12—C11—C10 | 120.3 (6) | H20D—C20B—H20F | 109.5 |
C12—C11—H11 | 119.8 | H20E—C20B—H20F | 109.5 |
C10—C11—H11 | 119.8 | O6B—C28B—C29B | 119.4 (18) |
C13—C12—C11 | 120.4 (6) | O6B—C28B—H28C | 107.5 |
C13—C12—H12 | 119.8 | C29B—C28B—H28C | 107.5 |
C11—C12—H12 | 119.8 | O6B—C28B—H28D | 107.5 |
C12—C13—C2 | 120.2 (6) | C29B—C28B—H28D | 107.5 |
C12—C13—H13 | 119.9 | H28C—C28B—H28D | 107.0 |
C2—C13—H13 | 119.9 | C30B—C29B—C34B | 118 (2) |
C28A—O6A—C8 | 114.9 (8) | C30B—C29B—C28B | 121 (2) |
C19A—C14A—C15 | 120.8 (10) | C34B—C29B—C28B | 120.6 (18) |
C19A—C14A—S1 | 121.8 (9) | C29B—C30B—C31B | 126 (2) |
C15—C14A—S1 | 116.9 (8) | C29B—C30B—H30B | 117.0 |
C16—C15—C14A | 117.1 (7) | C31B—C30B—H30B | 117.0 |
C16—C15—H15 | 121.5 | C32B—C31B—C30B | 116.3 (19) |
C14A—C15—H15 | 121.5 | C32B—C31B—H31B | 112 (2) |
C15—C16—C17A | 121.0 (7) | C30B—C31B—H31B | 132 (2) |
C15—C16—H16 | 119.5 | C33B—C32B—C31B | 121 (2) |
C17A—C16—H16 | 119.5 | C33B—C32B—H32B | 119.6 |
C18A—C17A—C20A | 122.2 (12) | C31B—C32B—H32B | 119.6 |
C18A—C17A—C16 | 117.4 (11) | C32B—C33B—C34B | 121.7 (17) |
C20A—C17A—C16 | 120.4 (11) | C32B—C33B—H33B | 119.1 |
C19A—C18A—C17A | 123.9 (12) | C34B—C33B—H33B | 119.1 |
C19A—C18A—H18A | 118.1 | C29B—C34B—C33B | 116.4 (17) |
C17A—C18A—H18A | 118.1 | C29B—C34B—H34B | 121.8 |
C18A—C19A—C14A | 119.4 (12) | C33B—C34B—H34B | 121.8 |
C5—O1—C1—O2 | 67.1 (5) | C14B—S1—C14A—C15 | −47 (3) |
C5—O1—C1—C2 | −172.8 (5) | C6—S1—C14A—C15 | 35.7 (9) |
C3—O2—C1—O1 | −67.6 (5) | C19A—C14A—C15—C16 | 4.0 (13) |
C3—O2—C1—C2 | 171.8 (5) | S1—C14A—C15—C16 | 176.5 (6) |
O1—C1—C2—C13 | −179.6 (5) | C14A—C15—C16—C17A | 2.2 (11) |
O2—C1—C2—C13 | −59.8 (7) | C15—C16—C17A—C18A | −6.7 (14) |
O1—C1—C2—C9 | 0.3 (7) | C15—C16—C17A—C20A | 175.5 (8) |
O2—C1—C2—C9 | 120.1 (6) | C20A—C17A—C18A—C19A | −176.9 (11) |
C1—O2—C3—C4 | 56.9 (6) | C16—C17A—C18A—C19A | 5.3 (17) |
C6—O5—C4—C3 | 178.9 (4) | C17A—C18A—C19A—C14A | 0.8 (18) |
C6—O5—C4—C5 | −60.0 (6) | C15—C14A—C19A—C18A | −5.6 (16) |
O2—C3—C4—O5 | 77.3 (6) | S1—C14A—C19A—C18A | −177.8 (9) |
O2—C3—C4—C5 | −44.9 (6) | C7—O3—C21—O4 | 1.6 (9) |
C1—O1—C5—C8 | 178.7 (4) | C7—O3—C21—C22 | −176.5 (5) |
C1—O1—C5—C4 | −55.5 (6) | O4—C21—C22—C23 | 165.3 (6) |
O5—C4—C5—O1 | −75.6 (7) | O3—C21—C22—C23 | −16.6 (8) |
C3—C4—C5—O1 | 44.0 (7) | O4—C21—C22—C27 | −15.3 (10) |
O5—C4—C5—C8 | 46.8 (7) | O3—C21—C22—C27 | 162.7 (5) |
C3—C4—C5—C8 | 166.3 (5) | C27—C22—C23—C24 | −1.8 (8) |
C4—O5—C6—C7 | 63.8 (6) | C21—C22—C23—C24 | 177.6 (5) |
C4—O5—C6—S1 | −62.7 (5) | C22—C23—C24—C25 | 0.4 (9) |
C14B—S1—C6—O5 | −75.0 (7) | C23—C24—C25—C26 | 0.6 (9) |
C14A—S1—C6—O5 | −91.3 (6) | C24—C25—C26—C27 | −0.2 (10) |
C14B—S1—C6—C7 | 160.1 (7) | C25—C26—C27—C22 | −1.2 (10) |
C14A—S1—C6—C7 | 143.8 (6) | C23—C22—C27—C26 | 2.2 (9) |
C21—O3—C7—C8 | −85.0 (7) | C21—C22—C27—C26 | −177.2 (6) |
C21—O3—C7—C6 | 151.1 (5) | C8—O6A—C28A—C29A | 167.0 (10) |
O5—C6—C7—O3 | 65.1 (6) | O6A—C28A—C29A—C34A | 170.7 (10) |
S1—C6—C7—O3 | −166.4 (4) | O6A—C28A—C29A—C30A | −6.1 (15) |
O5—C6—C7—C8 | −56.8 (6) | C34A—C29A—C30A—C31A | −1.9 (15) |
S1—C6—C7—C8 | 71.8 (6) | C28A—C29A—C30A—C31A | 174.8 (11) |
C13—C2—C9—C10 | −0.3 (9) | C29A—C30A—C31A—C32A | −0.6 (16) |
C1—C2—C9—C10 | 179.8 (6) | C30A—C31A—C32A—C33A | 4.5 (16) |
O3—C7—C8—O6A | 179.3 (7) | C31A—C32A—C33A—C34A | −5.9 (17) |
C6—C7—C8—O6A | −61.9 (9) | C30A—C29A—C34A—C33A | 0.7 (15) |
O3—C7—C8—O6B | 161.0 (6) | C28A—C29A—C34A—C33A | −176.3 (10) |
C6—C7—C8—O6B | −80.2 (7) | C32A—C33A—C34A—C29A | 3.2 (17) |
O3—C7—C8—C5 | −73.7 (7) | O6A—C8—O6B—C28B | 103 (3) |
C6—C7—C8—C5 | 45.1 (7) | C7—C8—O6B—C28B | −114 (2) |
O1—C5—C8—O6A | −154.0 (5) | C5—C8—O6B—C28B | 127 (2) |
C4—C5—C8—O6A | 81.2 (6) | C14A—S1—C14B—C19B | −54 (3) |
O1—C5—C8—C7 | 85.1 (6) | C6—S1—C14B—C19B | −153.7 (11) |
C4—C5—C8—C7 | −39.8 (7) | C20B—C17B—C18B—C19B | 178.1 (11) |
O1—C5—C8—O6B | −165.0 (6) | C17B—C18B—C19B—C14B | −6 (2) |
C4—C5—C8—O6B | 70.2 (9) | S1—C14B—C19B—C18B | 172.3 (10) |
C2—C9—C10—C11 | 0.2 (9) | C8—O6B—C28B—C29B | −144.0 (16) |
C9—C10—C11—C12 | 0.5 (9) | O6B—C28B—C29B—C30B | −12 (4) |
C10—C11—C12—C13 | −1.2 (10) | O6B—C28B—C29B—C34B | 174 (2) |
C11—C12—C13—C2 | 1.2 (10) | C34B—C29B—C30B—C31B | 8 (4) |
C9—C2—C13—C12 | −0.4 (9) | C28B—C29B—C30B—C31B | −165.9 (19) |
C1—C2—C13—C12 | 179.5 (6) | C29B—C30B—C31B—C32B | −5 (4) |
C7—C8—O6A—C28A | −111.1 (10) | C30B—C31B—C32B—C33B | −2 (3) |
O6B—C8—O6A—C28A | −68.8 (14) | C31B—C32B—C33B—C34B | 5 (3) |
C5—C8—O6A—C28A | 131.9 (11) | C30B—C29B—C34B—C33B | −4 (3) |
C14B—S1—C14A—C19A | 125 (4) | C28B—C29B—C34B—C33B | 169.7 (17) |
C6—S1—C14A—C19A | −151.8 (9) | C32B—C33B—C34B—C29B | −2 (3) |
Cg1, Cg2 and Cg3 are the centroids of the C2,C9–C13, C14A–C19A and C22-C27 phenyl rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O4i | 0.95 | 2.50 | 3.359 (8) | 150 |
C1—H1···O2ii | 1.00 | 2.62 | 3.592 (7) | 164 |
C3—H3A···Cg1ii | 0.99 | 2.60 | 3.506 (7) | 152 |
C28A—H28B···Cg3iii | 0.99 | 2.60 | 3.572 (11) | 165 |
C31A—H31A···Cg2iii | 0.95 | 2.87 | 3.526 (13) | 127 |
C31B—H31B···Cg2iii | 0.93 | 2.81 | 3.68 (2) | 157 |
Symmetry codes: (i) −x+1, y, −z; (ii) −x+1/2, y−1/2, −z; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C34H32O6S |
Mr | 568.66 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 123 |
a, b, c (Å) | 19.296 (4), 8.2060 (16), 19.045 (4) |
β (°) | 101.27 (3) |
V (Å3) | 2957.5 (10) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.34 |
Crystal size (mm) | 0.60 × 0.11 × 0.11 |
Data collection | |
Diffractometer | Rigaku Spider diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.754, 1.0 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10947, 4882, 2352 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.201, 1.03 |
No. of reflections | 4882 |
No. of parameters | 343 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.31 |
Absolute structure | Flack (1983), 1939 Friedel pairs |
Absolute structure parameter | 0.01 (4) |
Computer programs: CrystalClear (Rigaku, 2005), FSProcess (Rigaku, 1998), FSProcess (Rigaku, 1998, SIR92 (Altomare et al., 1993), ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1, Cg2 and Cg3 are the centroids of the C2,C9–C13, C14A–C19A and C22-C27 phenyl rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O4i | 0.95 | 2.50 | 3.359 (8) | 150 |
C1—H1···O2ii | 1.00 | 2.62 | 3.592 (7) | 164 |
C3—H3A···Cg1ii | 0.99 | 2.60 | 3.506 (7) | 152 |
C28A—H28B···Cg3iii | 0.99 | 2.60 | 3.572 (11) | 165 |
C31A—H31A···Cg2iii | 0.95 | 2.87 | 3.526 (13) | 127 |
C31B—H31B···Cg2iii | 0.93 | 2.81 | 3.68 (2) | 157 |
Symmetry codes: (i) −x+1, y, −z; (ii) −x+1/2, y−1/2, −z; (iii) x, y−1, z. |
Acknowledgements
We thank the MacDiarmid Institute for Advanced Materials and Nanotechnology for funding of the diffractometer equipment and Dr Shane Telfer (Massey University, Palmerston North) for his assistance. This work was supported by the New Zealand Foundation for Research, Science & Technology, project C08X0601, `New Synthesis Methods'.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Barroca, N. & Jacquinet, J.-C. (2000). Carbohydr. Res. 329, 667–679. Web of Science CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Polat, T. & Wong, C.-H. (2007). J. Am. Chem. Soc. 129, 12795–12800. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (1998). FSProcess. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, F.-Y., Zhou, F.-Y. & Zhong, J.-H. (2006). Acta Cryst. E62, o266–o267. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heparan sulfates (HSs), highly sulfated glycosaminoglycans, have emerged as a novel and exciting class of molecules with a huge variety of critical functions in cell signalling and development. HSs are made up of repeating 1,4-linked disaccharide units. These are composed of a hexuronic acid (ido- and gluco-configured) and an N-acetyl or N-sulfoglucosamine which bear one or several O-sulfate substituents. Ido-configured thioglycoside building blocks 2 and 3 (Figure 1) were prepared to be used in our synthesis of defined fragments of HS.
The title compound (4, Figure 1), C34H32O6S, crystallizes with one independent molecule in the asymmetric unit (Figure 2). For information, its systematic name is benzoic acid 8-benzyloxy-2-phenyl-6-p-tolylsulfanyl -hexahydro-pyrano[3,2-d][1,3]dioxin-7-yl ester. The phenyl rings (C14–C19 & C29–C34 plus linked atoms C20, O6 & C25) are disordered between two conformations which are labelled a & b respectively (Figure 3) with the final refined occupancies a:b being 0.539 (13):0.461 (13) and 0.613 (10):0.387 (10) respectively. Note that it was not possible to refine two positions at the C15 & C16 sites so these atoms were given unit occupancies.
The determined absolute configuration with C1(R), C4(S), C5(R), C6(S), C7(R) & C8(R) confirms the expected stereochemistry and is different from the diacetate derivative (XAZLUG) with configurations R,R,S,S,R,S respectively (Zhou et al., 2006). The fused rings adopt chair configurations: for O1,C1–C5 the puckering amplitude Q is 0.559 (6) Å, θ 166.6 (6)° and ϕ 243 (3)° while for O5, C4–C8 the corresponding values are 0.525 (6) Å, 13.9 (7)° and 333 (3)° (Cremer & Pople, 1975).
The molecules pack into a three dimensional network using C—H···O and C–H···π interactions (Table 1) with phenyl, tertiary & methylene carbon donor atoms (Figure 2). The C—H···O interactions form a dimeric R22(26) motif (Bernstein et al., 1995) through O4, between molecules related by the 2-fold rotation axis, and a weaker C(3) link through O1, respectively (Figure 4). The Cg1, Cg2 & Cg3 atom designations in Table 1 are the centroids of phenyl rings (C2,C9–C13), (C14A–C19A) and (C22–C27) respectively. The related diacetate (XUGLAG) packing was reported as two dimensional sheets via C–H···O interactions, but these sheets are interconnected via at least one C–H···π interaction.