metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m795-m796

Chlorido[hydridotris(pyrazol-1-yl-κN2)borato](1H-pyrazole-κN2)(tri­phenyl­phosphine-κP)ruthenium(II)

aDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan, bDepartment of Natural Science, Taipei Municipal University of Education, Taipei 10048, Taiwan, and cDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: yhlo@mail.tmue.edu.tw

(Received 22 May 2010; accepted 6 June 2010; online 16 June 2010)

In the title compound, [Ru(C9H10BN6)Cl(C3H4N2)(C18H15P)], the RuII atom is coordinated by an N,N′,N′′-tridentate hydrido­trispyrazolylborate (Tp) ligand, a pyrazole (HPz) mol­ecule, a chloride ion and a triphenyl­phosphine ligand, resulting in a distorted RuClPN4 octa­hedral coordination for the metal ion: the tridentate N atoms occupy one octa­hedral face and the Cl and P atoms are cis. One of the phenyl rings is disordered over two orientations in a 0.547 (10):0.453 (10) ratio, and a weak intra­molecular N—H⋯Cl hydrogen bond generates an S(5) ring.

Related literature

For general background to ruthenium coordination chemistry with pyrazole-type ligands, see: Alcock et al. (1992[Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906-2908.]); Cheng et al. (2009[Cheng, C. J., Tong, H. C., Fong, Y. H., Wang, P. Y., Kuo, Y. L., Lo, Y. H. & Lin, C. H. (2009). Dalton Trans. pp. 4435-4438.]); Deacon et al. (1998[Deacon, G. B., Delbridge, E. E., Skelton, B. W. & White, A. H. (1998). Angew. Chem. Int. Ed. 37, 2251-2554.]); Govind et al. (1996[Govind, B., Satyanarayana, T. & Veera-Reddy, K. (1996). Polyhedron, 15, 1009-1022.]); Lo et al. (2004[Lo, Y. H., Lin Y.-C., Lee, G. H. & Wang, Y. W. (2004). Eur. J. Inorg. Chem. pp. 4616-4623.]); Pavlik et al. (2005[Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organomet­allics, 24, 3561-3575.]). For related structures, see: Gemel et al. (1996[Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 15, 3998-4004.]); Slugovc et al. (1998[Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827-831.]). Tong et al. (2008[Tong, H.-C., Hsu, C.-Y. C., Lo, Y.-H., Lin, C.-H. & Wang, Y. (2008). Acta Cryst. E64, m1453.], 2009[Tong, H.-C., Hung, Y.-C., Wang, P.-Y., Lin, C.-H. & Lo, Y.-H. (2009). Acta Cryst. E65, m438.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C9H10BN6)Cl(C3H4N2)(C18H15P)]

  • Mr = 679.91

  • Monoclinic, P 21 /c

  • a = 17.7782 (12) Å

  • b = 10.0843 (5) Å

  • c = 18.9139 (10) Å

  • β = 116.316 (3)°

  • V = 3039.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 200 K

  • 0.11 × 0.08 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.928, Tmax = 0.980

  • 22639 measured reflections

  • 5292 independent reflections

  • 3470 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.118

  • S = 1.02

  • 5292 reflections

  • 360 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Selected bond lengths (Å)

Ru1—N1 2.067 (4)
Ru1—N3 2.097 (4)
Ru1—N5 2.076 (4)
Ru1—N7 2.076 (4)
Ru1—P1 2.3031 (15)
Ru1—Cl1 2.4374 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8′⋯Cl1 0.88 2.49 3.025 (6) 120

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrazoles and pyrazolate anions are attractive ligands that disclose a rich coordination chemistry (Deacon et al., 1998). Pyrazoles and substituted pyrazoles usually perform as monodentate ligands (Lo et al., 2004) and these monodentate pyrazoles may give rise to fascinating processes such as prototropic equilibrium or reversible metal-ligand binding, which are relevant to biological systems (Govind et al., 1996). On the other hand, Tp (hydridotripyrazolylborate) ligand is often compared with the Cp (Cp = η5-C5H5) ligand due to their charge and number of electrons donated in the formation of complex. The ruthenium chloride complex [Ru(Tp)Cl(PPh3)2] (Alcock et al., 1992) has been used as the precursor for the synthesis of several complexes because of its substitutionally labile phosphines and chloride (Cheng et al., 2009). TpRu complexes are of importance for stoichiometric and catalytic transformations of organic compounds (Pavlik et al., 2005).

Treatment of the complex [Ru(Tp)Cl(PPh3)2] reacts with pyrazole in toluene affording the title compound [RuCl(Tp)(PPh3)(HPz)] (Figure 1). The single crystals of the title compound suitable for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ether. In the crystal structure of the title compound the ruthenium metal center is coordinated by four N, one P and one Cl atom within slightly distorted octahedron. The bite angle of the Tp ligand produces an average produces an average N—Ru—N angle of 86.6° only slightly distorted from 90°. The three Ru—N(Tp) bond lengths (2.067 (4), 2.097 (4), and 2.076 (4) Å) are slightly longer than the average distance of 2.038 Å in other ruthenium Tp complexes (Gemel et al. 1996; Slugovc et al. 1998). The Ru—Cl bond of 2.4374 (14) Å are similar to those found in other (pyrazole)ruthenium complexes, such as 2.4259 (14) Å in [Ru(Tp)Cl(PPh3)(PhCN)] (Tong et al. 2008) and 2.4429 (7) Å in [Ru(Tp)Cl(PPh3) (HN=CPh2)] (Tong et al. 2009). Weak N—H——Cl hydrogen bond is observed in the crystal structure.

Related literature top

For general background to ruthenium coordination chemistry with pyrazole-type ligands, see: Alcock et al. (1992); Cheng et al. (2009); Deacon et al. (1998); Govind et al. (1996); Lo et al. (2004); Pavlik et al. (2005). For related structures, see: Gemel et al. (1996); Slugovc et al. (1998). Tong et al. (2008, 2009).

Experimental top

To a solution of [Ru(Tp)Cl(PPh3)2] (3.95 g, 4.50 mmol) in toulene (100 ml), an excess of pyrazole were added. The mixture was heated using a warm water bath for 30 min. A deep yellow color developed during this time. The reaction mixture was stirred for a further 2 h at room temperature (298 K). Then it was concentrated to approximately half of the volume and cooled to 273 K. The yellow precipitate was filtered off, washed with ethanol and ether and dried under vacuum to give the title compound. Yellow prisms of (I) were obtained by recrystallization from dichloromethane–ether.

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) and B—H = 1.0 Å and Uiso(H) = 1.2Ueq(B).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).
Chlorido[hydridotris(pyrazol-1-yl-κN2)borato](1H-pyrazole- κN2)(triphenylphosphine-κP)ruthenium(II) top
Crystal data top
[Ru(C9H10BN6)Cl(C3H4N2)(C18H15P)]Z = 4
Mr = 679.91F(000) = 1384
Monoclinic, P21/cDx = 1.486 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.7782 (12) ŵ = 0.69 mm1
b = 10.0843 (5) ÅT = 200 K
c = 18.9139 (10) ÅPrism, yellow
β = 116.316 (3)°0.11 × 0.08 × 0.03 mm
V = 3039.5 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
5292 independent reflections
Radiation source: fine-focus sealed tube3470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.4°
CCD rotation images, thick slices scansh = 2121
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1112
Tmin = 0.928, Tmax = 0.980l = 2221
22639 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0431P)2 + 4.7477P]
where P = (Fo2 + 2Fc2)/3
5292 reflections(Δ/σ)max = 0.001
360 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Ru(C9H10BN6)Cl(C3H4N2)(C18H15P)]V = 3039.5 (3) Å3
Mr = 679.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.7782 (12) ŵ = 0.69 mm1
b = 10.0843 (5) ÅT = 200 K
c = 18.9139 (10) Å0.11 × 0.08 × 0.03 mm
β = 116.316 (3)°
Data collection top
Nonius KappaCCD
diffractometer
5292 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3470 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.980Rint = 0.079
22639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.89 e Å3
5292 reflectionsΔρmin = 0.88 e Å3
360 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2902 (4)0.3286 (6)0.1960 (4)0.0463 (16)
H10.27380.29870.14360.056*
C20.2953 (4)0.4609 (6)0.2186 (4)0.0555 (18)
H20.28370.53700.18580.067*
C30.3205 (4)0.4581 (6)0.2979 (4)0.0474 (17)
H30.32900.53330.33090.057*
C40.5121 (3)0.0343 (6)0.4007 (4)0.0404 (15)
H40.52610.03940.37760.048*
C50.5677 (4)0.0987 (7)0.4686 (4)0.0539 (18)
H50.62550.07930.49970.065*
C60.5218 (4)0.1956 (6)0.4810 (4)0.0480 (17)
H60.54190.25660.52380.058*
C70.2128 (4)0.0109 (6)0.3727 (4)0.0402 (15)
H70.18300.06660.34680.048*
C80.2055 (4)0.0742 (7)0.4345 (4)0.0562 (19)
H80.17010.04980.45800.067*
C90.2593 (4)0.1778 (7)0.4543 (4)0.057 (2)
H90.26890.23950.49540.069*
C100.4314 (4)0.1132 (7)0.1913 (4)0.0540 (18)
H100.43110.20640.19830.065*
C110.4754 (5)0.0497 (8)0.1565 (4)0.073 (2)
H110.50960.08900.13540.087*
C120.4589 (5)0.0808 (8)0.1592 (4)0.069 (2)
H120.47990.15190.14010.082*
C130.1166 (4)0.1063 (6)0.1829 (3)0.0387 (15)
C140.1434 (4)0.2266 (6)0.2193 (5)0.068 (2)
H140.20080.25070.23830.082*
C150.0875 (6)0.3145 (8)0.2288 (5)0.097 (2)
H150.10710.39710.25450.116*
C160.0059 (6)0.2816 (8)0.2013 (4)0.0853 (19)
H160.03220.34200.20690.102*
C170.0222 (5)0.1622 (7)0.1657 (4)0.0608 (14)
H170.07960.13900.14740.073*
C180.0328 (4)0.0738 (6)0.1559 (3)0.0448 (16)
H180.01260.00900.13070.054*
C190.1261 (3)0.1512 (5)0.1297 (3)0.0377 (15)
C200.1150 (3)0.2350 (5)0.1821 (4)0.0389 (15)
H200.14420.21810.23710.047*
C210.0622 (4)0.3428 (7)0.1557 (4)0.0608 (14)
H210.05360.39770.19230.073*
C220.0221 (6)0.3709 (8)0.0766 (5)0.0853 (19)
H220.01240.44730.05820.102*
C230.0325 (6)0.2860 (8)0.0239 (5)0.097 (2)
H230.00370.30300.03110.116*
C240.0842 (5)0.1779 (7)0.0509 (4)0.078 (3)
H240.09090.12060.01420.094*
C250.2000 (3)0.0681 (5)0.0859 (3)0.0391 (15)
C260.2011 (7)0.2090 (10)0.0842 (7)0.039 (3)*0.547 (10)
H260.18930.26240.11940.047*0.547 (10)
C270.2208 (7)0.2625 (12)0.0263 (7)0.052 (4)*0.547 (10)
H270.21970.35610.02040.063*0.547 (10)
C280.2412 (8)0.1881 (13)0.0209 (9)0.048 (3)*0.547 (10)
H280.24970.23030.06170.058*0.547 (10)
C26'0.1488 (9)0.1639 (13)0.0340 (8)0.045 (4)*0.453 (10)
H26'0.10610.20010.04540.054*0.453 (10)
C27'0.1535 (10)0.2134 (15)0.0340 (9)0.060 (5)*0.453 (10)
H27'0.11880.28490.06320.072*0.453 (10)
C28'0.2087 (10)0.1562 (15)0.0564 (10)0.048 (4)*0.453 (10)
H28'0.21670.18720.10000.057*0.453 (10)
C290.2503 (5)0.0547 (7)0.0130 (4)0.063 (2)
H290.26580.00210.04620.076*
C300.2354 (6)0.0005 (7)0.0473 (4)0.075 (3)
H300.25110.08910.06190.090*
N10.3114 (3)0.2499 (4)0.2585 (3)0.0316 (11)
N20.3313 (3)0.3310 (4)0.3217 (3)0.0337 (11)
N30.4364 (3)0.0895 (4)0.3725 (2)0.0281 (10)
N40.4429 (3)0.1907 (4)0.4224 (3)0.0334 (11)
N50.2680 (3)0.0749 (4)0.3548 (3)0.0303 (11)
N60.2968 (3)0.1791 (4)0.4062 (3)0.0389 (12)
N70.3897 (3)0.0274 (4)0.2138 (3)0.0367 (12)
N80.4080 (3)0.0912 (5)0.1936 (3)0.0476 (14)
H8'0.38870.16690.20200.057*
B10.3644 (4)0.2722 (6)0.4052 (4)0.0397 (18)
H1'0.37710.34420.44520.048*
Cl10.34907 (9)0.18597 (13)0.31246 (9)0.0368 (4)
Ru10.32023 (3)0.04732 (4)0.27709 (3)0.02453 (15)
P10.19260 (9)0.00460 (14)0.17152 (9)0.0329 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (4)0.032 (4)0.040 (4)0.002 (3)0.010 (3)0.011 (3)
C20.067 (5)0.027 (4)0.059 (5)0.006 (3)0.016 (4)0.020 (3)
C30.052 (4)0.020 (3)0.071 (5)0.007 (3)0.028 (4)0.001 (3)
C40.034 (3)0.037 (4)0.045 (4)0.003 (3)0.013 (3)0.005 (3)
C50.032 (4)0.059 (4)0.043 (4)0.006 (3)0.008 (3)0.014 (4)
C60.052 (4)0.047 (4)0.026 (4)0.023 (4)0.000 (3)0.000 (3)
C70.032 (3)0.034 (3)0.052 (4)0.001 (3)0.016 (3)0.013 (3)
C80.055 (4)0.063 (5)0.072 (5)0.004 (4)0.047 (4)0.002 (4)
C90.078 (5)0.054 (4)0.068 (5)0.003 (4)0.058 (5)0.004 (4)
C100.064 (5)0.061 (4)0.049 (4)0.017 (4)0.037 (4)0.001 (4)
C110.088 (6)0.087 (6)0.074 (6)0.008 (5)0.063 (5)0.003 (5)
C120.078 (6)0.086 (6)0.066 (5)0.010 (5)0.053 (5)0.008 (4)
C130.034 (3)0.033 (3)0.036 (4)0.007 (3)0.004 (3)0.009 (3)
C140.049 (4)0.028 (4)0.108 (7)0.025 (3)0.017 (4)0.005 (4)
C150.128 (6)0.072 (4)0.048 (4)0.049 (4)0.001 (4)0.007 (3)
C160.123 (5)0.068 (4)0.054 (4)0.031 (4)0.030 (4)0.003 (3)
C170.058 (3)0.076 (4)0.051 (3)0.016 (3)0.026 (3)0.006 (3)
C180.043 (4)0.054 (4)0.036 (4)0.006 (3)0.016 (3)0.002 (3)
C190.038 (3)0.030 (3)0.028 (4)0.009 (3)0.001 (3)0.005 (3)
C200.034 (3)0.036 (3)0.032 (4)0.010 (3)0.002 (3)0.002 (3)
C210.058 (3)0.076 (4)0.051 (3)0.016 (3)0.026 (3)0.006 (3)
C220.123 (5)0.068 (4)0.054 (4)0.031 (4)0.030 (4)0.003 (3)
C230.128 (6)0.072 (4)0.048 (4)0.049 (4)0.001 (4)0.007 (3)
C240.101 (6)0.070 (5)0.032 (4)0.056 (5)0.002 (4)0.000 (4)
C250.030 (3)0.031 (3)0.045 (4)0.001 (3)0.007 (3)0.013 (3)
C290.087 (5)0.061 (5)0.040 (4)0.017 (4)0.026 (4)0.003 (4)
C300.151 (8)0.044 (4)0.032 (4)0.041 (5)0.043 (5)0.017 (3)
N10.039 (3)0.017 (2)0.033 (3)0.002 (2)0.011 (3)0.001 (2)
N20.038 (3)0.018 (3)0.043 (3)0.005 (2)0.017 (3)0.003 (2)
N30.026 (3)0.029 (3)0.024 (3)0.001 (2)0.008 (2)0.000 (2)
N40.041 (3)0.033 (3)0.021 (3)0.009 (2)0.008 (2)0.003 (2)
N50.030 (3)0.025 (3)0.034 (3)0.002 (2)0.012 (2)0.001 (2)
N60.049 (3)0.033 (3)0.044 (3)0.001 (2)0.029 (3)0.005 (2)
N70.042 (3)0.035 (3)0.037 (3)0.001 (2)0.021 (3)0.006 (2)
N80.058 (4)0.044 (3)0.052 (4)0.001 (3)0.034 (3)0.010 (3)
B10.049 (5)0.029 (4)0.045 (5)0.006 (3)0.025 (4)0.008 (3)
Cl10.0399 (8)0.0218 (7)0.0420 (9)0.0043 (6)0.0120 (7)0.0027 (6)
Ru10.0258 (2)0.0193 (2)0.0246 (3)0.0007 (2)0.00759 (19)0.0001 (2)
P10.0322 (9)0.0231 (8)0.0321 (9)0.0004 (6)0.0039 (7)0.0036 (6)
Geometric parameters (Å, º) top
C1—N11.332 (7)C20—C211.377 (8)
C1—C21.392 (8)C20—H200.9500
C1—H10.9500C21—C221.371 (9)
C2—C31.363 (9)C21—H210.9500
C2—H20.9500C22—C231.387 (10)
C3—N21.343 (7)C22—H220.9500
C3—H30.9500C23—C241.370 (9)
C4—N31.329 (6)C23—H230.9500
C4—C51.387 (8)C24—H240.9500
C4—H40.9500C25—C301.341 (8)
C5—C61.359 (9)C25—C26'1.390 (14)
C5—H50.9500C25—C261.422 (11)
C6—N41.350 (7)C25—P11.835 (6)
C6—H60.9500C26—C271.396 (14)
C7—N51.337 (6)C26—H260.9500
C7—C81.387 (8)C27—C281.334 (15)
C7—H70.9500C27—H270.9500
C8—C91.352 (9)C28—C291.355 (14)
C8—H80.9500C28—H280.9500
C9—N61.346 (7)C26'—C27'1.416 (18)
C9—H90.9500C26'—H26'0.9500
C10—N71.326 (7)C27'—C28'1.358 (19)
C10—C111.382 (9)C27'—H27'0.9500
C10—H100.9500C28'—C291.316 (16)
C11—C121.354 (9)C28'—H28'0.9500
C11—H110.9500C29—C301.392 (9)
C12—N81.332 (7)C29—H290.9500
C12—H120.9500C30—H300.9500
C13—C141.371 (8)N1—N21.359 (6)
C13—C181.384 (8)N2—B11.539 (8)
C13—P11.838 (6)N3—N41.361 (6)
C14—C151.402 (11)N4—B11.524 (8)
C14—H140.9500N5—N61.367 (6)
C15—C161.347 (11)N6—B11.531 (8)
C15—H150.9500N7—N81.339 (6)
C16—C171.362 (9)N8—H8'0.8800
C16—H160.9500B1—H1'1.0000
C17—C181.394 (8)Ru1—N12.067 (4)
C17—H170.9500Ru1—N32.097 (4)
C18—H180.9500Ru1—N52.076 (4)
C19—C241.365 (8)Ru1—N72.076 (4)
C19—C201.382 (7)Ru1—P12.3031 (15)
C19—P11.839 (5)Ru1—Cl12.4374 (14)
N1—C1—C2110.2 (6)C27—C26—C25114.5 (9)
N1—C1—H1124.9C27—C26—H26122.8
C2—C1—H1124.9C25—C26—H26122.8
C3—C2—C1105.2 (5)C28—C27—C26123.0 (12)
C3—C2—H2127.4C28—C27—H27118.5
C1—C2—H2127.4C26—C27—H27118.5
N2—C3—C2108.5 (5)C27—C28—C29122.6 (12)
N2—C3—H3125.8C27—C28—H28118.7
C2—C3—H3125.8C29—C28—H28118.7
N3—C4—C5110.8 (6)C25—C26'—C27'127.1 (12)
N3—C4—H4124.6C25—C26'—H26'116.5
C5—C4—H4124.6C27'—C26'—H26'116.5
C6—C5—C4105.1 (6)C28'—C27'—C26'118.4 (15)
C6—C5—H5127.5C28'—C27'—H27'120.8
C4—C5—H5127.5C26'—C27'—H27'120.8
N4—C6—C5108.5 (5)C29—C28'—C27'114.9 (13)
N4—C6—H6125.8C29—C28'—H28'122.6
C5—C6—H6125.8C27'—C28'—H28'122.6
N5—C7—C8110.1 (5)C28'—C29—C2832.0 (7)
N5—C7—H7124.9C28'—C29—C30123.9 (9)
C8—C7—H7124.9C28—C29—C30115.0 (8)
C9—C8—C7105.7 (5)C28'—C29—H29105.7
C9—C8—H8127.1C28—C29—H29122.5
C7—C8—H8127.1C30—C29—H29122.5
N6—C9—C8108.8 (6)C25—C30—C29123.5 (6)
N6—C9—H9125.6C25—C30—H30118.2
C8—C9—H9125.6C29—C30—H30118.2
N7—C10—C11111.4 (6)C1—N1—N2106.4 (4)
N7—C10—H10124.3C1—N1—Ru1135.2 (4)
C11—C10—H10124.3N2—N1—Ru1118.4 (3)
C12—C11—C10104.8 (6)C3—N2—N1109.7 (5)
C12—C11—H11127.6C3—N2—B1130.1 (5)
C10—C11—H11127.6N1—N2—B1120.1 (4)
N8—C12—C11107.4 (6)C4—N3—N4106.0 (5)
N8—C12—H12126.3C4—N3—Ru1134.1 (4)
C11—C12—H12126.3N4—N3—Ru1119.8 (3)
C14—C13—C18118.2 (6)C6—N4—N3109.6 (5)
C14—C13—P1119.2 (5)C6—N4—B1132.5 (5)
C18—C13—P1122.7 (5)N3—N4—B1117.9 (5)
C13—C14—C15121.0 (7)C7—N5—N6106.1 (4)
C13—C14—H14119.5C7—N5—Ru1136.3 (4)
C15—C14—H14119.5N6—N5—Ru1117.5 (3)
C16—C15—C14119.9 (8)C9—N6—N5109.3 (5)
C16—C15—H15120.0C9—N6—B1129.9 (5)
C14—C15—H15120.0N5—N6—B1120.7 (4)
C15—C16—C17120.3 (9)C10—N7—N8104.5 (5)
C15—C16—H16119.9C10—N7—Ru1133.0 (4)
C17—C16—H16119.9N8—N7—Ru1122.2 (4)
C16—C17—C18120.4 (7)C12—N8—N7111.9 (5)
C16—C17—H17119.8C12—N8—H8'124.0
C18—C17—H17119.8N7—N8—H8'124.0
C13—C18—C17120.2 (6)N4—B1—N6108.4 (5)
C13—C18—H18119.9N4—B1—N2108.9 (5)
C17—C18—H18119.9N6—B1—N2107.7 (5)
C24—C19—C20118.7 (5)N4—B1—H1'110.6
C24—C19—P1124.3 (5)N6—B1—H1'110.6
C20—C19—P1116.9 (4)N2—B1—H1'110.6
C21—C20—C19120.9 (6)N1—Ru1—N587.90 (16)
C21—C20—H20119.5N1—Ru1—N791.02 (17)
C19—C20—H20119.5N5—Ru1—N7171.23 (18)
C22—C21—C20119.9 (6)N1—Ru1—N385.26 (17)
C22—C21—H21120.0N5—Ru1—N386.71 (17)
C20—C21—H21120.0N7—Ru1—N384.53 (17)
C21—C22—C23119.1 (7)N1—Ru1—P193.79 (13)
C21—C22—H22120.4N5—Ru1—P193.51 (13)
C23—C22—H22120.4N7—Ru1—P195.25 (13)
C24—C23—C22120.3 (7)N3—Ru1—P1179.02 (12)
C24—C23—H23119.8N1—Ru1—Cl1172.51 (13)
C22—C23—H23119.8N5—Ru1—Cl192.33 (12)
C19—C24—C23120.9 (6)N7—Ru1—Cl187.62 (13)
C19—C24—H24119.5N3—Ru1—Cl187.28 (12)
C23—C24—H24119.5P1—Ru1—Cl193.67 (5)
C30—C25—C26'106.7 (7)C25—P1—C13101.8 (3)
C30—C25—C26118.8 (7)C25—P1—C19103.0 (3)
C26'—C25—C2645.6 (6)C13—P1—C19100.0 (3)
C30—C25—P1120.8 (4)C25—P1—Ru1114.28 (18)
C26'—C25—P1128.3 (7)C13—P1—Ru1120.32 (19)
C26—C25—P1115.2 (6)C19—P1—Ru1114.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cl10.882.493.025 (6)120

Experimental details

Crystal data
Chemical formula[Ru(C9H10BN6)Cl(C3H4N2)(C18H15P)]
Mr679.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)17.7782 (12), 10.0843 (5), 18.9139 (10)
β (°) 116.316 (3)
V3)3039.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.11 × 0.08 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.928, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
22639, 5292, 3470
Rint0.079
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.118, 1.02
No. of reflections5292
No. of parameters360
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.88

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ru1—N12.067 (4)Ru1—N72.076 (4)
Ru1—N32.097 (4)Ru1—P12.3031 (15)
Ru1—N52.076 (4)Ru1—Cl12.4374 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8'···Cl10.882.493.025 (6)120
 

Acknowledgements

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC 97–2113-M-133–001-MY2) and in part from the project of specific research fields in Tatung University, Taiwan (B96–C07–081). We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University) for his assistance with the X-ray single-crystal structure analysis and the project of specific research fields in Chung Yuan Christian University, Taiwan, under grant CYCU-98-CR–CH.

References

First citationAlcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCheng, C. J., Tong, H. C., Fong, Y. H., Wang, P. Y., Kuo, Y. L., Lo, Y. H. & Lin, C. H. (2009). Dalton Trans. pp. 4435–4438.  Web of Science CSD CrossRef Google Scholar
First citationDeacon, G. B., Delbridge, E. E., Skelton, B. W. & White, A. H. (1998). Angew. Chem. Int. Ed. 37, 2251–2554.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 15, 3998–4004.  CSD CrossRef CAS Web of Science Google Scholar
First citationGovind, B., Satyanarayana, T. & Veera-Reddy, K. (1996). Polyhedron, 15, 1009–1022.  CrossRef CAS Web of Science Google Scholar
First citationLo, Y. H., Lin Y.-C., Lee, G. H. & Wang, Y. W. (2004). Eur. J. Inorg. Chem. pp. 4616–4623.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organomet­allics, 24, 3561–3575.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.  Web of Science CSD CrossRef CAS Google Scholar
First citationTong, H.-C., Hsu, C.-Y. C., Lo, Y.-H., Lin, C.-H. & Wang, Y. (2008). Acta Cryst. E64, m1453.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTong, H.-C., Hung, Y.-C., Wang, P.-Y., Lin, C.-H. & Lo, Y.-H. (2009). Acta Cryst. E65, m438.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m795-m796
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds