organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl 2,3,4-tri-O-benzyl-1-thio-α-D-manno­pyran­oside monohydrate

aDepartment of Chemistry, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
*Correspondence e-mail: johan.wouters@fundp.ac.be

(Received 27 April 2010; accepted 25 May 2010; online 5 June 2010)

In the title compound, C33H34O5S·H2O, the mannopyran­oside ring adopts a chair conformation with the 2-α-thio­phenyl group occupying an axial position. One of the pendant benzyl groups is disordered over two sets of sites in a 0.5:0.5 ratio. In the crystal, the water mol­ecule makes two O—H⋯O hydrogen bonds to an adjacent sugar mol­ecule with the O atoms of the primary alcohol and ether groups acting as acceptors. At the same time, the OH group of the sugar makes a hydrogen bond to a water mol­ecule.

Related literature

For background to the synthesis and properties of mannopyran­osides, see: Boons (1991[Boons, G. J. (1991). J. Carbohydr. Chem. 10, 995-1007.]); Szurmai et al. (1994[Szurmai, Z., Baaltoni, L. & Liptak, A. (1994). Carbohydr. Res. 254, 301-309.]); Caravano et al. (2003[Caravano, A., Mengin-Lecreulx, D., Brondello, J.-M., Vincent, S. & Sinay, P. (2003). Chem. Eur. J. 23, 5888-98.]); Grizot et al. (2006[Grizot, S., Salem, M., Vongsouthi, V., Durand, L., Moreau, F., Vincent, S., Dohi, H., Escaich, S. & Ducruix, A. (2006). J. Mol. Biol. 363, 383-394.]); Dohi et al. (2008[Dohi, H., Perion, R., Durka, M., Bosco, Y., Roue, Y., Moreau, F., Grizot, S., Ducruix, A., Escaich, S. & Vincent, S. (2008). Chem. Eur. J. 14, 9530-9539.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C33H34O5S·H2O

  • Mr = 560.69

  • Monoclinic, P 21

  • a = 12.628 (1) Å

  • b = 8.084 (1) Å

  • c = 14.832 (2) Å

  • β = 101.380 (5)°

  • V = 1484.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 150 K

  • 0.35 × 0.30 × 0.17 mm

Data collection
  • Oxford Diffraction Gemini Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.948, Tmax = 0.974

  • 12650 measured reflections

  • 5205 independent reflections

  • 4333 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.062

  • S = 0.97

  • 5205 reflections

  • 400 parameters

  • 17 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2381 Friedel pairs

  • Flack parameter: 0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HW1⋯O2 0.88 (3) 2.00 (3) 2.861 (2) 166 (2)
OW—HW2⋯O6 0.78 (2) 2.07 (2) 2.827 (2) 165 (2)
O6—H6⋯OWi 0.87 (2) 1.89 (2) 2.745 (2) 169 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Oligosaccharides are natural ligands of lectins, which are important receptors involved in key biological processes. Efficient strategies for the regioselective transformations of monosaccharides to achieve glycosylation reactions or further functionalizations are of paramount importance. Furthermore, the knowledge of the conformations of carbohydrates alone or bound to protein gives access to key informations that can be exploited to understand biocatalytic processes or stereoelectronic effects (Caravano et al., 2003).

Numerous strategies of protections of mannopyranosides have been described in the litterature (e.g. Boons, 1991; Szurmai et al., 1994) in order to derivatise the primary alcohol. The title compound is also a key intermediate for the synthesis of heptosyl transferase inhibitors (Dohi et al., 2008; Grizot et al., 2006).

Crystal structure of the title compound confirms the expected relative stereochemistry : C1 R, C2 S, C3 S, C4 R, C5 R. The mannopyranoside adopts a chair conformation with puckering amplitude (Q) = 0.522 (3) Å, Theta = 3.6 (3) °, and Phi = 60 (5) ° (Cremer & Pople, 1975).

The 2-alpha-thiophenyl group on C1 and the O-benzyl group on C2 occupy an axial position, the two other O-benzyl groups (on C3 and C4) and carbon atom C6 occupying an equatorial position.

Thiophenyl-2,3,4-O-tri-benzyl-alpha-D-mannopyranoside co-crystallized with one water molecule (OW). This water molecule is part of a H bond network involving the primary alcohol O6 and also secondary alcohol O2 (Table 1). Packing is further reinforced by van der Waals interactions involving the aromatic rings.

Related literature top

For background to the synthesis and properties of mannopyranosides, see: Boons (1991); Szurmai et al. (1994); Caravano et al. (2003); Grizot et al. (2006); Dohi et al. (2008). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

The title compound was obtained by a six-step synthetic route that will be described in details elsewhere. Overall yield is 70%. Colourless prisms of (I) were obtained by evaporation of a solution in ethyl acetate.

Refinement top

Disorder of the benzyl C(21) > C(27) moiety substituting oxygen O(4) was included in the refinement (0.5 occupacy for both parts that were restrained to have similar bond lengths and angles). H atoms on water oxygen atom OW and on alcohol oxygen atom O(6) were located by Fourier difference maps and allowed to ride on their parent O atoms.

All other H atoms were placed at idealized positions and allowed to ride on their parent atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene groups, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic carbons, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl group.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I): C-bound H atoms are omitted and disorder is not presented for clarity. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Phenyl 2,3,4-tri-O-benzyl-1-thio-α-D-mannopyranoside monohydrate top
Crystal data top
C33H34O5S·H2OF(000) = 596.0
Mr = 560.69Dx = 1.255 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7534 reflections
a = 12.628 (1) Åθ = 3.0–28.2°
b = 8.084 (1) ŵ = 0.15 mm1
c = 14.832 (2) ÅT = 150 K
β = 101.380 (5)°Prism, colourless
V = 1484.4 (2) Å30.35 × 0.30 × 0.17 mm
Z = 2
Data collection top
Oxford Diffraction Gemini Ruby CCD
diffractometer
5205 independent reflections
Radiation source: Enhanced fine-focus sealed tube4333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1514
Tmin = 0.948, Tmax = 0.974k = 99
12650 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
5205 reflectionsΔρmax = 0.13 e Å3
400 parametersΔρmin = 0.17 e Å3
17 restraintsAbsolute structure: Flack (1983), 2381 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C33H34O5S·H2OV = 1484.4 (2) Å3
Mr = 560.69Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.628 (1) ŵ = 0.15 mm1
b = 8.084 (1) ÅT = 150 K
c = 14.832 (2) Å0.35 × 0.30 × 0.17 mm
β = 101.380 (5)°
Data collection top
Oxford Diffraction Gemini Ruby CCD
diffractometer
5205 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4333 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.974Rint = 0.022
12650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062Δρmax = 0.13 e Å3
S = 0.97Δρmin = 0.17 e Å3
5205 reflectionsAbsolute structure: Flack (1983), 2381 Friedel pairs
400 parametersAbsolute structure parameter: 0.01 (5)
17 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.28677 (14)0.7097 (2)0.89516 (11)0.0300 (4)
H10.32810.78340.94160.036*
C20.32672 (13)0.7370 (2)0.80557 (11)0.0334 (4)
H20.30720.84870.78250.040*
C30.27664 (14)0.6105 (2)0.73342 (11)0.0337 (4)
H30.19950.63490.71420.040*
C40.28925 (14)0.4357 (2)0.77082 (10)0.0297 (4)
H40.36410.39890.77590.036*
C50.25565 (14)0.4210 (2)0.86404 (10)0.0276 (4)
H50.17710.43490.85470.033*
C60.28498 (13)0.2565 (2)0.90995 (11)0.0323 (4)
H6A0.26350.25470.96920.039*
H6B0.24660.16880.87250.039*
C80.11808 (13)0.7620 (2)0.98996 (11)0.0308 (4)
C90.02534 (15)0.6816 (2)1.00193 (13)0.0370 (5)
H90.01810.62840.95250.044*
C100.00307 (16)0.6802 (2)1.08781 (14)0.0448 (5)
H100.06650.62831.09540.054*
C110.06208 (17)0.7552 (3)1.16149 (13)0.0489 (5)
H110.04310.75371.21900.059*
C120.15545 (18)0.8325 (3)1.14995 (13)0.0453 (5)
H120.20040.88101.20020.054*
C130.18316 (15)0.8388 (2)1.06442 (13)0.0378 (5)
H130.24530.89451.05680.045*
C140.50097 (18)0.8655 (2)0.81855 (16)0.0507 (6)
H14A0.50830.92460.87640.061*
H14B0.46350.93670.76990.061*
C150.61013 (15)0.8228 (2)0.80096 (11)0.0322 (4)
C160.62073 (15)0.7141 (2)0.73104 (11)0.0367 (4)
H160.55950.66500.69610.044*
C170.72045 (17)0.6782 (3)0.71287 (13)0.0478 (5)
H170.72640.60480.66590.057*
C180.81128 (17)0.7497 (3)0.76340 (17)0.0603 (6)
H180.87870.72530.75050.072*
C190.80278 (18)0.8570 (3)0.83291 (16)0.0578 (7)
H190.86470.90520.86730.069*
C200.70225 (17)0.8946 (2)0.85263 (12)0.0434 (5)
H200.69680.96730.90010.052*
O30.32582 (10)0.61829 (18)0.65476 (8)0.0464 (4)
C210.2578 (3)0.6608 (6)0.5714 (2)0.0441 (11)0.50
H21A0.21350.75500.58050.053*0.50
H21B0.21020.56890.54950.053*0.50
C220.3247 (5)0.7026 (7)0.5018 (4)0.0280 (18)0.50
C230.4047 (6)0.8186 (9)0.5201 (3)0.043 (2)0.50
H230.42070.86760.57790.051*0.50
C240.4617 (5)0.8638 (7)0.4547 (5)0.0407 (15)0.50
H240.51780.93960.46920.049*0.50
C250.4364 (5)0.7974 (10)0.3673 (5)0.0456 (16)0.50
H250.47480.83010.32290.055*0.50
C260.3545 (7)0.6830 (9)0.3456 (3)0.0481 (19)0.50
H260.33720.63880.28660.058*0.50
C270.2978 (6)0.6338 (10)0.4127 (4)0.044 (2)0.50
H270.24270.55620.39880.053*0.50
C21'0.2980 (4)0.7526 (6)0.5997 (2)0.0413 (7)0.50
H21C0.32530.85150.63340.050*0.50
H21D0.21990.76080.58440.050*0.50
C22'0.3411 (10)0.7456 (13)0.5118 (7)0.0413 (7)0.50
C23'0.4273 (9)0.8369 (12)0.4994 (6)0.0413 (7)0.50
H23'0.46170.90430.54710.050*0.50
C24'0.4653 (6)0.8333 (8)0.4192 (7)0.0413 (7)0.50
H24'0.52250.90150.41220.050*0.50
C25'0.4206 (7)0.7315 (9)0.3503 (6)0.0413 (7)0.50
H25'0.44650.72870.29580.050*0.50
C26'0.3361 (8)0.6316 (8)0.3617 (6)0.0413 (7)0.50
H26'0.30520.55960.31490.050*0.50
C27'0.2970 (8)0.6377 (14)0.4420 (8)0.0413 (7)0.50
H27'0.24050.56870.44940.050*0.50
C280.26726 (15)0.2153 (3)0.66005 (13)0.0451 (5)
H28A0.31460.14220.70160.054*
H28B0.31010.27310.62240.054*
C290.17992 (15)0.1171 (2)0.60016 (12)0.0376 (5)
C300.17758 (17)0.1035 (3)0.50676 (13)0.0445 (5)
H300.23100.15380.48120.053*
C310.09579 (19)0.0151 (3)0.45124 (14)0.0540 (6)
H310.09450.00640.38850.065*
C320.01714 (19)0.0592 (3)0.48815 (15)0.0570 (6)
H320.03730.11890.45060.068*
C330.01817 (17)0.0461 (3)0.58167 (15)0.0516 (6)
H330.03590.09570.60670.062*
C340.09947 (16)0.0405 (3)0.63681 (13)0.0430 (5)
H340.10070.04800.69960.052*
O10.30602 (9)0.54559 (13)0.92705 (7)0.0281 (3)
O20.44079 (9)0.71853 (15)0.82204 (8)0.0383 (3)
O40.21835 (9)0.32927 (16)0.71031 (8)0.0385 (3)
O60.39918 (10)0.22905 (16)0.92224 (9)0.0376 (3)
OW0.55620 (12)0.4829 (2)0.94836 (10)0.0379 (3)
S10.14464 (4)0.77358 (5)0.87681 (3)0.03636 (13)
HW10.528 (2)0.551 (4)0.9035 (18)0.084 (9)*
HW20.5117 (18)0.417 (3)0.9508 (13)0.047 (7)*
H60.4137 (16)0.142 (3)0.9571 (13)0.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (10)0.0249 (9)0.0353 (10)0.0021 (8)0.0090 (8)0.0008 (7)
C20.0287 (10)0.0296 (10)0.0436 (10)0.0051 (8)0.0111 (8)0.0099 (8)
C30.0279 (10)0.0449 (11)0.0295 (9)0.0067 (9)0.0089 (8)0.0063 (8)
C40.0231 (10)0.0371 (11)0.0284 (9)0.0003 (8)0.0037 (7)0.0026 (8)
C50.0255 (10)0.0274 (10)0.0303 (9)0.0021 (8)0.0061 (7)0.0032 (8)
C60.0313 (10)0.0333 (10)0.0333 (8)0.0040 (9)0.0088 (7)0.0021 (8)
C80.0266 (10)0.0275 (9)0.0394 (9)0.0041 (8)0.0093 (7)0.0005 (9)
C90.0277 (11)0.0346 (11)0.0477 (11)0.0026 (8)0.0048 (8)0.0003 (8)
C100.0356 (11)0.0380 (12)0.0662 (14)0.0049 (9)0.0232 (10)0.0098 (10)
C110.0597 (14)0.0457 (12)0.0468 (11)0.0112 (12)0.0238 (10)0.0057 (11)
C120.0497 (13)0.0427 (12)0.0427 (11)0.0021 (10)0.0073 (9)0.0073 (9)
C130.0318 (11)0.0327 (10)0.0501 (12)0.0001 (8)0.0105 (9)0.0028 (9)
C140.0534 (14)0.0313 (12)0.0750 (14)0.0061 (10)0.0314 (11)0.0078 (10)
C150.0386 (11)0.0282 (10)0.0313 (9)0.0064 (8)0.0103 (8)0.0023 (8)
C160.0331 (11)0.0442 (11)0.0312 (9)0.0001 (9)0.0024 (8)0.0017 (8)
C170.0458 (13)0.0565 (14)0.0441 (11)0.0070 (11)0.0165 (10)0.0045 (10)
C180.0344 (13)0.0552 (15)0.0942 (17)0.0017 (12)0.0198 (12)0.0163 (14)
C190.0390 (14)0.0482 (14)0.0751 (16)0.0134 (11)0.0160 (12)0.0203 (12)
C200.0600 (15)0.0312 (10)0.0345 (10)0.0123 (10)0.0011 (10)0.0050 (8)
O30.0426 (8)0.0664 (9)0.0334 (7)0.0167 (7)0.0157 (6)0.0184 (7)
C210.031 (2)0.065 (3)0.032 (2)0.020 (2)0.0058 (17)0.002 (2)
C220.036 (3)0.022 (4)0.025 (3)0.011 (3)0.007 (3)0.010 (3)
C230.049 (5)0.065 (4)0.011 (2)0.006 (4)0.001 (2)0.004 (2)
C240.033 (3)0.046 (3)0.041 (4)0.012 (2)0.000 (3)0.004 (3)
C250.052 (4)0.052 (4)0.041 (4)0.009 (3)0.030 (3)0.010 (3)
C260.080 (5)0.047 (4)0.017 (2)0.012 (4)0.008 (3)0.002 (2)
C270.038 (3)0.036 (3)0.052 (6)0.011 (2)0.007 (4)0.002 (4)
C21'0.0536 (15)0.0354 (13)0.0370 (14)0.0045 (11)0.0144 (11)0.0001 (11)
C22'0.0536 (15)0.0354 (13)0.0370 (14)0.0045 (11)0.0144 (11)0.0001 (11)
C23'0.0536 (15)0.0354 (13)0.0370 (14)0.0045 (11)0.0144 (11)0.0001 (11)
C24'0.0536 (15)0.0354 (13)0.0370 (14)0.0045 (11)0.0144 (11)0.0001 (11)
C25'0.0536 (15)0.0354 (13)0.0370 (14)0.0045 (11)0.0144 (11)0.0001 (11)
C26'0.0536 (15)0.0354 (13)0.0370 (14)0.0045 (11)0.0144 (11)0.0001 (11)
C27'0.0536 (15)0.0354 (13)0.0370 (14)0.0045 (11)0.0144 (11)0.0001 (11)
C280.0364 (11)0.0497 (13)0.0494 (11)0.0013 (10)0.0092 (9)0.0137 (10)
C290.0362 (11)0.0329 (10)0.0443 (12)0.0027 (9)0.0097 (9)0.0077 (9)
C300.0488 (13)0.0425 (12)0.0447 (12)0.0036 (10)0.0152 (10)0.0046 (9)
C310.0657 (15)0.0514 (14)0.0423 (12)0.0035 (12)0.0040 (11)0.0069 (10)
C320.0486 (15)0.0532 (15)0.0629 (14)0.0103 (11)0.0046 (12)0.0147 (11)
C330.0439 (14)0.0417 (13)0.0709 (15)0.0084 (10)0.0157 (11)0.0053 (11)
C340.0427 (12)0.0416 (11)0.0464 (11)0.0025 (10)0.0124 (9)0.0043 (9)
O10.0309 (7)0.0244 (6)0.0286 (6)0.0002 (5)0.0054 (5)0.0000 (5)
O20.0307 (7)0.0340 (7)0.0521 (7)0.0014 (6)0.0127 (6)0.0108 (6)
O40.0283 (7)0.0484 (8)0.0378 (7)0.0024 (6)0.0042 (5)0.0151 (6)
O60.0350 (8)0.0285 (8)0.0494 (7)0.0019 (6)0.0082 (6)0.0079 (6)
OW0.0299 (8)0.0340 (8)0.0469 (8)0.0020 (7)0.0005 (6)0.0019 (6)
S10.0316 (3)0.0396 (3)0.0383 (2)0.0082 (2)0.00785 (19)0.0010 (2)
Geometric parameters (Å, º) top
C1—O11.414 (2)O3—C211.403 (3)
C1—C21.528 (2)C21—C221.496 (6)
C1—S11.8355 (17)C21—H21A0.9700
C1—H10.9800C21—H21B0.9700
C2—O21.421 (2)C22—C231.366 (8)
C2—C31.524 (2)C22—C271.412 (7)
C2—H20.9800C23—C241.366 (7)
C3—O31.427 (2)C23—H230.9300
C3—C41.515 (3)C24—C251.382 (7)
C3—H30.9800C24—H240.9300
C4—O41.425 (2)C25—C261.377 (8)
C4—C51.529 (2)C25—H250.9300
C4—H40.9800C26—C271.393 (8)
C5—O11.4347 (18)C26—H260.9300
C5—C61.506 (2)C27—H270.9300
C5—H50.9800C21'—C22'1.510 (8)
C6—O61.435 (2)C21'—H21C0.9700
C6—H6A0.9700C21'—H21D0.9700
C6—H6B0.9700C22'—C23'1.356 (10)
C8—C91.381 (2)C22'—C27'1.384 (10)
C8—C131.386 (2)C23'—C24'1.370 (9)
C8—S11.7777 (17)C23'—H23'0.9300
C9—C101.390 (3)C24'—C25'1.346 (9)
C9—H90.9300C24'—H24'0.9300
C10—C111.372 (3)C25'—C26'1.375 (9)
C10—H100.9300C25'—H25'0.9300
C11—C121.375 (3)C26'—C27'1.377 (9)
C11—H110.9300C26'—H26'0.9300
C12—C131.382 (3)C27'—H27'0.9300
C12—H120.9300C28—O41.403 (2)
C13—H130.9300C28—C291.500 (3)
C14—O21.417 (2)C28—H28A0.9700
C14—C151.493 (3)C28—H28B0.9700
C14—H14A0.9700C29—C301.384 (3)
C14—H14B0.9700C29—C341.389 (3)
C15—C161.386 (2)C30—C311.386 (3)
C15—C201.388 (3)C30—H300.9300
C16—C171.370 (3)C31—C321.365 (3)
C16—H160.9300C31—H310.9300
C17—C181.368 (3)C32—C331.389 (3)
C17—H170.9300C32—H320.9300
C18—C191.368 (3)C33—C341.372 (3)
C18—H180.9300C33—H330.9300
C19—C201.392 (3)C34—H340.9300
C19—H190.9300O6—H60.87 (2)
C20—H200.9300OW—HW10.88 (3)
O3—C21'1.362 (4)OW—HW20.78 (2)
O1—C1—C2111.21 (14)C21—O3—C3116.2 (2)
O1—C1—S1114.34 (12)O3—C21—C22109.4 (4)
C2—C1—S1108.15 (11)O3—C21—H21A109.8
O1—C1—H1107.6C22—C21—H21A109.8
C2—C1—H1107.6O3—C21—H21B109.8
S1—C1—H1107.6C22—C21—H21B109.8
O2—C2—C3108.46 (14)H21A—C21—H21B108.2
O2—C2—C1109.45 (13)C23—C22—C27119.2 (6)
C3—C2—C1110.59 (14)C23—C22—C21120.9 (5)
O2—C2—H2109.4C27—C22—C21119.5 (5)
C3—C2—H2109.4C22—C23—C24121.0 (5)
C1—C2—H2109.4C22—C23—H23119.5
O3—C3—C4108.00 (14)C24—C23—H23119.5
O3—C3—C2110.94 (15)C23—C24—C25120.4 (4)
C4—C3—C2111.68 (13)C23—C24—H24119.8
O3—C3—H3108.7C25—C24—H24119.8
C4—C3—H3108.7C26—C25—C24120.3 (5)
C2—C3—H3108.7C26—C25—H25119.9
O4—C4—C3108.98 (12)C24—C25—H25119.9
O4—C4—C5105.68 (14)C25—C26—C27119.5 (5)
C3—C4—C5112.09 (14)C25—C26—H26120.2
O4—C4—H4110.0C27—C26—H26120.2
C3—C4—H4110.0C26—C27—C22119.6 (6)
C5—C4—H4110.0C26—C27—H27120.2
O1—C5—C6106.70 (11)C22—C27—H27120.2
O1—C5—C4111.58 (13)O3—C21'—C22'113.2 (5)
C6—C5—C4112.98 (14)O3—C21'—H21C108.9
O1—C5—H5108.5C22'—C21'—H21C108.9
C6—C5—H5108.5O3—C21'—H21D108.9
C4—C5—H5108.5C22'—C21'—H21D108.9
O6—C6—C5110.21 (14)H21C—C21'—H21D107.8
O6—C6—H6A109.6C23'—C22'—C27'117.2 (8)
C5—C6—H6A109.6C23'—C22'—C21'122.1 (10)
O6—C6—H6B109.6C27'—C22'—C21'120.6 (9)
C5—C6—H6B109.6C22'—C23'—C24'122.3 (7)
H6A—C6—H6B108.1C22'—C23'—H23'118.9
C9—C8—C13119.53 (16)C24'—C23'—H23'118.9
C9—C8—S1117.95 (13)C25'—C24'—C23'120.4 (7)
C13—C8—S1122.40 (14)C25'—C24'—H24'119.8
C8—C9—C10120.02 (17)C23'—C24'—H24'119.8
C8—C9—H9120.0C24'—C25'—C26'119.0 (7)
C10—C9—H9120.0C24'—C25'—H25'120.5
C11—C10—C9120.23 (19)C26'—C25'—H25'120.5
C11—C10—H10119.9C25'—C26'—C27'120.3 (8)
C9—C10—H10119.9C25'—C26'—H26'119.9
C10—C11—C12119.72 (18)C27'—C26'—H26'119.9
C10—C11—H11120.1C26'—C27'—C22'120.7 (9)
C12—C11—H11120.1C26'—C27'—H27'119.7
C11—C12—C13120.66 (17)C22'—C27'—H27'119.7
C11—C12—H12119.7O4—C28—C29108.24 (15)
C13—C12—H12119.7O4—C28—H28A110.0
C12—C13—C8119.79 (18)C29—C28—H28A110.0
C12—C13—H13120.1O4—C28—H28B110.0
C8—C13—H13120.1C29—C28—H28B110.0
O2—C14—C15109.44 (16)H28A—C28—H28B108.4
O2—C14—H14A109.8C30—C29—C34118.92 (17)
C15—C14—H14A109.8C30—C29—C28120.18 (18)
O2—C14—H14B109.8C34—C29—C28120.90 (17)
C15—C14—H14B109.8C29—C30—C31120.1 (2)
H14A—C14—H14B108.2C29—C30—H30119.9
C16—C15—C20118.96 (19)C31—C30—H30119.9
C16—C15—C14120.41 (16)C32—C31—C30120.32 (19)
C20—C15—C14120.61 (18)C32—C31—H31119.8
C17—C16—C15120.65 (18)C30—C31—H31119.8
C17—C16—H16119.7C31—C32—C33120.20 (19)
C15—C16—H16119.7C31—C32—H32119.9
C18—C17—C16120.4 (2)C33—C32—H32119.9
C18—C17—H17119.8C34—C33—C32119.5 (2)
C16—C17—H17119.8C34—C33—H33120.2
C19—C18—C17119.9 (2)C32—C33—H33120.2
C19—C18—H18120.0C33—C34—C29120.89 (18)
C17—C18—H18120.0C33—C34—H34119.6
C18—C19—C20120.51 (19)C29—C34—H34119.6
C18—C19—H19119.7C1—O1—C5114.61 (11)
C20—C19—H19119.7C14—O2—C2116.02 (14)
C15—C20—C19119.52 (19)C28—O4—C4116.34 (13)
C15—C20—H20120.2C6—O6—H6106.8 (14)
C19—C20—H20120.2HW1—OW—HW2106 (2)
C21'—O3—C2140.1 (2)C8—S1—C1101.91 (8)
C21'—O3—C3115.02 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HW1···O20.88 (3)2.00 (3)2.861 (2)166 (2)
OW—HW2···O60.78 (2)2.07 (2)2.827 (2)165 (2)
O6—H6···OWi0.87 (2)1.89 (2)2.745 (2)169 (2)
Symmetry code: (i) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC33H34O5S·H2O
Mr560.69
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)12.628 (1), 8.084 (1), 14.832 (2)
β (°) 101.380 (5)
V3)1484.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.35 × 0.30 × 0.17
Data collection
DiffractometerOxford Diffraction Gemini Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.948, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
12650, 5205, 4333
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.062, 0.97
No. of reflections5205
No. of parameters400
No. of restraints17
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.17
Absolute structureFlack (1983), 2381 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HW1···O20.88 (3)2.00 (3)2.861 (2)166 (2)
OW—HW2···O60.78 (2)2.07 (2)2.827 (2)165 (2)
O6—H6···OWi0.87 (2)1.89 (2)2.745 (2)169 (2)
Symmetry code: (i) x+1, y1/2, z+2.
 

Acknowledgements

This work was supported in part by the Fonds National de la Recherche Scientifique (FNRS, Belgium).

References

First citationBoons, G. J. (1991). J. Carbohydr. Chem. 10, 995–1007.  CrossRef CAS Web of Science Google Scholar
First citationCaravano, A., Mengin-Lecreulx, D., Brondello, J.-M., Vincent, S. & Sinay, P. (2003). Chem. Eur. J. 23, 5888–98.  Web of Science CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDohi, H., Perion, R., Durka, M., Bosco, Y., Roue, Y., Moreau, F., Grizot, S., Ducruix, A., Escaich, S. & Vincent, S. (2008). Chem. Eur. J. 14, 9530–9539.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrizot, S., Salem, M., Vongsouthi, V., Durand, L., Moreau, F., Vincent, S., Dohi, H., Escaich, S. & Ducruix, A. (2006). J. Mol. Biol. 363, 383–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzurmai, Z., Baaltoni, L. & Liptak, A. (1994). Carbohydr. Res. 254, 301–309.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds